第二章下 常用地图投影
- 格式:pdf
- 大小:16.37 MB
- 文档页数:93
20种地图投影通用横向墨卡托投影(U T M )通用横向墨卡托投影是横轴等角割圆柱投影,圆柱割地球于两条等高圈。
该投影将地球划分为60个投影带,每带经差为6度,已被许多国家作为地形图的数学基础。
一般从南纬度80到北纬度84度的范围内使用该投影,对于两极地区则采用UPS投影(通用球面极投影)。
亚尔伯斯等积圆锥投影亚尔伯斯等积圆锥投影即为双标准纬线投影,也即正轴等面积割圆锥投影。
该投影经纬网的经线为辐射直线,纬线为同心圆圆弧。
亚尔伯斯等积圆锥投影的应用在编制一些行政区划图,人口地图,地势图等方面应用较广。
如中国地势图,即是以Q1=25度,Q2=45度的亚尔伯斯等积圆锥投影。
兰伯特等角圆锥投影兰伯特等角圆锥投影也称兰勃脱正形圆锥投影,该投影的微分圆投影后仍为圆形。
经线为辐射直线,纬线为同心圆圆弧。
指定两条标准纬度线Q1,Q2,在这两条纬度线上没有长度变形,即M=N=1。
此种投影也叫等角割圆锥投影,可用来编制中,小比例尺地图。
等角圆锥投影有广泛的应用,特别适宜于作为中纬度处沿纬度线伸展的制图区域之投影,投影后经线为辐射直线,纬度线为同心圆圆弧。
我国的分省图,即为两条标准纬度线为Q1=25度,Q2=45度的兰伯特等角圆锥投影。
1962年以后,百万分一地图采用了等角圆锥投影(南纬度80度,北纬度84度),极区附近,采用等角方位投影(极球面投影)。
地图分幅为:纬度60以下,纬度差4 经差6度分幅纬度60-76,纬度差4 经差12度分幅纬度76-84,纬度差4 经差24度分幅纬度84-88,纬度差4 经差36度分幅88-90仍为一幅图每幅图内两条标准纬线的纬度:Q1=QS+40分(南纬度) Q2=QN-40分(北纬度)投影后经线是辐射直线,东西图幅可完全拼接,南北图幅有裂隙。
我国采用等角割圆锥,Q1=PHIS+35分Q2=PHIN-35分墨卡托投影(等角正圆柱投影)等角正圆柱投影也称墨卡托投影,经纬线投影为互相正交的平行直线。
常用的几种地图投影世界地图常用投影一、墨卡托投影(等角正切圆柱投影)投影方法:圆柱投影。
经线彼此平行且间距相等。
纬线也彼此平行,但离极点越近,其间距越大。
不能显示极点。
应用:标准海上航线图(方向)。
其他定向使用:航空旅行、风向、洋流。
等角世界地图。
此投影的等角属性最适合用于赤道附近地区,例如,印尼和太平洋部分地区。
特点:形状等角。
由于该投影维持局部角度关系不变,所以能很好地描绘微小形状。
面积明显变形方向保持了方向和相互位置关系的正确距离沿赤道或沿割纬线的比例是真实的。
局限:在墨卡托投影上无法表示极点。
可以对所有经线进行投影,但纬度的上下限约为80° N 和80° S。
大面积变形使得墨卡托投影不适用于常规地理世界地图。
墨卡托投影坐标系:取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。
二、桑逊投影(正轴等积伪圆柱投影)应用:除用于编制世界地图外,更适合编制赤道附近南北延伸地区的地图,如非洲、南美洲地图等特点:该投影的纬线为间隔相等的平行直线,经线为对称于中央经线的正弦曲线,是等面积投影,赤道和中央经线是两条没有变形的线,离开这两条线越远,长度、角度变形越大。
因此,该投影中心部分变形较小。
三、摩尔维特投影(伪圆柱等积投影)投影方法:伪圆柱等积投影。
所有纬线都是直线,所有经线都是等间距的椭圆弧。
唯一例外的是中央子午线,中央子午线是直线。
极点是点。
应用:适用于绘制世界专题或分布地图,经常采用不连续的形式。
将其与正弦曲线投影组合使用可创造出古蒂等面积和博格斯投影。
属性:形状在中央子午线和40°44' N 与40°44' S 纬线的交点处,形状未发生变形。
向外离这些点越远,变形越严重,在投影边处变形严重。
面积等积。
方向仅在中央子午线和40°44' N 与40°44' S 纬线的交点处,局部角度才是真实的。
常用的地图投影编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(常用的地图投影)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为常用的地图投影的全部内容。
第一节圆锥投影一、圆锥投影的基本概念1.圆锥投影的定义圆锥投影的概念可用图5-1来说明:设想将一个圆锥套在地球椭球上而把地球椭球上的经纬线网投影到圆锥面上,然后沿着某一条母线(经线)将圆锥面切开面展成平面,就得到圆锥投影。
2.圆锥投影的分类①按圆锥面与地球相对位置的不同,可分正轴、横轴、斜轴圆锥投影,见图5-2,但横轴、斜轴圆锥投影实际上很少应用。
所以凡在地图上注明是圆锥投影的,一般都是正轴圆锥投影。
②按标准纬线分为切圆锥投影和割圆锥投影切圆锥投影,视点在球心,纬线投影到圆锥面上仍是圆,不同的纬线投影为不同的圆,这些圆是互相平行的,经线投影为相交于圆锥顶点的一束直线,如果将圆锥沿一条母线剪开展为平面,则呈扇形,其顶角小于360度。
在平面上纬线不再是圆,而是以圆锥顶点为圆心的同心圆弧,经线成为由圆锥顶点向外放射的直线束,经线间的夹角与相应的经差成正比,但比经差小。
在割圆锥投影上,两条纬线投影后没有变形,是双标准纬线,两条割线符合主比例尺,离开这两条标准纬线向外投影变形逐渐增大,离开这两条标准纬线向里投影变形逐渐减小,凡是距标准纬线相等距离的地方,变形数量相等,因此圆锥投影上等变形线与纬线平行。
③圆锥投影按变形性质分为等角、等积和等距圆锥投影三种。
构成圆锥投影需确定纬线的半径ρ和经线间的夹角δ,ρ是纬度的函数用公式表示为。
δ是经差λ的函数.用公式表示为 ,对于不同的圆锥投影它是不同的。
测绘中常用的地图投影方法地图作为一种常见的信息呈现方式,在测绘工作中扮演着重要的角色。
而地图投影方法则是地图制作过程中不可或缺的一环。
地图投影是将地球表面的三维信息投射到二维平面上的过程,由于地球是一个近似于椭球体的三维地理模型,所以将其表现在平面上会引起一些形状、大小和方向的失真。
本文将介绍一些测绘中常用的地图投影方法。
一、等距投影法等距投影法是一种保持地球表面上各点距离不变的地图投影方法。
其中最著名的等距投影法是墨卡托投影法。
墨卡托投影法是一种圆柱投影法,即将地球投影到一个接触地球表面的圆柱体上,再展开成平面图。
墨卡托投影法具有以下特点:1. 在赤道附近地图形状保持几乎不变,适合用来制作大尺寸地图。
2. 北纬高于赤道的地区会呈现出纵向拉长的形状,而南纬高于赤道的地区则是纵向收缩。
二、等面积投影法等面积投影法是一种保持地球表面上各个区域面积比例不变的地图投影方法。
其中最常见的等面积投影法是兰勃托投影法。
该投影法将地球投影到一个接触地球表面的圆锥体上,再展开成平面图。
兰勃托投影法具有以下特点:1. 在地图上,各个区域的面积比例与实际相符,适合用来制作区域面积比例重要的地图。
2. 高纬度地区形状会发生压缩和形变。
三、正轴等距投影法正轴等距投影法是一种使某一点保持在地图上的位置与实际相符的地图投影方法。
其中最常见的正轴等距投影法是汇卢卓投影法。
该投影法将地球投影到一个接触地球表面的切平面上,再展开成平面图。
汇卢卓投影法具有以下特点:1. 在地图上,特定地点的位置保持不变。
2. 地图整体形状会产生扭曲和拉伸。
四、等经纬度投影法等经纬度投影法是一种直接将地球经纬线映射到平面图上的地图投影方法。
其中最常见的等经纬度投影法是正投影法。
该投影法将地球投影到一个与地球相切的平面上,使得地图上经纬线直线简单。
正投影法具有以下特点:1. 经纬线在地图上表现为直线。
2. 不同纬度上的东西向距离不同,形成等经线。
综上所述,地图投影方法在测绘工作中起到至关重要的作用。
地理信息系统常用的地图投影1、高斯-克吕格投影--------实质上是横轴切圆柱正形投影该投影是等角横切椭圆柱投影。
想象有一椭圆柱面横套在地球椭球体外面,并与某一条子午线(称中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定的投影方法将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。
高斯平面直角坐标系以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为 X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。
所以,高斯-克吕格坐标系的X、Y轴正好对应一般GIS 软件坐标系中的Y和X。
高斯投影的条件和特点★中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴高斯投影的条件★投影具有等角性质★中央经线投影后保持长度不变★中央子午线长度变形比为1,其他任何点长度比均大于1★在同一条经线上,长度变形随纬度的降低而增大,在赤道处为最大高斯投影的特点★在同一条纬线上,离中央经线越远,变形越大,最大值位于投影带边缘★投影属于等角性质,没有角度变形,面积比为长度比的平方★长度比的变形线平行于中央子午线高斯投影6°和3为了控制变形,我国地图采用分带方法。
我国1:1.25万—1:50万地形图均采用6度分带, 1:1万及更大比例尺地形图采用3度分带,以保证必要的精度。
6度分带从格林威治零度经线起,每6度分为一个投影带,该投影将地区划分为60个投影带,已被许多国家作为地形图的数字基础。
一般从南纬度80到北纬度84度的范围内使用该投影。
3度分带法从东经1度30分算起,每3度为一带。
这样分带的方法在于使6度带的中央经线均为3度带的中央经线;在高斯克吕格6度分带中中国处于第13 带到23带共12个带之间;在3度分带中,中国处于24带到45带共22带之间。
高斯--克吕格投影的优点:★等角性别适合系列比例尺地图的使用与编制;★径纬网和直角坐标的偏差小,便于阅读使用;★计算工作量小,直角坐标和子午收敛角值只需计算一个带。
常见地图投影欧阳芳地图投影:按变形性质分类:等角投影,等积投影,任意投影按几何构成方法分类:方位投影,圆柱投影,圆锥投影按非几何构成方法分类:伪方位投影,伪圆柱投影,伪圆锥投影,多圆锥投影按照投影面积与地球相割或相切分类:割投影,切投影这里只介绍常见常用的地图投影。
1.常见的地图投影按变形性质分为:等角投影:定义为投影前后对应的微分面积保持图形相似,即角度变形为零,也称正形投影。
其在一点上任意方向的长度比都相等,但在不同地点长度比是不同,即不同地点上的变形椭圆大小不同。
等积投影:定义为即在投影平面上任意一块面积与椭球面上相应的面积相等,即面积变形等于零。
等距投影:在任意投影上,长度、面积和角度都有变形,它既不等角又不等积。
但是有一种比较常见的等距投影,定义为沿某一特定方向的距离,投影前后保持不变。
在这种投影图上并不是不存在长度变形,它只是在特定方向上没有长度变形。
等距投影的面积变形小于等角投影,角度变形小于等积投影。
其变形性质在微分圆上的表示列表对比为:名称特点适用范围等角投影无角度变形航海、空图、洋流图、风向图、气象图及军用地图等积投影无面积变形经济图,行政区图和人口图等距投影(属于任意投影的特殊情况)特定方向上无长度变形沿某一特定方向量测距离的地图、教学地图和交通地图2.常用的几何投影:方位投影:以平面作为投影面,使平面与球面相切或相割,将球面上的经纬线投影到平面上而成。
其中球心投影常用于航空及航海图,外心投影常用于空间透视投影。
圆柱投影:以圆柱面作为投影面,使圆柱面与球面相切或相割,将球面上的经纬线投影到圆柱面上,然后将圆柱面展为平面而成。
圆锥投影:以圆锥面作为投影面,使圆锥面与球面相切或相割,将球面上的经纬线投影到圆锥面上,然后将圆锥面展为平面而成。
圆锥投影,圆柱投影,以及方位投影的情况分别用图形表示为:方位投影,圆锥投影,圆柱投影的异同分析(此表格中不加特别说明则默认为正轴投影):名称方位投影圆柱投影圆锥投影投影面平面圆柱面圆锥面纬线投影特点同心圆平行直线同心圆圆弧经线投影特点同心圆的半径与纬线投影成的平行直线垂直的平行直线垂直于同心圆弧且相交于一点的直线束投影变形分析经线间的夹角与实地经度差相等,其等变形线为圆其变形只与纬度有关,与经差无关,同纬度上各点其变形只与纬度有关,与经差无关,同纬度上各点形的变形相同的变形相同适用范围具有圆形轮廓的区域和两极地区低纬度沿纬线伸展的区域中纬度处沿纬线伸展的区域习惯特殊投影方式及用途1.正轴等角方位投影:极球面2.等积方位投影:小比例尺地图,东西半球图3.正轴等距方位投影:南北极图4.横轴等距方位投影:东西半球图5.斜轴等距方位投影:航空中心站,地震观测中心,气象站等需满足到中心距离相等的勘测中心。
测量测绘学中的常用地图投影方法地图是人类认识地球的重要工具之一,而地图投影则是将三维地球表面投影到二维平面上的过程。
在测量测绘学中,有许多常用的地图投影方法,每种方法都有其独特的特点和应用领域。
本文将介绍一些常见的地图投影方法,并简要探讨它们的优缺点。
一、等角地图投影方法等角地图投影方法是指在地图上体现出任意两点之间的角度等于真实地球上两点之间的角度。
常见的等角地图投影方法包括兰勃托投影、平展投影和乌德尔斯坦投影等。
这些方法在保持地图上各地点角度关系准确的同时,会出现面积、形状的变形。
例如,兰勃托投影是一种常见的等角地图投影方法,它以正圆柱面作为投影面,使得地球表面的经线和纬线在地图上呈现为直线。
然而,由于纬线的扩展,兰勃托投影在高纬度地区表现出了较大的形状变形。
因此在高纬度地区使用兰勃托投影时,需要注意形状变形对地图分析的影响。
二、等面积地图投影方法等面积地图投影方法是指在地图上面积比例与真实地球上相对应的区域面积比例相等。
根据等面积地图投影方法的不同,地图上的面积变形程度不同。
该类投影方法常用于需要准确表示地理区域面积的工作,如人口统计、土地利用等。
其中,墨卡托投影是一种常见的等面积地图投影方法,它以圆柱面作为投影面,使得地球表面上的每个小区域在地图上面积保持不变。
墨卡托投影在赤道附近呈现出较好的面积保持性,但随着纬度的增加,面积变形逐渐增大。
因此,在高纬度地区使用墨卡托投影时需要注意面积变形对数据分析的影响。
三、等距地图投影方法等距地图投影方法是指在地图上任意两点之间距离与真实地球上两点之间距离相等。
等距地图投影方法常用于海洋导航、飞行路径规划等应用领域,其优点在于能够准确表示地球上的距离。
兰托慧逊投影是一种常见的等距地图投影方法,它以正四面体作为投影体,使得地球上的大圆弧在地图上成为直线。
这使得兰托慧逊投影在导航、航海等领域具有重要的应用价值。
但由于等距投影方法的特点,形状和面积在兰托慧逊投影中会发生较大的变形。