金属材料的晶体学织构与各向异性
- 格式:ppt
- 大小:5.02 MB
- 文档页数:72
嚣裁工韭大学蘸寞学像论文3.3模拟结鬃与分析3.3。
l等效痉力等效残交基线等效应交图3.3多晶铜辅对称披伸等效应力度变曲线及其floo}辍闰的演化为了全嚣娥反映如实骣黥取囊分蠢情瑰,可以曩极圈柬说疆。
所谓掇嬲就是表示多晶体中备晶粒的某组鼯面的极点(晶面法线与参考球面的交点)分布的投影鬻。
圈3.3为诗舞掰褥熬多晶铜辘霹称控{攀}层一诧等效藏力等效应交穗线与苓同等效应变O.O、0.25、O.5、1.O、2.O所对威的{loo}极图的演化。
归一化等效应力为Mises等效应力与初始临界分切剪应力之院其中,Mises等效应力必隋—一彳=√号如勖,勋为偏应力张量(3.6)l‘等效应变为手:文垮D+嚣露,£>=邓辩(龄强’l(3—7)’’j从圈3.3巾可以器窭,变形翦(等效黩变£一e)各疆粒取囱随规分毒,等效应变为O.25时,<100>极点的极射赤面投影点开始向中部的环形区域附近聚集,随繁等效森交s静灌大,聚集鏊城越来越拳,投影煮的密发越来越裹,织构逐灏形残,晶粒取向分布的方向性越来越明显,等效应变占增大到1.O时,投影点的聚集基本趋于饱和,形成了典型的轴对称拉伸织构,_l觅戚所着等效应变的增大,聚集区域越寒越集中。
20第三章多晶铜轴对称变形纵向各向异性3.3.2纵向弹性各向异性分析本小节通过各个加载方向上弹性模量的演化,分析变形过程中多晶体弹性各向异性的变化,首先分析多晶体整体,即三维空间内,各向异性随等效应变的演化情况,接下来选取几个典型的平面进行分析,最后分析几个典型的方向上弹性模量的变化情况。
3.3.2.1三维空间的弹性各向异性分析(a)等效应变为0(c)等效应变为O.52l(b)等效应变为O.25(d)等效应变为1西北丁业人学帧1学位论文(c)等效应变为2图3.4弹性模量取向分稚随等效应变的演化拉伸变形时弹性模量随等效应变的演化情况如图3.4所示,初始时,等效应变为零,如图3-4(a)所示,多晶体弹性模量的最大值为148.515GPa,而最小值为143.351GPa,两者之间差异较小,可近似认为多晶体沿各个方向上的弹性模量相等,多晶体表现为各向同性。
x4011481金属材料的晶体学织构与各向异性课程教学大纲课程名称:金属材料的晶体学织构与各向异性英文名称:Crystallographic Textures and Anisotropies of Metal Materials课程编号:x4011481学时数:32其中实验(实训)学时数:0 课外学时数:0学分数:2适用专业:材料科学与工程(卓越工程师)、金属材料工程一、课程的性质和任务晶体学织构与各向异性是现代先进金属材料十分重要的特性,利用晶体本身存在的各向异性,将其性能优异的晶体学方向转置在材料需要的方向上是提高金属材料性能的一个重要手段。
作为材料科学与工程(卓越工程师)、金属材料工程专业选修课,本课程主要介绍金属材料织构产生的基本过程,并阐述了相关基本理论,同时对材料织构研究方面的最新成果作了一定的介绍。
通过本课程的学习,使学生初步了解金属材料织构和各向异性方面的基本知识,为从事性能优异的新金属材料的生产和开发打下一定的理论基础.二、课程教学内容的基本要求、重点和难点第一章织构的测量与表达1、教学内容①取向与织构;②极图与极密度分布;③取向分布函数;④中子衍射织构分析;⑤织构测量新技术2、教学要求掌握取向的极射赤面投影法、正反极图、取向分布函数,了解中子衍射织构分析3、重点、难点重点:极射赤面投影法、反极图难点:反极图、取向分布函数第二章织构的生成1、教学内容①热加工织构;②冷变形织构;③不均匀变形织构;④再结晶织构;⑤二次再结晶织构;⑥相变织构;⑦高纯面心立方金属板中的立方织构;2、教学要求了解热加工织构,掌握冷变形、不均匀变形、再结晶织构,了解二次再结晶、相变织构3、重点、难点重点:冷变形、不均匀变形、再结晶织构难点:不均匀变形织构第三章传统金属材料的织构及其应用1、教学内容①深冲压铝合金薄板;②不可热处理强化铝合金的力学性能;③超深冲无间隙原子钢;④高压电子铝箔;⑤冷轧电工硅钢板2、教学要求掌握铝合金薄板的制耳效应及消除,了解不可热处理强化铝合金织构,掌握无间隙原子钢的织构控制、取向、无取向硅钢3、重点、难点重点:铝合金薄板的制耳效应及消除、取向、无取向硅钢难点:取向、无取向硅钢第四章新金属材料的织构及其应用1、教学内容①金属与合金织构的一些特殊利用;②薄膜金属的织构;③金属间化合物结构材料的织构;④金属间化合物功能材料的织构2、教学要求掌握钛、锌合金板织构、冲压钢板的镀锌层;了解金属间化合物结构、功能材料织构3、重点、难点重点:钛、锌合金板织构、冲压钢板的镀锌层第五章晶体学织构与金属材料检测1、教学内容①与取向相关的材料性能及其在线检测技术;②纤维织构的定量计算;③多晶体晶界两侧晶粒取向差的统计计算;④电工钢磁学性能检测;⑤深冲压钢板塑性应变比无损检测2、教学要求掌握r值在线检测技术、纤维织构定最分析方法,了解多晶取向差分布的统计计算、电工钢磁学性能、深冲压钢板塑性应变比无损检测3、重点、难点重点:r值在线检测技术三、教学方式及学时分配四、课程其他教学环节要求讲授本课程时必须注意,内容上要有一定深度和广度,使学生掌握坚实宽广的基础理论并能灵活应用;课堂以讲授为主,可与讨论式教学相结合;布置的作业题目要具有典型性、代表性和多样性,难易要适度,数量要适中.五、本课程与其他课程的联系本课程的先修课程:高等数学、材料科学基础、固态相变等六、考核方式闭卷考核(试卷成绩占80%,平时成绩20%)七、教学参考书目《金属材料的晶体学织构与各向异性》毛卫民编,科学出版社,2002《材料织构分析原理与检测技术》毛卫民,杨平,陈冷编著,冶金工业出版社,2008 《晶体材料织构定量分析》毛卫民、张新明著,冶金工业出版社,1993《织构材料的三维取向分析术-—ODF分析》梁志德、徐家桢、王福编,东北工学院出版社出版社,1986。
镁合金织构与各向异性第15卷第1期V01.15No.1中国有色金属学报TheChinese2005年1月Jan.2005JournalofNonferroBsMetals文章编号:1004—0609(2005)01—0001—11镁合金织构与各向异性①陈振华,夏伟军,程永奇,傅定发(湖南大学材料科学与工程学院,长沙410082)摘要:介绍了镁合金变形及退火织构的组分与特点,论述了在挤压、轧制、等径角挤压等塑性变形及退火过程中镁合金织构的演变规律及形成机理,分析了织构与镁合金力学性能的基本关系,探讨了合金元素、变形温度、应变速度、外加应力及晶粒度等基本因素对镁合金织构特征与各向异性的影响。
结果表明:织构对镁合金力学性能的影响,其实质是通过改变各滑移系特别是{0001}[11酌]基面滑移系的Schmid因子、产生织构强化或软化而实现的。
关键词:镁合金;织构;塑性变形;各向异性;力学性能中图分类号:TGl46.2文献标识码:ATextureandanisotropyinmagnesiumalloysCHENZhen-hua,XIAWei-jun,CHENYong—qi,FUDing—fa(SchoolofMaterialsScienceandEngineering,HunanUniversity,Changsha410082,China)Abstract:Thecharacteristicsandcomponentsoftheformationandevolutionoftexturestexturesinmagnesiumalloyswerepresented.Themechanismofasduringplasticdeformationsuchbyextrusion,rolling,equalchannelangletheeffectsoftexturesonex—trusionprocessesandannealingwerereviewed,followedpropertiesofstrain,strainthattexturestheanalysisofasmechanicalmagnesiumalloys.Theinfluencesofmainfactorssuchratealloyelements,deformationtemperature,andgrainsizeontextureandanisotropyofmagnesiumalloyswerediscussed.TheresultsshowaffectmechanicalpropertiesofmagnesiumalloysmainlybyalteringtheSchmidfactorsofallslips,as—strengtheningandsoftening.peciallybasalslipsystemsandinducingtextureKeywords:magnesiumalloys;texture;plasticdeformation;anisotropy;mechanicalproperties制约变形镁合金发展的主要原因在于其较差的室温塑性变形能力,如何在较大程度上改善镁合金的塑性已成为人们关注的焦点。
1 滑移与孪生的区别及它们在塑性变形过程中的作用。
答:滑移与孪生的区别:(1)滑移是晶体两部分发生相对滑动,不改变晶体位向,孪生是晶体一部分相对另一部分发生均匀切变,发生位向的改变,孪生面两侧原子呈镜面对称。
(2)滑移面上的原子移动的距离是原子间距的整数倍,而孪生方向移动的原子不是原子间距的整数倍。
(3)滑移是个缓慢的过程,孪生产生速度极快。
(4)滑移是在晶体内各晶粒内部产生不均匀,而孪生在整个孪生区内部都是均匀的切变。
作用:晶体产生塑性变形过程主要依靠滑移机制来完成的;孪生所需的临界应力要高很多,对塑性变形的贡献比滑移小得多,但孪生改变了部分晶体的空间取向,使原来处于不利取向的滑移系转变为新的有利取向,激发晶体滑移。
2面心立方、体心立方、密排六方金属的主要塑性变形方式是什么?温度、变形速度对其有何影响?铝、铁、鎂中哪种金属的塑性最好?哪种最差?答:面心立方、体心立方有较多的滑移系,塑性变形以滑移为主,而密排六方金属对称性低,滑移系少,塑性变形方式主要是孪生。
变形温度越高,滑移越容易,孪生产生的几率越小,反之变形温度越高,滑移越困难,产生孪晶的几率越大。
变形速度越大,滑移常来不及产生足够大的变形,因此导致切应力增大,产生孪晶的几率也增大。
铝为面心立方结构、铁为体心立方结构、镁为密排六方结构,因此铝的塑性最好,镁的塑性最差。
3绘图说明常见fcc、bcc结构金属的滑移系有哪些?这两种晶体结构的密排面、密排方向是哪些?与滑移系之间有何关系?答:FCC晶格:滑移面就是最密排面:{111}包括(111), (111), (111), (111);滑移方向就是最密排方向:〈110〉每个滑移面上有三个,如图中箭头所示。
一个滑移面与滑移面上的一个滑移方向构成一个滑移系,因此滑移系数: 4×3=12BCC晶格:滑移面:{110}(110), (011), (101), (110), (011), (101)共6个滑移方向:〈111〉,每个滑移面上两个,如图箭头所示。