LED与荧光粉
- 格式:docx
- 大小:10.92 KB
- 文档页数:3
节能灯发光原理
节能灯,也称为高效节能灯或LED灯,其发光原理是利用半导体材料的发光性质。
与传统白炽灯不同,节能灯的发光原理并不依赖于电阻加热。
下面将介绍不同类型的节能灯的发光原理。
1. 荧光灯:荧光灯利用荧光粉发光的原理。
荧光灯的内部管壁涂有荧光粉,管内充满了稀薄的惰性气体(如氩气和氖气)以及一小滴汞。
当电路中的电流通过荧光灯的两个电极时,电子被加速并击中汞蒸汽,激发汞原子的电子跃迁。
这些激发态的汞原子通过散射、碰撞等过程,释放出紫外线。
紫外线经过荧光粉的照射下,会被荧光粉吸收并发光,产生可见光。
2. LED灯:LED灯是利用LED(Light Emitting Diode)的发光原理来实现。
LED是一种半导体器件,其结构由P型半导体和N型半导体组成。
当电流通过LED芯片时,P型半导体中的正极电子会与N型半导体中的负极空穴结合,从而发生电子跃迁。
在跃迁过程中,电子会释放出能量,这些能量以光子的形式放射出来,导致LED发光。
此外,通过定义半导体材料的掺杂浓度和使用不同的材料,LED可以发出不同颜色的光。
3. 紧凑荧光灯(CFL):紧凑荧光灯是一种小型荧光灯,其发光原理与传统荧光灯相似。
不同之处在于,CFL将荧光灯的长直管改为了紧凑的螺旋形管状。
这样可以减小体积,提高能效。
CFL通过相同的原理,即通过汞蒸汽和荧光粉来产生可见光。
总的来说,节能灯的发光原理主要是通过半导体材料的发光性质来实现。
这种原理使得节能灯相比传统的白炽灯更加高效、持久且节能。
基于LED用红色荧光粉研究进展的研究LED技术是一种无污染、低能耗的新型照明技术,具有使用寿命长、光效高等优点,被广泛应用于照明和显示领域。
然而,LED光源发光波长往往只覆盖蓝色、绿色和紫色等颜色,缺乏红色发光,这限制了LED在照明领域中的应用。
为了解决这一问题,目前研究人员采用了添加红色荧光材料的方法来扩展LED发光波长范围,以实现白光LED的制备。
本文将对基于LED用红色荧光粉研究进展进行综述。
一、红色荧光材料的研究进展红色荧光材料的研究是LED制备中的一个重要领域,目前主要研究方向有以下几个方面。
1. 钙钛矿荧光材料钙钛矿是一种具有优异的光电学性能的材料,具有很高的荧光效率和发光亮度,成为研究红色荧光材料的主流选择。
钙钛矿红色荧光材料的优点在于,光电转换效率高,发光光谱窄,且不易退色。
2. 磷光材料磷光材料是目前LED照明领域中广泛使用的一种添加剂。
研究人员通过掺杂适当的稀土元素,用磷光材料制备红色发光的LED,可以实现高效的光电转换,且光谱波长可调节。
有机发光材料的特点在于制备简单、发光亮度高、发光光谱范围广,可以适应不同的LED发光波长。
目前,研究人员往往利用有机分子的共轭结构设计合成不同的荧光材料,以实现高效、稳定的红色荧光发光。
1. 衬底上生长红色荧光材料该方法是将红色荧光材料生长在LED衬底上,可以获得高品质的红色荧光LED。
但是,生长红色荧光材料的条件往往比较苛刻,制备工艺复杂,成本较高。
2. 显色剂法该方法是利用红色荧光的显色剂覆盖在LED芯片上,使其发光范围从蓝色、绿色扩展到红色。
显色剂法的制备过程简单,但是存在光衰问题,使其发光效率降低。
3. 粉末混合法该方法是将LED芯片和红色荧光粉混合后封装成组件,形成红色荧光LED。
这种制备方法成本低,易于实现工业化生产。
三、红色荧光LED应用红色荧光LED广泛应用于室内和室外照明中,如LED橱柜灯、普通照明、LED路灯等。
此外,红色荧光LED还应用于汽车制造、显示屏、仪器检测等领域。
浅谈LED荧光粉配胶程序荧光粉在LED制造过程起着至关重要的作用;使用绿色荧光粉配合黄色荧光粉和蓝色LED芯片,可获得高亮度白光LED;若使用绿色荧光粉配合蓝光LED芯片,可以直接获得绿光;若使用绿色荧光粉配合黄色荧光粉与蓝色LED芯片,可以获得冷色调白光;绿色荧光粉也可配合红色荧光粉与蓝色LED芯片而获得白光;白光LED的显色指数CRI与蓝光芯片、YAG荧光粉、相关色温等有关,其中最重要的是YAG粉,不同色温区的LED,用的粉及蓝光芯片不一样;目标色温越低的管子用的粉发射峰值要越长,芯片的峰值也要长,低于4000K色温,还要另外加入发红光的粉,以弥补红成分的不足,达到提高显色指数的目的,在保持的芯片及粉不变的条件下,色温越高显色指数越高;在生产中总结出来的经验来看,蓝光与YAG的最佳匹配关系如下:YAG发射峰值/nm 蓝光峰值波长/nm530±5 450-455540±5 455-460550±5 460-465555±5 465-470这样做出的白光比较白,一般芯片厂家提供的都是主波长,峰值波长要用专门仪器测试,测出来的值一般都比主波长短5nm左右;荧光粉与芯片波长决定了色坐标中一条直线,确定了荧光粉与芯片波长;只要增加减少配比都可以调节色坐标在此一条直线上位置;常见的LED晶粒如下:材料波长材料波长InGaN 475-485nm InGaN 525nmInGaN 465-475nm InGaN 505nmInGaN 455-465nm InGaN 515nmInGaAlP 620-640nm GaAlAs/GaAs 660nmInGaAlP 610-620nm GaAlAs/GaAlAs 660nmInGaAlP 600-610nm GaP 700nmInGaAlP 592-600nm GaP 570-575nmInGaAlP 580-593nm GaP 565-570nmInGaAlP 567-577nm GaP 550-565nmInGaAlP 550-565nm PY---GaAlAs 585nm由于荧光粉目前有无机类和有机类荧光粉;若不添加有机类荧光粉之情况,YAG荧光粉和AB胶之比例一般为1:6 ~ 10重量比;至于AB胶应为 6 ~10g之间的多少数量,必须视蓝色芯片的功率大小做调整;芯片功率大者,在荧光粉数量固定不变下,AB胶数量应较为少例如1:6;反之,功率小者AB胶数量应较为多例如:1:10;LED荧光粉配胶程序是LED工艺中,相当基础的一环,我们来看看是怎么做的;准备工作:1、开启并检查所有的LED生产使用设备烤箱、精密电子称、真空箱2、用丙酮清洗配胶所用的小烧杯;3、准备所需的量产规格书或相应的联络单,及相应型号胶水等并确认其都在有效的使用期内;开始配胶:1、配胶顺序说明:增亮剂+A胶按比例混合可以按订单一次性配好,最后再加入荧光粉+ B胶按比例混合物体须搅拌均匀;在后再抽真空;2、根据量产规格书或工程通知单中荧光粉配比和生产数量,计算出各种物料所需的重量;3、调整精密电子称四个底座使电子称呈水准状态;4、将干净的小烧杯放置于精密的电子磅秤上, 归零后,根据量产规格书中荧光粉的配比,分别称取所需重量的荧光粉和A、B胶;5、将配好的荧光粉手动搅拌20分钟至30分钟不等,直到荧光粉分布均匀为止;6、把配好的荧光胶抽真空至看不见气泡的状态,取出后,放在室温下用干净的玻璃盖上使用,使用前需按同一方向缓慢搅拌2分钟到3分钟,搅拌速度每转2秒至3秒;。
led灯的发光原理及荧光粉改善技术led的发光原理。
led是由ⅲ一v族化合物,如gaas(砷化镓)、gaasp(磷化镓砷)、a1gaas(砷化铝镓)等半导体制成,其核心是p-n结,因此它具有一般p-n结的伏一安特性,即正向导通、反向截止、击穿特性。
当p型半导体和n型半导体结合时,由于交界面处存在的载流子浓度差。
于是电子和空穴都会从高浓度区域向低浓度区域扩散。
这样,p区一侧失去空穴剩下不能移动的负离子,n区一侧失去电子而留下不能移动的正离子。
这些不能移动的带电粒子就是空间电荷。
空间电荷集中在p区和n区交界面附近,形成了一很薄的空间电荷区,就是p-n结。
当给p-n结1个正向电压时。
便改变了p-n结的动态平衡。
注入的少数载流子(少子)与多数载流子(多子)复合时,便将多余的能量以光的形式释放出来,从而把电能直接转换为光能。
如果给pn结加反向电压,少数载流子(少子)难以注入,故不发光。
白光led的主要实现方法。
目前,氮化镓基led获得白光主要有:蓝光led+黄色荧光粉、三色led合成白光、紫光led+三色荧光粉3种办法。
最为常见形成白光的技术途径是蓝光led芯片和可被蓝光有效激发的荧光粉结合组成白光led.led辐射出峰值为470nm 左右的蓝光,而部分蓝光激发荧光粉发出峰值为570nm左右的黄绿光。
与另一部分的蓝光与激发荧光粉产生的黄绿光混合产生ylo:ce 白光。
目前采用的荧光粉多为稀土激活的铝酸盐ylo:ce(yag),当有蓝光激发它时发出黄绿色光,所以称作黄绿色荧光粉。
该方法发光,发光效率高,制备简单,工艺成熟。
但色彩随角度而变。
光一致性差,而且荧光粉与led的寿命也不一致,随着时问的推移,显色指数和色温都会变化,影响了发光光源的发光质量。
采用红、绿、蓝三原色led芯片或三原色led管混合实现白光。
前者为三芯片型,后者为3个发光管组装型。
红、绿、蓝led 封装在1个管内,光效可达20lm/w,发光效率较高,显色性较好。
发光字的材料发光字是一种在暗处能够发出光芒的装饰材料,广泛应用于商业广告、标识牌、城市夜景等领域。
其发光原理是利用特定材料在受到激发后产生发光效果,因此选择合适的材料对于发光字的制作至关重要。
下面将介绍几种常见的发光字材料及其特点。
1. LED发光字材料。
LED发光字是目前应用最为广泛的一种发光字形式。
其材料主要包括LED灯珠、透光板、灯箱等。
LED灯珠作为发光源,具有亮度高、节能省电、寿命长的特点,透光板则用于均匀分布光线,灯箱则起到保护和装饰作用。
LED发光字材料成本低、制作工艺简单,因此受到了广泛的应用。
2. 钛金板发光字材料。
钛金板是一种金属材料,具有高亮度、高耐候性和防腐蚀性能。
钛金板发光字的制作工艺主要包括切割、折弯、焊接、喷涂等多道工序。
其外观质感高档,适用于高端商业场所的装饰和标识,但成本较高,制作工艺相对复杂。
3. 亚克力发光字材料。
亚克力是一种常见的发光字材料,其特点是透光性好、质地轻便、颜色丰富。
亚克力发光字的制作工艺主要包括切割、雕刻、打磨、喷漆等工序。
亚克力发光字广泛应用于商业标识、广告招牌等场合,其造型多样、制作工艺灵活,适用性较广。
4. 荧光粉发光字材料。
荧光粉是一种能够在黑暗中发出荧光的材料,其发光原理是在受到紫外线激发后产生发光效果。
荧光粉发光字的制作工艺主要包括喷涂、固化等工序。
荧光粉发光字适用于一些特殊场合,如夜店装饰、主题公园标识等,其独特的荧光效果能够吸引人们的注意。
总结。
不同材料的发光字各具特点,选择合适的材料取决于具体的应用场景和需求。
在制作发光字时,除了材料的选择外,制作工艺、灯光布局、外观设计等方面也需要综合考虑,以确保最终的效果能够达到预期的效果。
希望本文对于发光字材料的选择有所帮助,谢谢阅读!。
青色LED用荧光粉的制备与应用1. 引言青色LED(Light Emitting Diode)作为一种重要的光电器件,在照明、显示等领域具有广泛的应用。
荧光粉被广泛应用于青色LED的制备中,可以提升其光电性能和发光效果。
本文旨在介绍青色LED用荧光粉的制备方法以及在实际应用中的一些技术要点。
2. 青色LED用荧光粉的制备方法青色LED用荧光粉的制备主要包括荧光粉的原料选择、制备工艺和后处理等环节。
2.1 荧光粉的原料选择荧光粉的原料选择对青色LED的发光效果和色彩稳定性具有重要影响。
通常选择具有良好发光性能、高稳定性和优异的光电特性的荧光粉原料。
2.2 制备工艺荧光粉的制备工艺主要包括物料混合、粉碎和分级、固相反应等步骤。
具体制备工艺可以根据实际需求进行调整和优化。
2.3 后处理荧光粉的后处理是为了提高其发光效果和稳定性。
常见的后处理方法包括烧结、表面修饰和混合等步骤。
3. 青色LED用荧光粉的应用技术要点在实际应用中,使用青色LED荧光粉需要注意以下技术要点:3.1 光学性能调控通过调控荧光粉的组成和粒径,可以实现对青色LED的光学性能的调控。
可以根据实际需求选择合适的荧光粉制备方法和后处理工艺,以实现对LED发光颜色和色温的控制。
3.2 荧光粉和LED的匹配荧光粉的选择应考虑与LED器件的光谱性质相匹配。
合理选择荧光粉的颗粒大小和分布,可以提高荧光粉和LED之间的能量转移效率,从而提高LED的发光亮度和效率。
3.3 荧光粉的稳定性荧光粉的稳定性对青色LED的寿命和性能稳定性有着关键影响。
在荧光粉制备过程中,应注重对其稳定性的控制,并优化制备工艺和后处理方法,以提升青色LED的长期稳定性。
4. 结论青色LED用荧光粉的制备和应用是提升LED光电性能和发光效果的重要技术手段。
通过合理的荧光粉选择、制备工艺和后处理方法,并注意光学性能调控、荧光粉和LED的匹配以及荧光粉的稳定性,可以实现青色LED的优化制备和应用。
白色led原理
白色LED原理
白色LED,即白光发光二极管,是一种能够发出白光的半导体器件。
它的原理是通过将蓝光LED和黄色荧光粉结合在一起来实现白光发光。
在白色LED的发展过程中,不断有新的技术被引入,使得白光LED的亮度、效率和颜色纯度得到了不断提高。
白色LED的工作原理可以简单地概括为:当通电时,LED芯片中的半导体材料会发生电子与空穴的复合,释放出能量。
这些能量会激发荧光粉发出黄光,同时LED芯片本身也会发出蓝光。
通过调节荧光粉的配比和LED的结构,可以使得混合后的光呈现出白光。
在白色LED中,蓝光LED起到了关键作用。
蓝光LED的发明是白光LED出现的重要契机,因为蓝光LED可以通过激发黄色荧光粉来产生白光。
而黄色荧光粉的作用是将一部分蓝光转换为黄光,从而达到白光的效果。
这种蓝光激发黄光的方法,使得白光LED的发光效率得到了大幅提高。
除了蓝光LED和黄色荧光粉,有时还会加入绿色荧光粉来调节白光LED的色温。
通过合理的配比,可以使得白光LED发出的光线更加接近自然光,从而满足不同场合的照明需求。
白色LED的应用非常广泛,可以用于室内照明、汽车照明、显示屏、指示灯等领域。
由于白色LED具有高效、长寿命、环保等优点,因
此受到了越来越多人的青睐。
总的来说,白色LED的原理是通过蓝光LED和荧光粉的结合来实现白光发光。
通过不断的技术创新和改进,白色LED的性能不断提升,为人们的生活带来了便利。
随着科技的不断进步,相信白色LED在未来会有更广阔的应用前景。
LED五大主原料及主要厂家(晶片固晶底胶金线支架胶水)辅料:荧光粉!作用嘛从图上应该可以理解:一、晶片单电极与双电极芯片的区别?单电极一般为红光、黄光、黄绿光芯片,固晶用银胶;双电极一般为蓝光、绿光芯片,固晶用绝缘胶。
LED芯片单电极一般芯片正面电极为正,底部为负。
LED芯片有横向(Lateral)和垂直两种基本结构(Vertical)。
横向结构LED芯片就是双电极,即LED芯片正负极接垫在同表面。
垂直结构的LED芯片就是单电极.最直观的就是单电极芯片在表面只有一个焊点,双电极可以看到两个焊点,一个方的一个圆的. 圆正,方负.晶元是台资厂商EP-STAR,晶元芯片均以ES开头,是目前世界上产能最大的LED晶片制造厂商。
晶圆芯片是个代理商,两家型号都不一样晶片形状有正方形,长方形,梯形,倒梯形反向电流是漏电!越小越好!二、固晶底胶导电银胶是非常关键的物料,它的好坏直接影响下一步的固晶和焊线,以及成品的品质和寿命。
在LED中,银胶有三个值得参考的项目:.粘著力 2.导电性3.散热性(导热性)。
这三个专案分别决定了其中在操作中要考虑的拉力、推力、导电、寿命。
采用银胶的目的是利用了导电银胶来散热增强产品的寿命和亮度我司用的是美国道康宁银胶含Epoxy(环氧树脂)道康宁的主要竞争对手是GE 公司与日本信越公司GE公司即美国通用公司硅胶和环氧树脂的区别在于:环氧树脂向外的散热性比较好,但其本身耐高温,耐黄变的能力比较差,容易裂开,硅胶的散热性不是很好,但其本身耐高温,耐黄变的能力很强,所以对用硅胶做成的5050LED灯来说,硅胶是起到了很好的保护作用。
相比而言,一般5050LED灯都是用硅胶来封装,其价格成本也比用环氧树脂的要高。
1、环氧树脂固化后胶层比较硬,而硅胶胶层则相对较软;2、环氧树脂胶层硬而脆,硅胶弹性好,比较柔韧;3、环氧树脂最高耐温不超过100度,硅胶可耐温200度以上;4、环氧树脂粘接强度很高,硅胶粘接强度强度低2、胶水可分为封装胶,固晶胶(银胶)硅胶国产的要比道康宁等外国硅胶便宜的多,导线不用金线用铝线、合金线;支架不用铜,用铝或铁等等;我司用三安,华灿,晶元芯片,道康宁,千足金,铜支架,铜支架外面还镀银,3、我司用德国贺利氏金线做导线目前来说,金线第一品牌当属日本田中,但其价格昂贵,国内金线制造工艺已非常成熟,主要厂家有招远贺利氏(中德合资),四川长城,北京达博广州佳博,宁波康强,云南贵研等等。
白光发光二极管的制作方法(二)——蓝光LED加荧光粉最简单的白光LED是在蓝光LED上加黄色荧光粉得到的,又称其为1-PCLED(Phosphor Converted LED),其基本构造如图1所示。
因为这种LED采用了环氧树脂封装,所以光易于放出,所用荧光粉主要成分是YAG:Ce,其化学组成是(Y1-a Gd a)3(Al1-b Ga b)O12:Ce3+,Gd(Gadolinum,钆)可以改变Ce3+晶体电场,使光的波长增加而发黄光,图2(a)是465nm蓝光LED在室温20mA时的电致发光(EL:Electroluminescence)光谱,图2(b)是蓝光LED激发YAG:Ce荧光粉所产生的光谱,产生555nm黄光,此黄光与蓝光混合而成白光。
图3是不同含量YAG:Ce荧光粉在色度图中的位置,图中并有蓝光LED与不同含量荧光粉所产生白光在图中的位置。
R.Mueller-Mach等人用理论计算出,当LED与荧光粉发光功率不同比例时,460nm蓝光LED加YAG:Ce荧光粉所产生白光的色温CCT值、演色性R a值及发光效率列在图4的插表中,图4是其光谱图。
当色温大于5000K时,R a>80。
图5(a)是同一成分P7193荧光粉所产生白光的CCT分布图及其R a值,图5(b)则是同一波长蓝光LED但成分不同的YAG荧光粉所产生白光的CCT分布图及其R a值,由图可知,R a的值均在60~80范围的值,似乎不太理想。
{{分页}}R.Mueller-Mach等人又用理论计算出,pn结温度对1-pcLED的影响,其结果如图6 (a)所示,图6 (b)是实验结果,两者颇为相近,由图可见,温度上升时,色温及R a值均上升。
M.R.Kramas等人发现,如果将荧光粉随意放在LED芯片上,如图7(a)所示发光均匀性不佳,所以改变方式如图7(b)所示,将荧光粉均匀地涂在LED表面上,图7(c)则比较两者的CCT及R a值,发现用图7(b)方法者其CCT值变动甚少。
2024年白光LED用荧光粉市场分析现状1. 引言白光LED(Light Emitting Diode)是一种具有高光效和长寿命的照明光源,广泛应用于室内和室外照明、显示屏以及智能设备等领域。
而白光LED中的关键组成部分之一就是荧光粉。
本文将对白光LED用荧光粉的市场现状进行分析,以期提供行业发展参考。
2. 白光LED用荧光粉市场概述随着白光LED市场的迅速发展,对荧光粉的需求也日益增长。
荧光粉可以将蓝光转化为黄、红光,从而实现白光发光。
在白光LED市场中,荧光粉被广泛应用于提高色域和色温的调节,以及改善光源的色彩再现性。
3. 白光LED用荧光粉市场竞争情况目前,白光LED用荧光粉市场存在着较为激烈的竞争。
主要的荧光粉制造商包括台湾奇美材料(QMC)、日本尼晶(Nichia)等。
这些厂商在荧光粉的研发、生产和销售方面都累积了丰富的经验,凭借技术实力和品牌优势占据市场份额。
4. 白光LED用荧光粉市场发展趋势白光LED用荧光粉市场的发展呈现以下趋势:4.1 高效节能趋势随着环境保护和能源节约意识的提升,市场对高效节能的白光LED需求不断增加。
荧光粉作为白光LED的核心组成部分之一,需要不断提高其转化效率和光谱特性,以满足市场对高效节能照明产品的需求。
4.2 光质提升趋势消费者对照明产品的光质要求越来越高,对色彩还原度、色温调节等方面提出了更高的要求。
荧光粉的研发和应用需要更加注重光质的提升,以满足不同场景下的照明需求。
4.3 新兴应用领域的发展白光LED用荧光粉除了在传统照明领域应用广泛外,还在室内装饰、农业照明、医疗照明等新兴应用领域发展迅猛。
随着这些应用领域的扩大,对更多类型的荧光粉进行研发和生产的需求也相应增加。
5. 白光LED用荧光粉市场前景展望随着白光LED市场的不断发展壮大,白光LED用荧光粉市场有望继续保持稳定增长。
未来几年内,高效节能、光质提升和新兴应用领域的需求将促使荧光粉行业进行更多的创新和研发。
白光led光谱发光原理
白光LED(Light Emitting Diode,发光二极管)的光谱发光原理主要有两种:色温混合和荧光粉转化。
1. 色温混合:白光LED通过将不同色温(色温指光源的颜色冷暖程度)的LED芯片组合在一起,通过调节不同颜色LED 芯片的亮度和比例来实现白光发光。
常见的是将蓝光LED、绿光LED和红光LED芯片组合在一起,蓝光LED通过荧光材料的激发产生黄光,然后与绿光LED和红光LED混合,形成白光。
2.荧光粉转化:白光LED也可以通过使用荧光粉来转化较短波长的LED芯片发出的光至较长波长的光。
荧光粉是一种能将紫外光或蓝光转化为可见光的材料。
白光LED内部使用蓝光LED芯片,通过在蓝光周围涂覆一层荧光粉,当蓝光通过时,荧光粉吸收部分蓝光并重新辐射出黄光,再与蓝光混合形成白光。
这两种原理都可以实现白光发光,具体使用哪种方式取决于不同的应用需求和制造商的选择。
LED荧光粉是制造白色LED的必须材料。
首先,我们要了解白色LED的发光原理。
白色LED芯片是不存在的。
我们见到的白色LED一般是蓝光芯片激发黄色荧光粉发出白色光的。
好比:蓝色涂料和黄色涂料混在一起就变成了白色。
其次,不同波长的LED蓝光芯片需要配合不同波长的黄色荧光粉能够最大化的发出白光。
所以说,LED荧光粉是制造白色LED必须的东西(白色LED也有另外几种发光方式,但是市面上白色LED95%都是蓝光芯片激发黄色荧光粉的原理)。
黑体(热力学)任何物体都具有不断辐射、吸收、发射电磁波的本领。
辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。
这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。
为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体黑体(blackbody),以此作为热辐射研究的标准物体。
所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射(当然黑体仍然要向外辐射)。
显然自然界不存在真正的黑体,但许多地物是较好的黑体近似(在某些波段上)。
黑体辐射情况只与其温度有关,与组成材料无关.基尔霍夫辐射定律(Kirchhoff),在热平衡状态的物体所辐射的能量与吸收的能量之比与物体本身物性无关,只与波长和温度有关。
按照基尔霍夫辐射定律,在一定温度下,黑体必然是辐射本领最大的物体,可叫作完全辐射体。
用公式表达如下:Er=a*EoEr物体在单位面积和单位时间内发射出来的辐射能;a该物体对辐射能的吸收系数;Eo——等价于黑体在相同温度下发射的能量,它是常数。
普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为B(九,T)=2hc2/九5•l/exp(hc/XRT〉lB@,T)—黑体的光谱辐射亮度(W,m-2,Sr-1,gm-1)入—车辐射波长(pm)T—黑体绝对温度(K、T=t+273k)C—光速(2.998x108m・s-1)h—普朗克常数,6.626x10-34J・SK—波尔兹曼常数(Bolfzmann),1.380x10-23JK-1基本物理常数由图2.2可以看出:①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关,这就是维恩位移定律(Wien)九mT=2.898xl03@m・K)九m—最大黑体谱辐射亮度处的波长(pm)T—黑体的绝对温度(K)根据维恩定律,我们可以估算,当T~6000K时,九m~0.48pm(绿色)。
白光LED荧光粉的特性、发展和应用近年来能源紧缺,地球暖化,威胁人类安全,哥本哈根会议未能达成实质协议。
低碳经济成为时尚的号角,具有节能环保特点的LED成为低碳经济产业的新宠。
提高白光LED的发光效率,成为LED产业中芯片制造者和荧光粉工程师最为紧迫的任务。
本文从荧光粉的性质、白光LED荧光粉的发展到LED荧光粉的应用阐述自己的认识,与广大读者交流。
一、荧光粉的特性1. 定义荧光粉是在一定激发条件下能发光的无机粉末材料,这些材料应是粉末晶体。
在人类文明史中荧光粉起着至关重要的作用,特别是在信息时代的今天,荧光粉已成为人们日常生活中不可或缺的材料,它广泛应用于货币的防伪标识,手机、电脑显示器,彩色电视荧光屏,医院胸透设备、机场安检、消防指示牌,车灯,道路照明、室内照明,在工业、农业、医疗、国防、建筑、通讯、航天、高能物理等诸多领域有着广泛的用途。
2. 荧光粉的分类有多种方法(1)按照激发的方式可分为:(2)按激发光的波长的分类如表1所示。
表1 光波长的划分(3)按照基质材料分类情况及代表性材料如下:硫化物:CaS∶Eu2+,SrS∶Eu2+,CaSrS∶Eu2+,Dy2+,Er3+红色荧光粉;氧化物:Y2O3∶Eu2+,Lu2O3:Eu3+(Lu=Y,Gd,La);硫氧化物:Y2O2S∶Eu3+;氮化物:BaSi7N10;氮氧化物:SrSi2O2N2∶Yb2+;CaSi9Al3ON15∶Yb硅酸盐:CaAlSiN3∶Eu2+;BaSrSiO4∶Eu2+;磷酸盐:Sr2P2O7∶Eu2+,Mn2+;铝酸盐:Y3Al5O12∶Ce3+;Tb3Al5O12∶Ce3+;还有钼酸盐等。
(4)按制备方法可分为:高温固相反应法,溶胶-凝胶法,固液相结合法,燃烧法,微波法,喷雾合成法,电弧法,水热合成法等。
3、荧光粉的性质荧光粉的性质,也叫一次特性,主要包括以下几种:相对亮度在规定的激发条件下,荧光粉试样与参比荧光粉的亮度之比。
基于蓝光LED芯片激发的荧光粉研究进展一.引言固体白光发光二极管将成为21世纪新一代节能光源。
要实现白光的重要途径之一是利用稀土发光材料的荧光转换技术,把InGaN半导体管芯发射的460 nm蓝光或400 nm近紫外光转换成白光。
二.黄光荧光粉日本日亚化学公司于1996年首先研制出发黄光系列的钇铝石榴石(yttrium aluminum garnet,YAG)荧光粉配合蓝光LED得到高效率的白光光源。
近年来,科研人员对钇铝石榴石系列荧光粉的制备、物理性能、发光性能进行了大量的研究。
图1为采用不同方法合成的YAG:Ce荧光粉的发射光谱,从图中可以看出,由燃烧法和固相法合成样品的发射光谱与采用溶胶凝胶法和共沉淀法合成的样品有明显的红移,可能是由于后两种方法得到的样品颗粒较小而导致表明张力较大。
台湾大学刘如熹等用固相法合成了Ce,Gd取代Y,Ga取代Al的Y3Al5O12,研究得出只需少量Ce取代就可实现黄色荧光。
Gd取代Y时,钇铝石榴石荧光粉晶格常数变大,发射光谱最大峰有红移现象。
Ga取代Al时,钇铝石榴石荧光粉晶格常数变大,发射光谱最大峰有蓝移现象。
通过调节Gd,Ga的量可使发射光谱在510~560 nm之间变化。
图1不同方法合成的Y AG:4%Ce荧光粉的发射光谱((a)燃烧法,(b)溶胶凝胶法,(c)共沉淀法,(d)高温固相法)由于商用的发射蓝光的InGaN的发射波长在460 nm附近变动,因此,为了保持发射白光,YAG:Ce3+的发射波长和色坐标也必须相应变动。
为此,可改变Ce3+的掺入浓度或调整Y3Al5O12的组成。
随着Ce3+的掺入浓度的增大,发射峰值移向长波,当以Gd3+部分取代Y+,或以Ga3+或In3+部分取代Al3+,可使Ce3+在Y3-x Gd x Al5O12或Y3Al5-y M y O12(M=Ga3+或In3+)中的发射波长发生相应的变动,随着x的增大,发射波长移向长波;随着y的增大,发射波长移向短波,同时,发光强度都下降。
无机发光材料无机发光材料是一种能够在外加激发下发出特定波长光的材料。
相比有机发光材料,无机发光材料具有更长的寿命和更高的亮度,因此在照明、显示、传感和生物医学等领域有着广泛的应用。
常见的无机发光材料主要包括磷光体、发光二极管(LED)和荧光粉等。
磷光体是最早被使用的无机发光材料之一。
它们能够将电或光能转化为可见光。
磷光体分为无机磷光体和有机磷光体两种。
无机磷光体通常是由不同的离子晶体组成,其中掺杂有合适的激活离子,通过外加电场或光照射激发激活离子,使其发生电子跃迁,从而产生发光。
有机磷光体则是通过有机化合物的荧光杂质来实现发光。
磷光体的颜色可以通过选择不同的激活离子和基质材料来调节。
LED是一种常见的无机发光材料,它通过外加电压产生发光。
LED的主要材料是III-IV族化合物半导体,例如氮化镓(GaN)和磷化镓(InP)等。
这些材料具有宽的能带隙,使得电子和空穴能够在其中较长时间停留,从而产生发光。
通过改变半导体材料的组分和结构,可以实现不同颜色、高亮度和高效能的LED发光。
荧光粉是一种能够将吸收的光能转化为可见光的无机发光材料。
荧光粉通常由一个或多个活性离子和基质材料组成。
当荧光粉吸收外加的能量后,活性离子的电子被激发到高能级,然后通过辐射过程发出特定波长的光。
不同组分的荧光粉可以实现不同颜色和亮度的发光。
无机发光材料由于其寿命长、亮度高、耐高温和耐腐蚀等特点,被广泛应用于照明、显示器、传感器和生物医学等领域。
例如,白光LED具有高效率和长寿命的优点,被广泛应用于照明领域。
荧光粉则可以在电视、显示器、荧光灯和LED背光等设备中实现色彩的调节。
此外,无机发光材料还被应用在红外光通信、医学成像和生物标记等领域,为科学研究和工程应用提供了有力的支持。
尽管无机发光材料在发光效率、亮度和可制备性等方面已经取得了重大进展,但仍然需要进一步研究和改进。
例如,调节无机发光材料的发光波长,提高发光效率和减少能量损失等问题仍然需要解决。
LED 与荧光粉
LED 与荧光粉
LED 实现白光有多种方式,而开发较早、已实现产业化的方式是在LED
芯片上涂敷荧光粉而实现白光发射。
LED 采用荧光粉实现白光主要有三种方法,但它们并没有完全成熟,由此严重地影响白光LED 在照明领域的应用。
具体来说,第一种方法是在蓝色LED 芯片上涂敷能被蓝光激发的黄色荧光粉,芯片发出的蓝光与荧光粉发出的黄光互补形成白光。
该技术被日本Nichia 公司垄断,而且这种方案的一个原理性的缺点就是该荧光体中Ce3+离子的发射光谱不具连续光谱特性,显色性较差,难以满足低色温照明的要求,同时发光效率还不够高,需要通过开
发新型的高效荧光粉来改善。
第二种实现方法是蓝色LED 芯片上涂覆绿色和红色荧光粉,通过芯片发出的蓝光与荧光粉发出的绿光和红光复合得到白光,显色性较好。
但是,这种
方法所用荧光粉有效转换效率较低,尤其是红色荧光粉的效率需要较大幅度
的提高。
第三种实现方法是在紫光或紫外光LED 芯片上涂敷三基色或多种颜色的荧光粉,利用该芯片发射的长波紫外光(370nm-380nm)或紫光(380nm-410nm)来激发荧光粉而实现白光发射,该方法显色性更好,但同样存在和第二种方法
相似的问题,且目前转换效率较高的红色和绿色荧光粉多为硫化物体系,这。