水溶液全循环法生产尿素工艺
- 格式:doc
- 大小:335.00 KB
- 文档页数:32
60kt/a尿素生产水溶液全循环法工艺初步设计毕业设计目录第一章绪论 (1)1.1尿素产品的用途 (1)1.2尿素的性质 (1)1.3尿素生产的原料和工艺原理[1] (2)1.4设计流程 (2)1.4.1工艺流程简图 (2)1.4.2全溶液水循环法生产尿素流程叙述 (3)1.5计算依据[3] (4)1.5.1尿素合成塔 (4)1.5.2一段分解分离器 (4)1.5.3二段分解塔 (4)1.5.4成品尿素含量 (4)第二章物料衡算 (5)2.1物料流程简图 (5)2.2合成塔 (5)2.2.1已知数据及反应框图 (5)2.2.2物料计算 (6)2.2.3合成塔物料平衡数据表 (7)2.3一段分解分离器 (7)2.3.1反应框图与已知数据 (7)2.3.2物料计算 (8)2.3.3一段分离器物料平衡数据表 (8)2.4二段分解塔 (9)2.4.1反应框图与已知数据 (9)2.4.2物料计算 (10)2.4.3二段分解塔物料平衡数据表 (11)第三章热量衡算 (12)3.1合成塔 (12)3.1.2尿素合成塔热平衡计算项目 (12)3.1.3合成塔热量计算 (12)3.1.4合成塔热量平衡数据表 (15)3.2一段分解分离器 (15)3.2.1计算依据[6] (15)3.2.2一段分解分离器热量计算 (15)3.2.3一段分解分离器热量平衡数据表 (17)3.3二段分解塔 (17)3.3.1计算依据 (17)3.3.2二段分解塔热量计算 (17)3.3.3二段分解塔热量平衡数据表 (18)第四章设备设计及选型 (20)4.1合成塔特性 (20)4.1.1合成塔设计条件[8] (20)4.1.2合成塔的有效容积 (20)4.2一段分解加热器 (20)4.2.1一段分解加热器设计条件 (20)4.2.2一段分解加热器传热面积S1 (21)4.3一段分解分离器的作用 (21)4.3.1设计条件 (21)4.3.2计算过程 (21)4.4二段分解加热器的作用 (23)4.4.1设计条件 (23)4.4.2二段分解加热器传热面积S2 (23)4.5二段分解塔的作用 (23)4.5.1全塔的理论板数及其他参数 (24)4.5.2计算浮阀塔塔高和塔径 (26)4.5.3溢流装置 (28)4.5.4塔板流体力学的验算 (30)4.5.5塔板负荷性能图 (33)4.6辅助设备及附属设备的选择 (38)4.6.1裙座 (38)4.6.2人孔 (38)4.6.4基础环 (38)4.6.5引出通道管 (38)4.6.6接管 (38)4.6.7附接管和法兰的结构简图 (41)第五章 设备一览表 ..................................................... 43 设 计 综 述 ............................................................. 44 参 考 文 献 ............................................................. 45 附图纸 .................................................................... 46 致谢 . (47)第一章 绪 论1.1尿素产品的用途尿素是一种重要的化工产品,主要用于化学肥料的生产,它在农业和工业上有着广泛的用途。
水溶液全循环法尿素工艺流程概要尿素(H2NCONH2),又称脲或碳酰胺,白色晶体,相对分子质量在60.055。
尿素大量存在于人类和哺乳动物的尿液中。
尿素溶于水、乙醇和苯,几乎不溶于乙醚和氯仿。
尿素含氮量居固体氮肥之首,达46%以上为中性速效肥料,施于土壤中不残留使土壤恶化的酸根,而且分解出来的二氧化碳也可为植物所吸收。
尿素在工业上的用途亦很广泛,可用于制造脲醛树脂、聚胺酯等高聚物的原料,(用作塑料、喷漆、粘合剂)。
还可作多种用途的添加剂(用作油墨材料、黏结油等),尿素还可用于医药、林业、制革、动物饲料、石油产品精制等方面。
第一座以氨和二氧化碳为原料生产尿素的工业装置是德国法本(I·G·Farben)公司于1922年建成投产的,采用热混合气压缩循环。
1932年美国杜邦公司(Du pont)用直接合成法制取尿素氨水,并在1935年开始生产固体尿素,未反应物以氨基甲酸铵水溶液形式返回合成塔,是现今水溶液全循环法的雏形。
中国的尿素工业发展始于1958年,先由南京永利宁厂建成日产10吨尿素的半循环生产法装置,其后又在上海吴泾化工厂建成年产1.5万吨的半循环法装置。
1975年中国第一套二氧化碳汽提法装置亦在上海吴泾化工厂建成投产。
20世纪70年代以来,我国兴建年产30万吨合成氨、52~60万吨尿素联合生产装置的大型化肥生产厂。
至今已建成30余套大化肥生产装置,成为我国主要生产尿素的基地。
采用水溶液全循环法生产尿素工艺装置,主要包括以下六个方面:原料的压缩和净化,尿素的合成,中低压分解吸收,解吸,蒸发造粒。
一、原料的压缩和净化1、二氧化碳(CO2)的压缩和净化二氧化碳来自脱碳,其浓度为65.7%(V),含氧量0. 5 %(V),硫化物<15mg/M3,CO2通过一分离器后进入CO2压缩机一段,由二段出口去脱硫槽,降低SO2气中的含量至10 mg/M3以下,回到压缩机三段,再经三、四、五段压缩达到20.7Mpa,送到尿素合成塔。
尿素合成工艺流程2.1尿素合成原理尿素合成的原料是氨和二氧化碳,后者是合成氨厂的副产品。
尿素合成反应分两步进行:①氨与二氧化碳作用生成氨基甲酸铵(简称甲铵);②甲铵脱水生成尿素,其反应式为:2NH3+CO2→NH2COONH4+159.47kJ①NH2COONH4→CO(NH2)2+H2O-28.49kJ②总反应为:2NH3+CO2→CO(NH2)2+H2O-103.7kJ。
式①该步反应是一个可逆,强放热体积缩小的反应,在一定条件下,此反应率很快,容易达到平衡,且此反应二氧化碳的平衡转化率很高。
式②是可逆慢速微吸热的可逆反应,平衡转化率一般为50%~70%,也是是尿素合成中的控制速率的反应,该步需要在液相中进行。
氨与二氧化碳的摩尔比为2.0,温度为170~190℃时,压力高到足以使反应物得以保持液态时,甲铵转化成尿素的转化率(以CO2计)为50%;其反应速率随温度的提高而增大。
温度不变,转化率随压力的升高而增大,转化率达到某一值后,压力升高,转化率并不会有明显变化,此时,几乎全部反应混合物都以液态形式存在于合成系统中。
氨和二氧化碳的摩尔比提高,二氧化碳转化率增加,氨的转化率降低。
实际生产工艺过程中一般要求氨与二氧化碳的摩尔比≥3,这是由于氨的回收较二氧化碳容易,因此都需要使氨过量。
反应物料中水的存在将降低转化率,在工业设计过程中需要把循环物料中水分量降低到最小限度。
反应物料停留时间的增加可使转化率提高,但是这种做法并不经济。
典型的尿素合成工艺操作条件为温度180~200℃、压力13.8~24.6MPa、反应物料停留时间25~40min,氨与二氧化碳摩尔比2.8~4.5。
2.2水溶液全循环法工艺流程水溶液全循环法生产工艺流程详见图2去回收系统CO 2氨基甲酸铵液液氨 水溶液全循环法合成尿素示意流程图1-预反应器;2-尿素合成塔;3-预分离器;4-中压循环加热器;5-中压循环分离器;6-精馏塔;7-低压循环加热器;8-低压循环分离器;9-闪蒸槽;10-尿素贮槽;11-尿素溶液泵;12-一段蒸发加热器;13-一段蒸发分离器;14-二段蒸发加热器;15-二段蒸发分离器;16-熔融尿素泵; 17-造粒塔水溶液全循环法生产工艺流程说明如下:(1)二氧化碳的压缩与净化:纯度为96.2%的原料二氧化碳经一二段压缩到0.981~1.128MPa(绝经脱硫净化工序后,经五段压缩至21.61Mpa ,气体温度约为125℃,送往尿素合成塔。
几种常见尿素工艺特点的比较我国尿素工业的发展史始于1958年,当年在南京永利宁厂建成日产10吨尿素的半循环法尿素中试车间并投入运行,同时在上海化工研究院进行实验室的基础研究,取得了为工业化扩大生产所需必要数据,其后又在吴泾化工厂建成年产1.5万吨半循环法工业装置并投产。
但真正迅速发展还是从六十年代中期开始,在此后的几十年里我国相继从国外引进多项尿素生产技术,同时在国内进行多项设计开发工作。
例如1965年上海化工研究院完成了甲铵水溶液全循环法中间试验;1967年中国首套自行设计、自行制造设备的年产11万吨尿素水溶液全循环法尿素装置在石家庄化肥厂建成投产;1975年国内自行设计自行制造的首套年产24万吨尿素CO2汽提法尿素装置在上海吴泾化工厂建成投产;从20世纪六十年代我国还较早开始合成氨-尿素联合生产工艺的研发工作。
到目前为止,我国以自己的力量已建成各种生产能力的尿素装置达100多套。
在引进技术方面,自上世纪六十年代中期以来,我国先后从荷兰斯达米卡邦引进了水溶液全循环法尿素、CO2汽提法尿素、改进型池式冷凝器-CO2汽提法尿素工艺技术;从意大利斯纳姆公司引进了氨汽提尿素工艺技术;从日本东洋工程公司引进了改良C法和ACES法尿素工艺技术等。
通过技术引进、自行开发设计,二手设备购进等途径,在我国现在运行的尿素装置中几乎含及国际上所有生产技术,装置生产能力也包含年产4万吨、6万吨、8万吨、11万吨、13万吨、18万吨、24万吨、30万吨、48万吨、52万吨、60万吨、80万吨….直至120万吨等多种规模,尿素年总生产能力已达6600万吨以上,在世界上已居前列。
尿素工艺,不论采用哪种都有各自的特点,下面把我国最主要的几种尿素工艺的特点介绍给大家,希望通过几种工艺的比较,让大家能够深刻了解各种尿素工艺的优缺点。
一、水溶液全循环法尿素工艺特点1、尿素合成采用较高的NH3/CO2比,其摩尔比为4.0~4.2,转化率较高;2、工艺成熟可靠,操作简单,高压设备数量少,投资费用低;3、尿素合成操作压力较高,无高压汽提循环系统,中低压循环系统负荷较大,能耗以及运行费用相应较低;4、一般不设置工艺冷凝液水解系统,消耗定额相对较高,排放往往达不到要求;5、系统加氧量大,尾气存在爆炸性气体,惰性气体洗涤器存在爆炸危险,应设防爆装置。
三种尿素合成工艺及技术特点比较摘要:尿素是氮肥中含氮量最高的肥料,还可以部分代替蛋白质饲料,也是树脂、塑料、炸药、医药、食品等工业的重要原料。
我国尿素装置采用的生产工艺主要有水溶液全循环法、二氧化碳汽提法和氨汽提法3种。
本文对它们的工艺及其适用范围进行比较和分析。
关键词:尿素合成水溶液全循环法二氧化碳汽提法氨汽提法我国目前大多数中小型尿素装置采用的是水溶液全循环法,特点是合成塔内转化率高,未反应物三段减压分解,动力消耗较大,尾气压力、温度均较低,爆炸危险性小,其生产工艺比较成熟。
不论采用哪种流程,基本由六个工艺单元,即原料供应、尿素的高压合成、含尿素溶液的分离过程、未反应氨和二氧化碳的回收、尿素溶液的浓缩、造粒与产品输送和工艺冷凝液处理,如图1-1所示。
尿素生产的基本过程相似,但在具体的流程、工艺条件、设备结构等方面,不同工艺存在一定的差异。
一、3种尿素合成工艺的特点1.水溶液全循环法水溶液全循环法的特点是合成塔内转化率高,未反应物采用三段减压分解,动力消耗较大,尾气压力、温度均较低,爆炸危险性小,其生产工艺比较成熟,操作可靠方便,机泵和非标设备均为国产化。
2.二氧化碳汽提法二氧化碳汽提法由以下工序组成:高压圈主要包括尿素合成塔、高压洗涤器、高压喷射器、汽提塔和甲铵冷凝器,后工序仅设置了低压分解吸收系统,并设置处理工艺冷凝液的工序,尿液经过真空蒸发后送入造粒工序,其特点是在最佳氨碳比的条件下,使合成压力降到最低。
与此同时,在合成压力下,采用进行CO2汽提和冷凝,产生的冷凝液用来副产蒸汽为低压分解和一段蒸发做加热用,并作蒸汽喷射器的动力蒸汽及系统保温。
CO2汽提法工艺与氨汽提工艺相比,CO2汽提压力较低、效率高,因此只需低压分解而不需中压分解也能满足生产要求。
汽提法工艺改进后,采用高压下原料气体的脱氢技术,杜绝了工艺过程的燃爆危险性,在高压洗涤器后设吸收塔吸收高压工序未凝气,减少了尿素装置的消耗,采用该工艺技术的尿素装置,工艺流程短,设备少,生产稳定,消耗低。
职业技术学院毕业论文(设计)(冶金化工系)题目水溶液全循环法生产尿素工艺专业应用化工技术班级姓名学号指导教师完成日期2010年6月25日-2010年10月10日目录摘要 (1)第一章概述 (2)1.1尿素的物理化学性质和用途 (2)1.1.1尿素的物理性质 (2)1.1.2尿素的化学性质 (2)1.1.3尿素的用途 (2)1.2尿素的生产方法简介 (3)1.2.1水溶液全循环法 (4)1.2.2汽提法 (4)1.3水溶液全循环法和CO2汽提法两种方法的比较 (4)1.3.1水溶液全循环尿素工艺的优、缺点 (5)汽提法尿素工艺的优、缺点 (6)1.3.2 C021.3.3尿素的发展前景与展望 (6)第二章水溶液全循环法生产尿素的原理 (9)2.1化学反应 (9)2.2反应原理 (9)第三章水溶液全循环法的生产工艺流程 (11)3.1原料的准备 (11)3.1.1氨 (11)3.1.2二氧化碳 (11)3.2尿素的工艺流程图 (11)3.3原料的净化与输送 (13)3.3.1二氧化碳脱硫与压缩原理 (13)3.3.2液氨的净化与输送 (13)3.4尿素的合成 (14)3.4.1液氨和二氧化碳直接合成尿素 (14)3.4.2合成尿素的理论基础 (14)3.5中压分解与吸收 (14)3.6低压分解与吸收 (15)3.7尿素溶液的蒸发与造粒 (15)第四章物料衡算和热量衡算 (16)4.1物料衡算 (16)4.1.1数据采集 (16)4.1.2基本物料衡算 (16)4.2热量衡算 (17)4.2.1数据采集 (17)4.2.2基本热量衡算 (18)第五章生产尿素的工艺条件及主要设备 (19)5.1生产尿素的工艺条件 (19)5.1.1温度 (19)5.1.2氨碳比 (20)5.1.3水碳比 (20)5.1.4操作压力 (20)5.1.5反应时间 (21)5.2生产尿素的主要设备 (21)5.2.1脱硫塔 (21)5.2.2合成塔 (21)5.2.3高压混合塔 (23)5.2.4中压分解加热塔 (23)5.2.5中压分解分离塔 (23)5.2.6中压吸收塔 (24)5.2.7氨冷凝器 (24)5.2.8低压分解精馏塔 (25)5.2.9低压吸收第一氨基甲酸铵冷凝器 (25)5.2.10低压吸收第二氨基甲酸铵冷凝器 (25)致谢 (27)参考文献 (28)摘要受中国的基本国情决定,中国的农业发展在未来的很长一段时间里都将占据着主要的地位,化肥在农业中的地位是不可缺少的。
尿素是氮肥中最主要的化肥品种,尿素占我国氮肥使用量的60%以上。
近几年年以来,由于尿素产能过剩,加之成本上升、出口受限,导致尿素生产旺季不旺,市场疲软,经济效益明显下降,行业亏损加剧。
这种状况是影响氮肥工业发展多种因素共同作用的结果,是氮肥工业由扩张高峰期进入加速优化调整时期的重要标志,尿素在未来的发展将进入一个全新的阶段。
因此这次毕业设计主要介绍了尿素的生产原理、尿素的生产方法、尿素生产的工艺流程、生产尿素的主要设备以及相关的物料衡算和能量衡算作简要的介绍。
关键词:尿素;全循环;发展第一章概述1.1尿素的物理化学性质和用途1.1.1尿素的物理性质分子式为CO(NH2)2,分子量60.06,CO(NH2)2 为无色或白色针状或棒状结晶体,工业或农业品为白色略带微红色固体颗粒无臭无味。
密度1.335g/cm3。
熔点132.7℃。
1.1.2尿素的化学性质易溶于水、醇,不溶于乙醚、氯仿。
呈微碱性。
可与酸作用生成盐。
有水解作用。
在高温下可进行缩合反应,生成缩二脲、缩三脲和三聚氰酸。
加热至160℃分解,产生氨气同时变为氰酸。
因为在人尿中含有这种物质,所以取名尿素。
尿素含氮(N)46%,是固体氮肥中含氮量最高的。
尿素在酸、碱、酶作用下(酸、碱需加热)能水解生成氨和二氧化碳。
对热不稳定,加热至150~160℃将脱氨成缩二脲。
若迅速加热将脱氨而三聚成六元环化合物三聚氰酸。
(机理:先脱氨生成异氰酸(HN=C=O),再三聚。
)与乙酰氯或乙酸酐作用可生成乙酰脲与二乙酰脲。
在乙醇钠作用下与丙二酸二乙酯反应生成丙二酰脲(又称巴比妥酸,因其有一定酸性)。
在氨水等碱性催化剂作用下能与甲醛反应,缩聚成脲醛树脂。
与水合肼生成氨基脲2NH3+CO2→NH2COONH4→CO(NH2)2+H2O尿素易溶于水,在20℃时100毫升水中可溶解105克,水溶液呈中性反应。
尿素产品有两种。
结晶尿素呈白色针状或棱柱状晶形,吸湿性强。
粒状尿素为粒径1~2毫米的半透明粒子,外观光洁,吸湿性有明显改善。
20℃时临界吸湿点为相对湿度80%,但30℃时,临界吸湿点降至72.5%,故尿素要避免在盛夏潮湿气候下敞开存放。
目前在尿素生产中加入石蜡等疏水物质,其吸湿性大大下降。
1.1.3尿素的用途尿素的用途非常广泛,它不仅可以用作肥料,而且还可以用作反刍动物的饲料以及某些工业的原料。
尿素是一种高浓度氮肥,属中性速效肥料,也可用了生产多种复合肥料。
在土壤中不残留任何有害物质,长期施用没有不良影响。
畜牧业可用作反刍动物的饲料。
但在造粒中温度过高会产生少量缩二脲,又称双缩脲,对作物有抑制作用。
我国规定肥料用尿素缩二脲含量应小于0.5%。
缩二脲含量超过1%时,不能做种肥,苗肥和叶面肥,其他施用期的尿素含量也不宜过多或过于集中。
尿素目前使用的固体氮化肥中含氮量最高的。
尿素的含氮量是硝酸铵的1.3倍,为氯化铵的1.8倍,为石灰氮的2.3倍,碳酸氢铵的2.6倍。
尿素是一种良好的中性肥料,适用于各种土壤和各种农作物。
它既可以作追肥,又可以作基肥;可以干施,又可以湿施,对作物根部和叶面都可以施用。
尿素在施用过程中,不会在土壤中留下任何有害物质,而且分解释放出的二氧化碳,还促使植物进行光和作用。
所以长期施用尿素的土壤不会变质。
尿素可以作为单一肥料使用,也可与其他氮、磷、钾肥料组成混合(或复合)肥料施用,如尿素磷酸铵等。
尿素与甲醛作用,还可制成脲醛长效化肥。
粒状尿素的吸湿性和结块性都比其他氮肥小,并具有良好的稳定性。
因此,在运输、贮存和施用过程中氮的损失都较少。
但是,尿素中缩二脲具有抑制种子发芽和生长的作用,施用时必须注意,含缩二脲过高的尿素不能作为拌种肥料。
尿素用作饲料仅限于反刍类动物的精饲料。
尿素中的氮虽不是蛋白质形态的,但和碳水化合物一起经过胃液长时间的作用,可以造成蛋白质形态的氮,故可以作为反刍动物的饲料。
按蛋白质的价值来比较,1kg尿素的氮量,等于2.6~2.8kg蛋白质的含氮量,约等于6kg豆饼或22~25kg 大麦的含氮量。
作为饲料用的尿素规格和用法有特殊的要求,不能乱用,而且饲喂前必须经过试验。
在有机合成工业中,尿素主要用作合成塑料的原料,如生产脲醛树脂和有机玻璃。
在医药工业中,纯尿素可用作利尿剂,生产制药原料氨基甲酸乙酯以及作为安眠药、镇静剂、止痛剂、麻醉剂、甜味剂等的原料。
在石油工业中,尿素用来制造化学络合物,用作石油精炼过程的脱蜡剂。
在合成纤维中尿素时一种合成纤维——尤纶的原料。
尿素还可以用于纺织品的人工防皱和作为处理麻纱的软化剂。
国防工业上尿素用作炸药的稳定剂。
在选框中尿素作为起泡剂。
在制革及颜料、涂料、染料、等生产过程中,也都要使用尿素。
1.2尿素的生产方法简介生产尿素的方法有很多种,20世纪60年代以来,全循环法在工业上获得普遍采用,最常用的是水溶液全循环法生产尿素和二氧化碳气提法生产尿素。
合成氨生产为NH3和CO2直接合成尿素提供了原料。
由NH3和CO2合成尿素的总反应为:2NH3+CO2→CO(NH2)2+H2O该反应是放热的可逆反应,转化率一般为50- 70%。
按未反应物的循环利用程度,尿素生产方法可分为不循环法、半循环法和全循环法三种。
1.2.1水溶液全循环法20世纪60年代以来,全循环法在工业上获得普遍采用。
全循环法是将未转化成尿素的氨和二氧化碳经减压加热和分离后。
全部返回合成系统循环利用,原料氨利用率达97%以上。
全循环法尿素生产主要包括四个基本过程:①氨和二氧化碳原料的供应及净化;②氨和二氧化碳合成尿素;③未反应物的分离与回收;④尿素溶液的加工。
其生产过程如图1-1所示。
图1-1 全循环法生产尿素的工艺流程简图1.2.2汽提法依照分离回收方法的不同主要分为水溶液全循环法、气提法等。
水溶液全循环法是将未反应的氨和二氧化碳,经减压加热分解分离后,用水吸收生成甲铵或碳酸铵水溶液再循环返回合成系统。
我国尿素厂多数采用水溶液全循环法。
气提法是利用某一气体在与合成等压的条件下分解甲铵并将分解物返回合成系统的一种方法。
按气提气体的不同又可分为二氧化碳气提法、氨气提法、变换气气提法。
气提法是全循环法的发展,具有热量回收完全,氨和二氧化碳处理量较少的优点。
此外,在简化流程、热能回收和减少生产费用筹方面也都优于水溶液全循环法.是尿素生产发展的一种方向。
本设计主要叙述讲解水溶液全循环法的有关内容。
1.3水溶液全循环法和CO2汽提法两种方法的比较1.3.1水溶液全循环尿素工艺的优、缺点水溶液全循环尿素工艺生产装置的静止高压设备较少,只有尿素合成塔及液氨预热器为高压设备,其他均为中压和低压设备,所以该尿素工艺生产装置的技术改造比较容易、方便,改造增产潜力较大。
氨碳比控制的较高,一般摩尔比为4.0左右,工艺介质对生产装置的腐蚀性较低,除尿素合成塔衬里为尿素级316L 材质外,其他设备和管道使用316L不锈钢或普通不锈钢材质即可,所以对设备、管道用材料相对于二氧化碳汽提工艺来说要低一些。
由于氨碳比控制的较高,二氧化碳气体中氧含量控制的较低,并且尿素合成塔操作压力为19.6MPa,操作温度为188~190℃,所以水溶液全循环尿素工艺的二氧化碳转化率较高,一般能达到42%~68%,经过尿素合成塔塔板的改造,有的企业已经达到68%以上。
由于该工艺高压设备较少,高压系统停车保压时间可以达到24h,所以生产装置的中小检修一般可以在尿素合成塔允许的停车保压时间内完成,减少了高压系统排放的次数,降低了尿素的消耗。
由于氨碳比控制的较高,中低压分解系统温度控制适当,尿素产品质量较容易控制,一般可以控制在优级品范围内。
水溶液全循环尿素工艺生产装置的数量在我国现阶段尿素生产中占有绝对优势,经过该工艺尿素企业和科研、设计、制造等单位的共同努力研究、探讨和生产实践经验的积累总结,水溶液全循环尿素工艺生产装置从设计、建造、技术改造、工艺操作到生产综合管理都积累了相当丰富的经验,是具有中国小氮肥企业特色的最成熟的尿素工艺。
但其缺点是:水溶液全循环尿素工艺生产装置的工艺流程较长,在操作调节方面不如CO2汽提法尿素工艺简单、方便。
由于氨碳摩尔比控制得较高,一般稳定在4.0左右,并且未反应生成尿素的氨和二氧化碳气体全部要经过低压、中压循环吸收系统回收后再返回到尿素合成塔,液氨泵和一段甲按泵的输送量比较多,所以该工艺中液氨泵和一段甲按泵的台数较多,动力消耗较多。