材料力学第三章答案
- 格式:docx
- 大小:22.60 KB
- 文档页数:21
第一章 绪 论一、选择题1.根据均匀性假设,可认为构件的( C )在各处相同。
A.应力B. 应变C.材料的弹性系数D. 位移2.构件的强度是指( C ),刚度是指( A ),稳定性是指( B )。
A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持原有平衡 状态的能力C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则 A 点剪应变依次为图(a) ( A ),图(b)( C ),图(c) ( B )。
A. 0B. 2rC. rD.1.5 r4.下列结论中( C )是正确的。
A.内力是应力的代数和; B.应力是内力的平均值; C.应力是内力的集度; D.内力必大于应力; 5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应 力是否相等( B )。
A.不相等; B.相等; C.不能确定; 6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指( C )。
A. 认为组成固体的物质不留空隙地充满了固体的体积; B. 认为沿任何方向固体的力学性能都是相同的; C. 认为在固体内到处都有相同的力学性能; D. 认为固体内到处的应力都是相同的。
二、填空题1.材料力学对变形固体的基本假设是 连续性假设 , 均匀性假设 , 各向同性假设 。
2.材料力学的任务是满足 强度 , 刚度 , 稳定性 的要求下,为设计经济安全的构-1-件提供必要的理论基础和计算方法。
3.外力按其作用的方式可以分为 表面力 和 体积力 ,按载荷随时间的变化情况可以分为 静载荷 和 动载荷 。
4.度量一点处变形程度的两个基本量是 (正)应变ε 和 切应变γ。
三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。
( × )2.外力就是构件所承受的载荷。
(×)3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
材料力学(湖南大学)知到章节测试答案智慧树2023年最新绪论单元测试1.结构承受载荷时,为保证能正常工作,构件和零件必须符合哪些要求?参考答案:强度要求;刚度要求;稳定性要求2.包装袋的锯齿状封口设计蕴含了材料力学的什么原理?参考答案:应力集中3.建立力学模型进行理论研究时,应尽可能还原结构的细节,以确保计算结果的准确性。
上述说法是否正确?参考答案:错4.材料力学作为一门独立的学科是从何处发展起来的?参考答案:欧洲5.下述哪项不属于材料力学的基本假设?参考答案:大变形第一章测试1.所有脆性材料,它与塑性材料相比,其拉伸力学性能的最大特点是()。
参考答案:断裂前几乎没有塑性变形。
2.现有三种材料的拉伸曲线如图所示。
分别由此三种材料制成同一构件,其中:1)强度最高的是();2)刚度最大的是();3)塑性最好的是();4)韧性最高,抗冲击能力最强的是()。
参考答案:ABCC3.正应变的定义为:参考答案:错4.任何温度改变都会在结构中引起应变与应力。
参考答案:错5.对于拉伸曲线上没有屈服平台的合金塑性材料,工程上规定作为名义屈服极限,此时相对应的应变量为。
参考答案:错第二章测试1.在连接件上,剪切面和挤压面分别为:参考答案:分别平行、垂直于外力方向。
2.在连接件剪切强度的实用计算中,切应力许用应力是由:参考答案:剪切试验得到的。
3.连接件切应力的实用计算是以:参考答案:切应力在剪切面上均匀分布为基础的。
4.剪切虎克定律的表达式是。
参考答案:错5.图示铆钉连接,铆钉的挤压应力有如下四个答案,正确的是()。
参考答案:第三章测试1.圆轴扭转时满足平衡条件,但切应力超过比例极限,切应力互等定理和剪切胡克定律是否成立?参考答案:前者成立,后者不成立2.对于受扭杆件三个结论:1、最大切应力只出现在横截面上;2、在横截面上和包含杆件轴线的纵向截面上均无正应力;3、圆轴内最大拉应力的值和最大切应力的值相等。
答案正确的是?参考答案:2,3对3.内径为d,外径为D的四根空心圆轴,两端均承受相同的扭转力偶作用。
第三章扭转一、是非判断题1.圆杆受扭时,杆内各点处于纯剪切状态。
(×)2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。
(×)3.薄壁圆管和空心圆管的扭转切应力公式完全一样。
(×)4.圆杆扭转变形实质上是剪切变形。
(×)5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。
(√)6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。
(×)7.切应力互等定理仅适用于纯剪切情况。
(×)8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。
(√)9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。
(√)10.受扭圆轴的最大切应力只出现在横截面上。
(×)11.受扭圆轴内最大拉应力的值和最大切应力的值相等。
(√)12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。
(×)二、选择题1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B )A τ;B ατ;C 零;D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C )0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B )A 1τ=τ2, φ1=φ2B 1τ=τ2, φ1≠φ2C 1τ≠τ2, φ1=φ2D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。
5.空心圆轴的外径为D ,内径为d, α=d /D,其抗扭截面系数为 ( D ) A ()31 16p D W πα=- B ()321 16p D W πα=-C ()331 16p D W πα=- D ()341 16pD Wπα=-6.对于受扭的圆轴,关于如下结论: ①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。
第一章 单向静拉伸力学性能一、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
13.比例极限:应力—应变曲线上符合线性关系的最高应力。
14.解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数、表面能低的晶面。
15.解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
16.静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
材料力学知到章节测试答案智慧树2023年最新山东科技大学第一章测试1.材料力学的研究方法与理论力学的研究方法完全相同。
参考答案:错2.内力只作用在杆件截面的形心处。
参考答案:错3.杆件某截面上的内力是该截面上应力的代数和。
参考答案:错4.确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
参考答案:对5.根据各向同性假设,可认为材料的弹性常数在各方向都相同。
参考答案:对6.根据均匀性假设,可认为构件的弹性常数在各点处都相同。
参考答案:对7.若物体各部分均无变形,则物体内各点的应变均为零。
参考答案:对8.外力就是构件所承受的载荷。
参考答案:错9.构件的强度、刚度和稳定性问题均与材料的力学性能有关。
参考答案:对10.可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
参考答案:对11.材料力学的研究对象为杆件。
参考答案:对12.题图所示直杆初始位置为ABC,作用力P后移至AB’C’,但右半段BCDE的形状不发生变化。
试分析哪一种答案正确。
参考答案:AB、BC两段都产生位移;13.根据各向同性假设,可认为构件的()沿各个方向相同。
参考答案:材料的弹性常数14.关于确定截面内力的截面法的适用范围,有下列说法正确的是()。
参考答案:不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况15.下列结论中是正确的是()。
参考答案:若物体各点均无位移,则该物体必定无变形16.以下结论中正确的是()。
参考答案:应力是内力的集度17.根据均匀性假设,可认为构件的下列各量中的哪个量在各点处都相同。
参考答案:材料的弹性常数18.材料力学的四个基本假设是()参考答案:连续性;各向同性;均匀性;小变形19.工程构件的基本类型是()参考答案:壳;板;杆件;块体20.下列描述正确的是()参考答案:应力是构件破坏的决定因素;应力是指内力的分布集度;应变是描述构件变形程度的量第二章测试1.因为轴力要按平衡条件求出,所以轴力的正负与坐标轴的指向一致。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
第三章 扭转第三章答案3.1 作图示各杆的扭矩图。
解:4kN·m6kN·m10kN·m 6kN·m4kN·m4kN·m3.2 T 为圆杆截面上的扭矩,试画出截面上与T 对应的剪应力分布图。
解:3.3 图示钢制圆轴,d 1 = 40mm, d 2 = 70mm, M eA = 1.4kN m ⋅, M eB = 0.6kN m ⋅, M eC = 0.8kN m ⋅,[]θ = 1o /m. []τ = 60MPa, G = 80GPa. 试校核轴的强度与刚度。
解:1)校核强度[]113311161660047.7MPa 4B t T m W d ττππ⨯====<⨯[]223322161680011.9MPa 7C t m T W d ττππ⨯====<⨯满足强度条件。
0.8kN·m2)校核刚度119412118032600180 1.71/m 80104010P T GI θπππ-⨯=⋅=⋅=︒⨯⨯⨯⨯222180328001800.24/m 80107010P T GI θπππ⨯=⋅=⋅=︒⨯⨯⨯⨯[]max 1 1.71/m θθθ==︒>此轴不满足刚度条件。
3.4 图示一传动轴,主动轮I 传递力偶矩m k N 1⋅, 从动轮II 传递力偶矩0.4m k N ⋅, 从动轮III 传递力偶矩0.6m k N ⋅。
已知轴的直径d = 40mm ,各轮间距各轮间距l = 500mm ,材料的剪切弹性模量G = 80GPa 。
(1)合理布置各轮的位置;(2)求出轴在合理位置时的最大剪应力和轮间的最大扭转角 。
0.6kN·m解:max 336161660047.7MPa 410t T m W d τππ-⨯====⨯⨯Ⅰ主动轮Ⅰ放在Ⅱ、Ⅲ轮之间,此时轴的最大扭矩最小。
max 494832326000.50.015rad8010410P Tl mlGI G d φππ-==⨯⨯==⨯⨯⨯⨯3.5 一空心圆轴和实心圆轴用法兰联结。
材料力学第三章答案材料力学第三章答案【篇一:材料力学习题册答案-第3章扭转】是非判断题二、选择题0 b 2t?d316?1?? ? b wp??d316?1?? ?2c wp??d316?1?? ? d w3p??d316?1?? ?46.对于受扭的圆轴,关于如下结论:①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。
现有四种答案,正确的是( a )a ②③对b①③对c①②对d 全对7.扭转切应力公式?mnp?i?适用于(d)杆件。
pa 任意杆件;b 任意实心杆件;c 任意材料的圆截面;d 线弹性材料的圆截面。
9.若将受扭实心圆轴的直径增加一倍,则其刚度是原来的( d a 2倍; b 4倍; c 8倍; d 16倍。
三、计算题1.试用截面法求出图示圆轴各段内的扭矩t,并作扭矩图2.图示圆轴上作用有四个外力偶矩me1 =1kn/m, me2 =0.6kn/m,)me3= me4 =0.2kn/m, ⑴试画出该轴的扭矩图;⑵若me1与me2的作用位置互换,扭矩图有何变化?(1)(2)解:me1与me2的作用位置互换后,最大扭矩变小。
3.如图所示的空心圆轴,外径d=100㎜,内径d=80㎜,m=6kn/m,m=4kn/m.请绘出轴的扭矩图,并求出最大剪应力解:扭矩图如上,则轴面极惯性矩id4?d4)(1004?804)(10?3)4p=?(32??32?5.8?10?6m4㎜,l=500tr4?103?50?103ip5.8?104.图示圆形截面轴的抗扭刚度为g ip,每段长1m,试画出其扭矩图并计算出圆轴两端的相对扭转角。
ab+ad=cdab=t1l?90?gipgipad=bc=t2l100gipgipcd=t3l40gipgip?90?100?4050?gipgip【篇二:《材料力学》第3章扭转习题解】[习题3-1] 一传动轴作匀速转动,转速n?200r/min,轴上装有五个轮子,主动轮ii输入的功率为60kw,从动轮,i,iii,iv,v依次输出18kw,12kw,22kw和8kw。
试作轴的扭图。
解:(1)计算各轮的力偶矩(外力偶矩)te?9.55nk(2) 作扭矩图[习题3-2] 一钻探机的功率为10kw,转速n?180r/min。
钻杆钻入土层的深度l?40m。
如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m,并作钻杆的扭矩图。
解:(1)求分布力偶的集度mme?9.549nk10?9.549??0.5305(kn?m) n180设钻杆轴为x轴,则:?mx?0ml?mem?(2)作钻杆的扭矩图1me0.5305??0.0133(kn/m) l40t(x)??mx??mex??0.0133x。
x?[0,40] lt(0)?0;t(40)?me??0.530(kn5?m)扭矩图如图所示。
[习题3-3] 圆轴的直径d?50mm,转速为120r/min。
若该轴横截面上的最大切应力等于60mpa,试问所传递的功率为多大?解:(1)计算圆形截面的抗扭截面模量:wp?11?d3??3.14159?503?24544(mm3) 1616(2)计算扭矩?max??60n/mm2 wpt?60n/mm2?24544mm3?1472640n?mm?1.473(kn?m)(3)计算所传递的功率t?me?9.549nk?1.473(kn?m) nnk?1.473?120/9.549?18.5(kw)[习题3-4] 空心钢轴的外径d?100mm,内径d?50mm。
已知间距为l?2.7m的两横截o面的相对扭转角??1.8,材料的切变模量g?80gpa。
试求:(1)轴内的最大切应力;(2)当轴以n?80r/min的速度旋转时,轴所传递的功率。
解;(1)计算轴内的最大切应力11?d4(1??4)??3.14159?1004?(1?0.54)?9203877(mm4)。
323211wp??d3(1??4)??3.14159?1003?(1?0.54)?184078(mm3)1616式中,??d/d。
ip???t?l,gipt??gip1.8?3.14159/180?80000n/mm2?9203877mm4?2700mm?8563014.45n?mm(kn?m)?8.5632?max?t8563014.45n?mm??46.518mpa 3wp184078mm(2)当轴以n?80r/min的速度旋转时,轴所传递的功率t?me?9.549nkn?9.549?k?8.563(kn?m) n80nk?8.563?80/9.549?71.74(kw)[习题3-5] 实心圆轴的直径d?100mm,长l?1m,其两端所受外力偶矩me?14kn?m,材料的切变模量g?80gpa。
试求:(1)最大切应力及两端面间的相对转角;(2)图示截面上a、b、c三点处切应力的数值及方向;(3)c点处的切应变。
解:(1)计算最大切应力及两端面间的相对转角?max?式mt?e。
wpwp中,11?d3??3.14159?1003?11616(mm3)。
故:963?maxme14?106n?mm???71.302mpa 3wp196349mmt?l gip11?d4??3.14159?1004?9817469(mm4)。
故:3232??式中,ip???t?l14000n?m?1mo??0.0178254(rad)?1.0292?124gip80?10n/m?9817469?10m(2)求图示截面上a、b、c三点处切应力的数值及方向?a??b??max?71.302mpa由横截面上切应力分布规律可知:?c??b?0.5?71.302?35.66mpaa、b、c三点的切应力方向如图所示。
(3)计算c点处的切应变?c?12g?35.66mpa?4.4575?10?4?0.446?10?3 380?10mpa3[习题3-6] 图示一等直圆杆,已知d?40mm,a?400mm,g?80gpa,?db?1o。
试求:(1)最大切应力;(2)截面a相对于截面c的扭转角。
解:(1)计算最大切应力从ad轴的外力偶分布情况可知:tab?tcd?me,tbc?0。
?db??tilitdc?ldctcb?lcbme?a0?amea?????gipgipgipgipgipgip11?d4??3.14159?404?251327(mm4)。
故:3232me?gip?a式中,ip?me?gip?a80000n/mm2?251327mm43.14159???877296n?mm400mm180?max?mewp11?d3??3.14159?403?12566(mm3)。
故:1616式中,wp? ?max?me877296n?mm??69.815mpa3wp12566mmtilitab?labtbc?lbcme?2a0?a2mea??????2?db?2o gipgipgipgipgipgip(2)计算截面a相对于截面c的扭转角?ac??[习题3-7] 某小型水电站的水轮机容量为50kw,转速为300r/min,钢轴直径为75mm,若在正常运转下且只考虑扭矩作用,其许用切应力[?]?20mpa。
试校核轴的强度。
解:(1)计算最大工作切应力?max?met?wpwpnk50?9.549??1.592(kn?m);n300式中,me?9.549wp?11?d3??3.14159?753?1256(6mm3)。
16164故:?max?me1592000n?mm??19.219mpa 3wp82835mm(2)强度校核因为?max?19.219mpa,[?]?20mpa,即?max?[?],所以轴的强度足够,不会发生破坏。
[习题3-8] 已知钻探机钻杆(参看题3-2图)的外径d?60mm,内径d?50mm,功率p?7.355kw,转速n?180r/min,钻杆入土深度l?40m,钻杆材料的g?80gmpa,许用切应力[?]?40mpa。
假设土壤对钻杆的阻力是沿长度均匀分布的,试求:(1)单位长度上土壤对钻杆的阻力矩集度m;(2)作钻杆的扭矩图,并进行强度校核;(3)两端截面的相对扭转角。
解:(1)求单位长度上土壤对钻杆的阻力矩集度mme?9.549nk7.355?9.549??0.390(kn?m) n180设钻杆轴为x轴,则:?mx?0ml?mem?me0.390??0.00975(kn/m) l40(2)作钻杆的扭矩图,并进行强度校核①作钻杆扭矩图t(x)??mx??0.39x??0.00975x。
x?[0,40] 40t(0)?0;t(40)?me??0.39(0kn?m)扭矩图如图所示。
②强度校核?max?mewp1150?d3(1??4)??3.14159?603?[1?()4]?21958(mm3) 161660式中,wp??max?me390000n?mm??17.761mpa 3wp21958mm因为?max?17.761mpa,[?]?40mpa,即?max?[?],所以轴的强度足够,不会发生破坏。
5【篇三:3简明材料力学习题解答第三章2】的扭矩。
并于截面上有矢量表示扭矩,指出扭矩的符号。
作出各杆扭矩图。
(a) 解: (a)(1) 用截面法求1-1截面上的扭矩x?m(2) 用截面法求2-2截面上的扭矩x?0 ?2?t1?0?t1?2 kn.mxx?m(3) 画扭矩图?0 ?2?t2?0?t2??2 kn.mx(b)(1) 用截面法求1-1截面上的扭矩x?mx?0 ?t1?5?3?2?0?t1??4 kn.m(2) 用截面法求2-2截面上的扭矩x?mx?0 ?t2?3?2?0?t2?1 kn.m(3) 用截面法求3-3截面上的扭矩x?m(4) 画扭矩图x?0 ?t3?2?0?t3??2 kn.m3.3. 直径d=50 mm的圆轴受扭矩t=2.15 kn.m的作用。
试求距轴心10 mm处的切应力,并求横截面上的最大切应力。
解: (1) 圆轴的极惯性矩32?0.054ip???6.14?10?7 m43232点的切应力?d4t?2.15?103?0.01????35.0 mpaip6.14?10?7(2) 圆轴的抗扭截面系数6.14?10?7wt???2.456?10?5 m3d/20.05/2截面上的最大切应力ip?maxt2.15?103???87.5 mpa wt2.456?10?5注:截面上的切应力成线性分布,所以也可以用比例关系求最大切应力。
?max???d/2??35.0?0.05/2?87.5 mpa 0.013.4. 发电量为1500 kw的水轮机主轴如图示。