d T dx GI p
d t r Gr dx
Tr tr Ip
Tr tr Ip
上式为等直圆杆在扭转时横截面上任一点处切 应力的计算公式。
Tr tr Ip
2
b z
t'
dx
c c'
3.4 圆轴扭转时的应力 3.4.1 横截面上的应力 1) 变形几何关系 在小变形条件下, 等直圆杆在扭转时横截面上也 只有切应力。为求得此应力, 需从几何关系、物 理关系和静力关系三个方面着手。 为研究横截面上任一点处切应变随点的位臵而 变化的规律, 先观察一个实验。
3.4 圆轴扭转时的应力 实验:预先在等截面圆杆的表面画上任意两个相 邻的圆周线和纵向线。在杆的两端施加外 力偶矩Me。
3.3 薄壁圆筒的扭转
薄壁圆筒扭转时, 横截面上 任一点处的切应力t都是相 等的, 而其方向与圆周相切。 横截面上的内力与应力间 的静力关系为:
n
r0 x
t dA
Me
n
t dA r
A
0
t r0 dA t r0 2 r d T
A
对于薄壁圆筒, r可由平均半径r0代替。
M x 0, T M e 0
T Me
取右侧为研究对象其扭矩与取左侧为研究对象 数值相同但转向相反。
3.2.2 扭矩及扭矩图 扭矩的符号规定如下: 采用右手螺旋法则, 如果 以右手四指表示扭矩的转向, 则姆指的指向离 开截面时的扭矩为正。
反之, 姆指指向截面时则扭矩为负。
3.2.2 扭矩及扭矩图
M2
M3
M1 n
A
M4
B
C
D
M2
M3
M1