精编高二文科数学直线与圆锥曲线的位置关系题型与练习
- 格式:doc
- 大小:118.50 KB
- 文档页数:2
2024全国高考真题数学汇编直线与圆锥曲线的位置关系一、多选题1.(2024全国高考真题)抛物线C :24y x 的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y ⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||PQC .当||2PB 时,PA ABD .满足||||PA PB 的点P 有且仅有2个二、填空题2.(2024北京高考真题)若直线 3y k x 与双曲线2214xy 只有一个公共点,则k 的一个取值为.三、解答题3.(2024北京高考真题)已知椭圆E : 222210x y a b a b,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点 0,t t 且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和 0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.4.(2024全国高考真题)已知(0,3)A 和33,2P 为椭圆2222:1(0)x y C a b a b上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.5.(2024上海高考真题)已知双曲线222Γ:1,(0),y x b b左右顶点分别为12,A A ,过点 2,0M 的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e 时,求b 的值.(2)若2b MA P△为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P,求b 的取值范围.参考答案1.ABD【分析】A 选项,抛物线准线为=1x ,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB 先算出P 的坐标,然后验证1PA AB k k 是否成立;D 选项,根据抛物线的定义,PB PF ,于是问题转化成PA PF 的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【详解】A 选项,抛物线24y x 的准线为=1x ,A 的圆心(0,4)到直线=1x 的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ,则P 的纵坐标4P y ,由24PP y x ,得到4P x ,故(4,4)P ,此时切线长PQ ,B 选项正确;C 选项,当2PB 时,1P x ,此时244P P y x ,故(1,2)P 或(1,2)P ,当(1,2)P 时,(0,4),(1,2)A B ,42201PA k ,4220(1)AB k,不满足1PA AB k k ;当(1,2)P 时,(0,4),(1,2)A B ,4(2)601PA k ,4(2)60(1)AB k,不满足1PA AB k k ;于是PA AB 不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF ,这里(1,0)F ,于是PA PB 时P 点的存在性问题转化成PA PF 时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22,AF 中垂线的斜率为114AF k,于是AF 的中垂线方程为:2158x y,与抛物线24y x 联立可得216300y y ,2164301360 ,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF ,D 选项正确.方法二:(设点直接求解)设2,4t P t,由PB l 可得 1,B t ,又(0,4)A ,又PA PB ,214t ,整理得216300t t ,2164301360 ,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD2.12(或12,答案不唯一)【分析】联立直线方程与双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立 22143x y y k x,化简并整理得: 222214243640k x k x k ,由题意得2140k 或 2222Δ244364140k k k ,解得12k 或无解,即12k ,经检验,符合题意.故答案为:12(或12,答案不唯一).3.(1)2221,422x y e(2)2t 【分析】(1)由题意得b c a ,由此即可得解;(2)设 :,0,AB y kx t k t , 1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k ,而 121112:y y AD y x x y x x ,令0x ,即可得解.【详解】(1)由题意b c,从而2a ,所以椭圆方程为22142x y,离心率为2e;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设 :,0,AB y kx t k t , 1122,,,A x y B x y ,联立22142x y y kx t,化简并整理得222124240k x ktx t ,由题意 222222Δ1682128420k t k t k t ,即,k t 应满足22420k t ,所以2121222424,1221kt t x x x x k k ,若直线BD 斜率为0,由椭圆的对称性可设 22,D x y ,所以 121112:y y AD y x x y x x,在直线AD 方程中令0x ,得 2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt ,所以2t ,此时k 应满足222424200k t k k,即k应满足2k或2k ,综上所述,2t满足题意,此时2k或2k .4.(1)12(2)直线l 的方程为3260x y 或20x y .【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设 00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx ,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得2239941b a b,解得22912b a ,所以12e .(2)法一:3312032APk,则直线AP 的方程为132y x ,即260x y ,AP 1)知22:1129x y C ,设点B 到直线AP 的距离为d,则d则将直线AP 沿着与AP 此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ,6C 或18C ,当6C 时,联立221129260x y x y,解得03x y 或332x y ,即 0,3B 或33,2,当 0,3B 时,此时32l k,直线l 的方程为332y x ,即3260x y ,当33,2B时,此时12l k ,直线l 的方程为12y x ,即20x y ,当18C 时,联立2211292180x y x y得22271170y y ,227421172070 ,此时该直线与椭圆无交点.综上直线l 的方程为3260x y 或20x y .法二:同法一得到直线AP 的方程为260x y ,点B 到直线AP 的距离d设 00,B x y,则220012551129x y,解得00332x y 或0003x y ,即 0,3B 或33,2,以下同法一.法三:同法一得到直线AP 的方程为260x y ,点B 到直线AP的距离d设,3sin B ,其中 0,2联立22cos sin 1,解得cos 21sin 2或cos 0sin 1,即 0,3B 或33,2,以下同法一;法四:当直线AB 的斜率不存在时,此时 0,3B ,16392PAB S ,符合题意,此时32l k ,直线l 的方程为332y x ,即3260x y ,当线AB 的斜率存在时,设直线AB 的方程为3y kx ,联立椭圆方程有2231129y kx x y,则2243240k x kx ,其中AP k k ,即12k ,解得0x 或22443kx k,0k ,12k ,令22443k x k ,则2212943k y k ,则22224129,4343k k B k k同法一得到直线AP 的方程为260x y ,点B 到直线AP的距离d,解得32k =,此时33,2B,则得到此时12l k ,直线l 的方程为12y x ,即20x y ,综上直线l 的方程为3260x y 或20x y .法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A到PB 距离3d ,此时1933922ABP S 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x,令 1122,,,P x y B x y ,223(3)21129y k x x y,消y 可得 22224324123636270k x k k x k k ,2222Δ24124433636270k kk k k ,且AP k k ,即12k ,21222122241243,36362743k k x x k PB k k x x k,A 到直线PB距离192PAB d S,12k或32,均满足题意,1:2l y x 或332y x ,即3260x y 或20x y .法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A到PB 距离3d ,此时1933922ABP S 不满足条件.当直线l 斜率存在时,设3:(2l y k x,设l 与y 轴的交点为Q ,令0x ,则30,32Q k,联立223323436y kx k x y,则有2223348336362702k x k k x k k ,2223348336362702k xk k x k k,其中22223Δ8343436362702k k k k k,且12k ,则2222363627121293,3434B B k k k k x x k k,则211312183922234P B k S AQ x x k k,解的12k 或32k =,经代入判别式验证均满足题意.则直线l 为12y x或332y x ,即3260x y 或20x y .5.(1)b(2) 2,P(3)【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线:2l x my ,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【详解】(1)由题意得21c ce a,则2c,b (2)当b 时,双曲线22Γ:183y x ,其中 2,0M , 21,0A ,因为2MA P △为等腰三角形,则①当以2MA 为底时,显然点P 在直线12x 上,这与点P 在第一象限矛盾,故舍去;②当以2A P 为底时,23MP MA 设 ,P x y ,则2222318(2)9y x x y ,联立解得2311x y或2311x y10x y ,因为点P 在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知2MP MA ,矛盾,舍去);③当以MP 为底时,223A P MA ,设 00,P x y ,其中000,0x y ,则有 2200220019183x y y x,解得002x y,即 2,P .综上所述: 2,P .(3)由题知 121,0,1,0A A ,当直线l 的斜率为0时,此时120A R A P,不合题意,则0l k ,则设直线:2l x my ,设点 1122,,,P x y Q x y ,根据OQ 延长线交双曲线Γ于点R ,根据双曲线对称性知 22,R x y ,联立有22221x my y x b222221430b m y b my b ,显然二次项系数2210b m ,其中 22222422Δ44134120mb b m b b m b ,2122241b my y b m ①,2122231b y y b m ②,1222111,,1,A R x y A P x y,则 122112111A R A P x x y y,因为 1122,,,P x y Q x y 在直线l 上,则112x my ,222x my ,即 2112331my my y y ,即 2121213100y y m y y m ,将①②代入有 2222222341310011b b mm m b m b m ,即 2222231341010b m m b m b m 化简得2223100b m b ,所以22103m b,代入到2210b m ,得221031b b ,所以23b ,且221030m b,解得2103b ,又因为0b ,则21003b ,综上知, 2100,33,3b,b.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设:2l x my ,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.。
直线与圆锥曲线的位置关系1、已知椭圆92x +y 2=1,过左焦点F 作倾斜角为30°的直线交椭圆与A 、B 两点,求弦AB 的长。
2、讨论直线l :y=kx+1与双曲线c:x 2-y 2=1的公共点的个数。
3、直线l :y=kx+1,抛物线c :y=4x 2,当k 为何值时,l 与c 相切、相交、相离。
4、直线l :y=x+1与椭圆Q :ax 2+y 2=2(a >1)交与A 、B 两点,以AB 为直径的圆过原点,求a 的值。
5、设椭圆22a x +22by =1(a >b >0)的左焦点为F 1(-2,0),左准线l 1与x 轴交与点N (-3,0),过点N 倾斜角为30°的直线l 交椭圆于A 、B 两点。
(1)求直线l 和椭圆的方程。
(2)求证:点F 1(-2,0)在以线段AB 为直径的圆上。
6、已知椭圆mx 2+ny 2=1(m >0,n >0)与直线y=x+1相较于点P 和Q ,且OP ⊥OQ ,︱PQ ︱=210,求椭圆方程。
7、已知椭圆x 2+2y 2=4,求以P (1,1)为中点的弦的长度。
8、椭圆221ax by +=221ax by +=与直线x+y-1=0相交与点A 、B ,点C 是AB 的中点,若︱AB ︱=22,OC 的斜率为22,求椭圆的方程。
9、已知椭圆42x +32y =1,试求: (1)过点M (1,1)且被M 点平分的弦所在直线l 的方程。
(2)求斜率为-2的平行弦的中点轨迹方程。
(3)过点(4,2)的直线l ′与椭圆相交,求l ′被截得的弦的中点轨迹方程。
10、设双曲线c :2221(0)x y a a -=>2221(0)x y a a-=>与直线l :x+y=1相交与不同的点A 、B(1)求双曲线的离心率e 的取值范围。
(2)设直线l 与y 轴的交点为P ,且PA =125PB ,求a 的值。
11、一条斜率为1的直线l 与离心率为22的椭圆c :22a x +22b y =1(a >b >0)交于P 、Q 两点,直线l 与y 轴的交于点R ,且OP ·=-3,PR =3,求直线l 与椭圆c 的方程。
第16讲直线与圆锥曲线的位置关系(3大考点+强化训练)[考情分析]直线与圆锥曲线的位置关系是高考的必考内容,涉及直线与圆锥曲线的相交、相切、弦长、面积以及中点弦等问题,难度中等.知识导图考点分类讲解考点一:弦长问题已知A (x 1,y 1),B (x 2,y 2),直线AB 的斜率为k (k ≠0),则|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2,或|AB |=1+1k2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2.易错提醒(1)设直线方程时,需考虑特殊直线,如直线的斜率不存在、斜率为0等.(2)涉及直线与圆锥曲线相交时,Δ>0易漏掉.(3)|AB |=x 1+x 2+p 是抛物线过焦点的弦的弦长公式,其他情况该公式不成立.【例1】(22-23高三·全国·对口高考)通过椭圆22143x y +=的焦点且垂直于x 轴的直线l 被椭圆截得的弦长等于()A .B .3CD .6【变式1】(23-24高三上·北京东城·期末)已知双曲线C :22142-=y x ,则双曲线C 的渐近线方程是;直线1x =与双曲线相交于M ,N 两点,则MN =.【变式2】(2024·内蒙古包头·一模)设抛物线2:4C y x =的焦点为F ,过F 且斜率为2的直线l 与C 交于P 、Q 两点,则PQ =.【变式3】(2024·全国·模拟预测)已知中心在坐标原点的椭圆 E 的一个焦点为),且过点()4,0,过原点O 作两条互相垂直的射线交椭圆于 A 、 B 两点,则弦长 AB 的取值范围为.考点二:面积问题规律方法圆锥曲线中求解三角形面积的方法(1)常规面积公式:S =12×底×高.(2)正弦面积公式:S =12ab sin C .(3)铅锤水平面面积公式:①过x 轴上的定点:S =12a |y 1-y 2|(a 为x 轴上定长);②过y 轴上的定点:S =12a |x 1-x 2|(a 为y 轴上定长).【例2】(23-24高三下·海南省直辖县级单位·开学考试)在平面直角坐标系xOy 中,已知抛物线()2:20C y px p =>的焦点为F ,过点F 且倾斜角为120°的直线l 与抛物线C 交于A ,B 两点,其中点A 在第一象限,若8AB =,则OBF 的面积为()A B C D 【变式1】(2024高三·全国·专题练习)已知直线1y x =+与椭圆22221x ya b+=()0a b >>交于A ,B 两点,点A关于x 轴的对称点记为P ,且OBP 的面积为2,则椭圆恒过定点()A .⎛ ⎝⎭B .()1,1C .(D .【变式2】(23-24高三下·河北保定·开学考试)已知A 是左、右焦点分别为12,F F 的椭圆22:143x y E +=上异于左、右顶点的一点,C 是线段1AF 的中点,O 是坐标原点,过2F 作1AF 的平行线交直线CO 于B 点,则四边形12AF BF 的面积的最大值为()A .2B .34C D【变式3】(2024·山东泰安·一模)已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(A ,当APF 周长最小时,该三角形的面积为()A .B .C .D .考点三:中点弦问题已知A (x 1,y 1),B (x 2,y 2)为圆锥曲线E 上两点,AB 的中点C (x 0,y 0),直线AB 的斜率为k .若E 的方程为x 2a 2+y 2b 2=1(a >b >0),则k =-b 2a 2·x 0y 0;若E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则k =b 2a 2·x 0y 0;若E 的方程为y 2=2px (p >0),则k =py 0.规律方法处理中点弦问题常用的求解方法【例3】(23-24高三下·安徽·阶段练习)已知抛物线2:2(0)C y px p =>,过C 的焦点F 且倾斜角为π3的直线交C 于A ,B 两点,线段AB 的中点为W ,4||3FW =,则p =()A .1B .2C .3D .4【变式1】(23-24高三下·全国·阶段练习)设直线()300x y m m -+=≠与双曲线22221(0)x y a b a b-=>>分别交于A B 、两点,若线段AB 的中点横坐标是45m ,则该双曲线的离心率是()AB C .2D【变式2】(22-23高二下·陕西榆林·期末)已知,A B 为双曲线2219y x -=上两点,且线段AB 的中点坐标为()1,4--,则直线AB 的斜率为.【变式3】(23-24高三下·内蒙古赤峰·开学考试)已知直线l 交抛物线2:28C x y =-于,M N 两点,且MN 的中点为()2,11--,则直线l 的斜率为()A .114-B .1114C .17D .17-强化训练一、单选题1.(23-24高三下·新疆·阶段练习)将抛物线21:2(0)C y px p =>绕原点O 顺时针旋转90︒得到抛物线2C ,若抛物线1C 与抛物线2C 交于异于原点O 的点B ,记抛物线1C 与2C 的焦点分别为M 、N ,且四边形OMBN 的面积为8,则p =()A .4B .2C .22D 22.(24-25高三上·内蒙古呼和浩特·开学考试)设A ,B 为双曲线221816x y -=上的两点,若线段AB 的中点为()1,2M ,则直线AB 的方程是()A .30x y +-=B .230x y +-=C .10x y -+=D .230x y -+=3.(2023高三·全国·专题练习)已知12,F F 分别为双曲线22:36C x y -=的左、右焦点,A 是双曲线C 右支上(顶点除外)任意一点,若12F AF ∠的角平分线与以1AF 为直径的圆交于点B ,则12BF F △的面积的最大值为()A .182B .183C .362D .34.(2023·四川资阳·三模)已知抛物线C :28y x =,过点()2,1P -的直线l 与抛物线C 交于A ,B 两点,若AP BP =,则直线l 的斜率是()A .4-B .4C .14-D .145.(2023·湖北武汉·模拟预测)已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,离心率为e .倾斜角为120︒的直线与C 交于,A B 两点,并且满足21AB AF BF e=-,则C 的离心率为()A .12B C D 6.(22-23高三上·江西·期末)如图,已知抛物线E :()220y px p =>的焦点为F ,过F 且斜率为1的直线交E 于A ,B 两点,线段AB 的中点为M ,其垂直平分线交x 轴于点C ,MN y ⊥轴于点N .若四边形OCMN 的面积等于8,则E 的方程为()A .22y x =B .24y x=C .2y =D .28y x=7.(2023·全国·模拟预测)已知双曲线22:13y C x -=,直线l 经过点(且与双曲线C 的右支交于,A B 两点.点P 为y 轴上一点且满足PA PB =,则22OP PA -=()A .0B .1C .2D .38.(2023·河南·模拟预测)已知直线l 与椭圆221:12x C y +=相切于点P ,与圆222:4C x y +=交于A ,B 两点,圆2C 在点A ,B 处的切线交于点Q ,O 为坐标原点,则OPQ △的面积的最大值为()AB .1C D .2二、多选题1.(23-24高三上·辽宁抚顺·期末)直线3x ty =+过抛物线2:2(0)C y px p =>的焦点,且与C 交于M ,N 两点,则()A .3p =B .6p =C .MN 的最小值为6D .MN 的最小值为122.(2024·云南昭通·模拟预测)已知椭圆22:143x y C +=,直线l 与椭圆C 相交于,A B 两点,下列结论正确的是()A .椭圆的离心率为12B .椭圆的长轴长为2C .若直线l 的方程为1y x =+,则右焦点到lD .若直线l 过点()1,0,且与y 轴平行,则32AB =3.(2023·河北沧州·三模)已知1F ,2F 分别为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,P 为双曲线上第一象限内一点,且12π3F PF ∠=,12F F =1F 关于12F PF ∠的平分线的对称点Q 恰好在C 上,则()A .C 的实轴长为2B .C 的离心率为C .12F PF △的面积为D .12F PF ∠10y --=三、填空题1.(23-24高三上·河南周口·阶段练习)已知O 为坐标原点,过抛物线C :26y x =的焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,2OM OF =,若AF AM =,则AB =.2.(2023高三·全国·专题练习)过点(0,1)P 作斜率为1-的直线l 与椭圆22186x y +=相交于A ,B 两点,则线段AB 的中点坐标为.3.(2024·黑龙江·二模)已知双曲线2222:1(0,0)x y C a b a b -=>>其左、右焦点分别为12,F F ,过2F 作C 的一条渐近线的垂线并交C 于,M N 两点,若34MN =,则1△MNF 的周长为.四、解答题1.(2023·河南·三模)已知抛物线C 的顶点在坐标原点,焦点在y 轴的正半轴上,圆22(1)1y x +-=经过抛物线C 的焦点.(1)求C 的方程;(2)若直线:40l mx y +-=与抛物线C 相交于,A B 两点,过,A B 两点分别作抛物线C 的切线,两条切线相交于点P ,求ABP 面积的最小值.2.(2023高三·全国·专题练习)已知倾斜角为3π4的直线l 与双曲线C :2214y x -=交于A ,B 两点,且线段AB 的中点的纵坐标为4,求直线l 的方程.3.(2023高三·全国·专题练习)椭圆2222:1(0)x y E a b a b+=>>的离心率为12,右顶点为A ,设点O 为坐标原点,点B 为椭圆E 上异于左、右顶点的动点,OABE 的标准方程;4.(2024·云南贵州·二模)已知椭圆C 的方程()222210x y a b a b+=>>,右焦点为()1,0F ,且离心率为12(1)求椭圆C 的方程;(2)设A B ,是椭圆C 的左、右顶点,过F 的直线l 交C 于D E ,两点(其中D 点在x 轴上方),求DBF 与AEF △的面积之比的取值范围.5.(2024·云南曲靖·一模)已知斜率为1的直线1l 交抛物线()2:20E x py p =>于A 、B 两点,线段AB 的中点Q 的横坐标为2.(1)求抛物线E 的方程;(2)设抛物线E 的焦点为F ,过点F 的直线2l 与抛物线E 交于M 、N 两点,分别在点M 、N 处作抛物线E 的切线,两条切线交于点P ,则PMN 的面积是否存在最小值?若存在,求出这个最小值及此时对应的直线2l 的方程;若不存在,请说明理由.。
直线与圆锥曲线的位置关系一.选择题(1)与直线2x-y+4=0平行的拋物线y= x 2的切线方程是 ( )A 2x -y+3=0B 2x -y -3=0C 2x-y+1=0D 2x-y-1=0 (2) 椭圆22x+ y 2 = 1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|2PF | =( ) A.23 B.3 C. -57 D. 4(3) 设双曲线12222=-by ax (0<a<b)的半焦距c, 直线l 过(a, 0), (0, b)两点. 已知原点到直线l的距离为43c, 则双曲线的离心率为( )A 2 B3 C 2 D332(4) 已知拋物线y=2x 2上两点A(x 1,y 1), B(x 2,y 2)关于直线y=x+m 对称, 且x 1x 2=-21, 那么m的值等于 ( )A25 B23 C 2 D 3(5)过双曲线2x 2-y2-8x+6=0的由焦点作直线l 交双曲线于A 、B 两点, 若|AB|=4, 则这样的直线有 ( )A 4条B 3条C 2条D 1条 (6) 如果过两点)0,(a A 和),0(a B 的直线与拋物线322--=x x y 没有交点,那么实数a 的取值范围是( )A (134, +∞) B (- ∞,134) C (- ∞,-134) D (-134,134)(7) 设拋物线y 2= 8x 的准线与x 轴交点Q,若过点Q 的直线l 与拋物线有公共点,则直线l 的斜率的取值范围是 ( ) A. [-21,21] B. [-2 , 2 ] C. [-1 , 1 ] D. [-4 , 4 ](8) 过椭圆的左焦点F 且倾斜角为60°的直线交椭圆于A 、B 两点, 若|FA|=2|FB| 则椭圆的离心率是( )A23 B22 C32 D21(9) 已知F 1, F 2是双曲线的两个焦点, Q 是双曲线上任意一点, 从某一焦点引∠F 1QF 2平分线的垂线, 垂足为P , 则点P 的轨迹是 ( )A 直线B 圆C 椭圆D 双曲线(10) 对于拋物线C: y 2=4x, 我们称满足y 02<4x 0的点M(x 0, y 0)在拋物线的内部, 若点M(x 0, y 0)在拋物线的内部, 则直线l : y 0y=2(x+ x 0)与 C ( )A 恰有一个公共点B 恰有二个公共点C 有一个公共点也可能有二个公共点D 没有公共点二.填空题(11)圆x 2+2x+y 2+4y-3=0上到直线x+y+1=0的距离为2的点共有 个.(12)对任意实数k,直线y=kx+b 与椭圆⎩⎨⎧++,sin 41,cos 23θθ(0≤θ≤2π)恒有公共点,则b 的取值范围是 . (13)已知F 1、F 2是椭圆42x+y 2=1的两个焦点, P 是该椭圆上的一个动点, 则|PF 1|·|PF 2|的最大值是 . (14) 定长为l (l >ab22)的线段AB 的端点在双曲线b 2x 2-a 2y 2=a 2b 2的右支上, 则AB 中点M 的横坐标的最小值为 . 三.解答题(15) 如图,拋物线关于x 轴对称,它的顶点在坐标原点, 点P(1,2), A(x 1, y 1), B(x 2,y 2)均在直线上.(Ⅰ)写出该拋物线的方程及其准线方程;(Ⅱ)当PA 与PB 的斜率存在且倾角互补时, 求21y y +的值及直线AB 的斜率.(16) 设椭圆方程为1422=+yx ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求: (Ⅰ)动点P 的轨迹方程;(Ⅱ)||NP 的最小值与最大值.(17) 已知双曲线的中心在原点,右顶点为A (1,0)点P 、Q在双曲线的右支上,支M (m,0)到直线AP 的距离为1. (Ⅰ)若直线AP 的斜率为k ,且]3,33[∈k ,求实数m 的取值范围;(Ⅱ)当12+=m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程.(18) 设椭圆1122=++ym x的两个焦点是)0,(1c F -与)0)(0,(2>c c F ,且椭圆上存在点P ,使得直线PF 2与直线PF 2垂直. (Ⅰ)求实数m 的取值范围;(Ⅱ)设L 是相应于焦点F 2的准线,直线PF 2与L 相交于点Q. 若32||||22-=PF QF ,求直线PF 2的方程.第十三单元一选择题: 1.D 2.C 3.A 4.B 5.B 6.C 7.C 8.C 9.B 10.D二填空题: 11. 3, 12. [-1,3], 13. 4, 14. 222)2(ba a l a ++.三解答题(15)解(Ⅰ)由已知条件,可设拋物线的方程为.22px y = ∵点P(1,2)在拋物线上,∴,1222⋅=p 得p =2. 故所求拋物线的方程是,42x y =准线方程是x=--1. (Ⅱ) 设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , ∵PA 与PB 的斜率存在且倾斜角互补,∴.PB PA k k -= 由A(x 1,y 1), B(x 2,y 2)在拋物线上,得,4121x y = ① ,4222x y = ② ∴,14121412222211--=--y y y y∴ ),2(221+-=+y y ∴.421-=+y y由①-②得直线AB 的斜率).21(1444211212x x y y x x y y k AB ≠-=-=+=--=(16) (Ⅰ)解法一:直线l 过点M (0,1)设其斜率为k ,则l 的方程为.1+=kx y 记),(11y x A 、),,(22y x B 由题设可得点A 、B 的坐标),(11y x 、),(22y x 是方程组⎪⎩⎪⎨⎧=++=14122yx kx y 的解.将①代入②并化简得,032)4(22=-++kx x k ,所以 ⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y kk x x 于是).44,4()2,2()(21222121k k k y y x x OB OA OP ++-=++=+= 设点P 的坐标为),,(y x 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y k k x 消去参数k 得0422=-+y y x ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为.0422=-+y y x 解法二:设点P 的坐标为),(y x ,因),(11y x A 、),(22y x B 在椭圆上,所以,142121=+y x ④.142222=+y x ⑤. ④—⑤得0)(4122212221=-+-y y x x ,所以.0))((41))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y xy y y y x x x ⑦将⑦代入⑥并① ②整理得 .0422=-+y y x ⑧. 当21x x =时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为(0,0)也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x(Ⅱ)解:由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以127)61(3441)21()21()21(||222222++-=-+-=-+-=x x x y x NP故当41=x ,||NP 取得最小值,最小值为61;41-=x 当时,||NP 取得最大值,最大值为.621(17) 解: (Ⅰ)由条件得直线AP 的方程),1(-=x k y 即.0=--k y kx 因为点M 到直线AP 的距离为1,∵,112=+-k k mk 即221111kkkm +=+=-.∵],3,33[∈k∴,21332≤-≤m 解得332+1≤m ≤3或--1≤m ≤1--332. ∴m 的取值范围是].3,3321[]3321,1[+-- (Ⅱ)可设双曲线方程为),0(1222≠=-b by x 由),0,1(),0,12(A M +得2=AM .又因为M 是ΔAPQ 的内心,M 到AP 的距离为1,所以∠MAP=45º,直线AM 是∠PAQ 的角平分线,且M 到AQ 、PQ 的距离均为1。
直线与圆锥曲线的位置关系时间:45分钟 分值:100分一、选择题(每小题6分,共计36分)1.已知双曲线kx 2-y 2=1的一条渐近线与直线l :2x +y +1=0垂直,则此双曲线的离心率是( )解析:由题知,双曲线的渐近线方程为kx 2-y 2=0,即y =±kx .由题知直线l 的斜率为-2,则可知k =14,代入双曲线方程kx 2-y 2=1,得x 24-y 2=1,于是,a 2=4,b 2=1,从而c =a 2+b 2=5,所以e =52.答案:A (2.抛物线y 2=8x 的焦点到双曲线x 212-y24=1的渐近线的距离为( )A .1解析:由题意可知,抛物线y 2=8x 的焦点为(2,0),双曲线x 212-y24=1的渐近线为y =±33x ,所以焦点到双曲线的渐近线的距离为|2×±3|3+9=1.答案:A3.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )-y 26=1 -y 25=1 -y 23=1 -y 24=1解析:设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0), …由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有:⎩⎨⎧x 21a 2-y 21b 2=1x 22a 2-y22b 2=1,两式作差得: y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b 25a 2, 又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得 a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1. 答案:B{4.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( )A .5B .8 -1 +2解析:抛物线y 2=4x 的焦点为F (1,0),圆x 2+(y -4)2=1的圆心为C (0,4),设点P 到抛物线的准线距离为d ,根据抛物线的定义有d =|PF |,∴|PQ |+d =|PQ |+|PF |≥(|PC |-1)+|PF |≥|CF |-1=17-1.答案:C 5.直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为( )A .16 C .4解析:由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y .得x 2-3x -4=0,%∴x A=-1,x D=4,直线3x-4y+4=0恰过抛物线的焦点F(0,1),∴|AF|=y A+1=54,|DF|=y D+1=5,∴|AB| |CD|=|AF|-1|DF|-1=116.故选B.答案:B图16.如图1,过双曲线上左支一点A作两条相互垂直的直线分别过两焦点,其中一条与双曲线交于点B,若三角形ABF2是等腰直角三角形,则双曲线的离心率为())解析:设|AF2|=|AB|=x(x>0),则|BF2|=2x.由双曲线定义知,2x-|BF1|=2a①,x-|AF1|=2a②,由①②知x=22a,∴|AF1|=(22a-2a).在Rt△F1AF2中,|AF1|2+|AF2|2=4c2.即(22-2)2a2+(22a)2=4c2,解得e=5-22,故选B.答案:B二、填空题(每小题8分,共计24分)7.斜率为3的直线l过抛物线y2=4x的焦点且与该抛物线交于A,B两点,则|AB|=________.·解析:图2如图2,过A 作AA 1⊥l ,过B 作BB 1⊥l ,抛物线y 2=4x 的焦点为F (1,0),直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |·cos60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.答案:1638.已知双曲线x 2-y23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA →1·PF →2的最小值为________. 解析:由题可知A 1(-1,0),F 2(2,0),设P (x ,y )(x ≥1),则PA→1=(-1-x ,-y ),PF →2=(2-x ,-y ),PA →1·PF →2=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5,∵x ≥1,函数f (x )=4x 2-x-5的图象的对称轴为x =18,∴当x =1时,PA →1·PF→2取最小值-2. 答案:-2【9.过抛物线y 2=2px (p >0)的焦点的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+m 4=________.解析:设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,x =my -m 消去x ,得y 2-2mpy +2pm =0,∴y 1+y 2=2pm ,y 1y 2=2pm ,(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=4p 2m 2-8pm .又焦点(p2,0)在x -my +m =0上,∴p =-2m ,∴|y 1-y 2|=4m 4+m 2,∴S △OAB =12×p 2|y 1-y 2|=22,即-m m 4+m 2=2,平方得m 6+m 4=2.答案:2三、解答题(共计40分)10.(10分)已知中心在原点,焦点在x 轴上,离心率为255的椭圆的一个顶点是抛物线y =14x 2的焦点,过椭圆右焦点F 的直线l 交椭圆于A 、B 两点,交y 轴于点M ,且MA→=λ1AF →,MB →=λ2BF →. (1)求椭圆的方程; |(2)证明:λ1+λ2为定值.解:(1)由题易知b =1,e =1-b a 2=255, 解得a 2=5,故椭圆的方程为x 25+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),M (0,y 0),由F (2,0),MA →=λ1AF →,得⎩⎨⎧x 1=2λ11+λ1y 1=y1+λ1.由MB →=λ2BF →,得⎩⎨⎧x 2=2λ21+λ2y 2=y1+λ2.又A 、B 在椭圆上,将其分别代入椭圆方程整理知, λ1,λ2是方程λ2+10λ+5-5y 20=0的两根, 所以λ1+λ2=-10为定值.}11.(15分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率e =22,短轴长为2.(1)求椭圆的标准方程;(2)过点F 1的直线l 与该椭圆交于M 、N 两点,且|F 2M →+F 2N →|=2263,求直线l 的方程.解:(1)由条件有⎩⎪⎨⎪⎧c a =22,b =a 2-c 2=1,解得a =2,c =1.则椭圆的标准方程为x 22+y 2=1. (2)由(1)知F 1(-1,0)、F 2(1,0).若直线l 的斜率不存在,则直线l 的方程为x =-1. %将x =-1代入椭圆方程得y =±22.不妨设M (-1,22)、N (-1,-22),∴F 2M →+F 2N →=(-2,22)+(-2,-22)=(-4,0).∴|F 2M →+F 2N →|=4,与题设矛盾.∴直线l 的斜率存在.设直线l 的斜率为k ,则直线l 的方程为y =k (x +1), 设M (x 1,y 1)、N (x 2,y 2),则⎩⎨⎧x 22+y 2=1,y =kx +1,消去y 得(1+2k 2)x 2+4k 2x +2k 2-2=0.由根与系数的关系知,x 1+x 2=-4k 21+2k 2,从而y 1+y 2=k (x 1+x 2+2)=2k1+2k 2.[又∵F 2M →=(x 1-1,y 1),F 2N →=(x 2-1,y 2),∴F 2M →+F 2N →=(x 1+x 2-2,y 1+y 2).∴|F 2M →+F 2N →|2=(x 1+x 2-2)2+(y 1+y 2)2=(8k 2+21+2k 2)2+(2k 1+2k 2)2=416k 4+9k 2+14k 4+4k 2+1. ∴416k 4+9k 2+14k 4+4k 2+1=(2263)2,化简得40k 4-23k 2-17=0.解得k 2=1或k 2=-1740(舍去).∴k =±1.∴所求直线l 的方程为y =x +1或y =-x -1.12.(15分)(2011·江苏高考)—图3如图3,在平面直角坐标系xOy中,M、N分别是椭圆x2 4+y22=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C.连结AC,并延长交椭圆于点B.设直线PA的斜率为k.(1)当直线PA平分线段MN时,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意的k>0,求证:PA⊥PB.解:(1)由题设知:a=2,b=2,故M(-2,0),N(0,-2),所以线段MN中点的坐标为(-1,-22).由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过坐标原点,所以k=-22-1=22.图4(2)直线PA的方程为y=2x,代入椭圆方程得x24+4x22=1,#解得x=±23,因此P(23,43),A(-23,-43).于是C(23,0),直线AC的斜率为0+4323+23=1,故直线AB 的方程为x -y -23=0. 因此d =|23-43-23|12+12=223. (3)证法一:将直线PA 的方程y =kx 代入x 24+y 22=1,解得x =±21+2k 2.记μ=21+2k 2,则P (μ,μk ), A (-μ,-μk ).于是C (μ,0).故直线AB 的斜率为0+μk μ+μ=k 2,其方程为y =k2(x -μ),代入椭圆方程得(2+k 2)x 2-2μk 2x -μ2(3k 2+2)=0,解得x =μ3k 2+22+k 2或x =-μ.因此B (μ3k 2+22+k 2,μk 32+k 2).于是直线PB 的斜率k 1=μk 32+k 2-μk μ3k 2+22+k 2-μ=k 3-k 2+k 23k 2+2-2+k 2=-1k .因此k 1k =-1,所以PA ⊥PB .证法二:设P (x 1,y 1),B (x 2,y 2),则x 1>0,x 2>0,x 1≠x 2,A (-x 1,-y 1),C (x 1,0).设直线PB ,AB 的斜率分别为k 1,k 2.因为C 在直线AB上,所以k 2=0--y 1x 1--x 1=y 12x 1=k2.从而k 1k +1=2k 1k 2+1=2·y 2-y 1x 2-x 1·y 2--y 1x 2--x 1+1=2y 22-2y 21x 22-x 21+1=x 22+2y 22-x 21+2y 21x 22-x 21=4-4x 22-x 21=0. 因此k 1k =-1,所以PA ⊥PB .(。
高中数学直线和圆锥曲线常考题型汇总及例题解析题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值问题题型八:角度问题题型九:四点共线问题题型十:范围问题(本质是函数问题)题型十一:存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)【题型一】数形结合确定直线和圆锥曲线的位置关系【题型二】弦的垂直平分线问题【题型三】动弦过定点的问题【题型四】过已知曲线上定点的弦的问题【题型五】共线向量问题【题型六】面积问题【题型七】弦或弦长为定值问题【题型八】角度问题【题型九】四点共线问题【题型十】范围问题(本质是函数问题)【题型十一】存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)例题&解析集合例1:例2:例3:例4:例5:例6:刷有所得:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.例7:答案:解析:刷有所得:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.例8:解析:定点问题例9:解析:例10:例11:解析:例12:例13:答案:例14:例15:解析:离心率问题例16:答案:D解析:刷有所得:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 例17:答案:C 解析:例18:答案:C解析:刷有所得:求离心率的值或范围就是找的值或关系。
直线与圆锥曲线的位置关系第一部分真题分类1.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB =.则双曲线的离心率为()AB C .2D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.2.(2021·全国高考真题(文))已知12,F F 为椭圆C :221164x y +=的两个焦点,P ,Q 为C上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.3.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>.(1)证明:a =;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程;②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【解析】(1)3c e a =====,3b a ∴=,因此,a =;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C的内部时,2229331010b ⎛⎫⎛⎫+⋅-< ⎪ ⎪ ⎪⎝⎭⎝⎭,可得10b >.设点()11,P x y 、()22,Q x y,则12129210210x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩,所以,1212y y x x +=+由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=,所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝,所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝⎭,即y =所以,直线l0y -=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥ ,而()11,OP x y = ,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.4.(2021·天津高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.【答案】(1)2215x y +=;(2)0x y -=.【解析】(1)易知点(),0F c 、()0,B b,故BF a ===因为椭圆的离心率为c e a ==2c =,1b ==,因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215xy +=上一点,先证明直线MN 的方程为0015x xy y +=,联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭,直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭,因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=,所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,06x =-,所以,直线l的方程为166x y +=,即0x y -=.5.(2021·全国高考真题)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F ,且离心率为3.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN .【答案】(1)2213x y +=;(2)证明见解析.【解析】(1)由题意,椭圆半焦距c =3c e a ==,所以a 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意;当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F三点共线,可设直线(:MN y k x =-即0kx y -=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212,324x x x x +=⋅=,所以MN =所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=,由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=,所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==213k=+=化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩,所以直线:MN y x =y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立;所以M ,N,F 三点共线的充要条件是||MN =6.(2021·全国高考真题)在平面直角坐标系xOy 中,已知点()10F、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0.【解析】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-,联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-,所以,()()()()22122121121122112111111222416t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭,设直线PQ 的斜率为2k ,同理可得()()2222212116tk TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=.因此,直线AB 与直线PQ 的斜率之和为0.7.(2021·全国高考真题(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.【答案】(1)2p =;(2)【解析】(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅==-△,()()2222000000041441215621x y y y y y y -=-+-=---=-++ ,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=8.(2020·海南高考真题)已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y+=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=,直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:5514d ==+,由两点之间距离公式可得22||(24)335AM ++=.所以△AMN 的面积的最大值:1125351825⨯.9.(2020·江苏高考真题)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)∵椭圆E 的方程为22143x y +=∴()11,0F -,()21,0F 由椭圆定义可得:124AF AF +=.∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭∵准线方程为4x =∴()4,QQ y ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F -∴直线1AF 的方程为()314y x =+∵点O 到直线AB 的距离为35,213S S =∴2113133252S S AB AB d==⨯⨯⨯=⋅∴95d =∴113439x y -+=①∵2211143x y +=②∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩.∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭.第二部分模拟训练一、单选题1.已知抛物线26y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点,且12FA FB ⋅=,则AB =()A .6B .7C .8D .9【答案】C【解析】由26y x =得3p =,所以3(,0)2F ,准线为32x =-,设直线3:2AB x ty =+,联立2326x ty y x⎧=+⎪⎨⎪=⎩,消去x 并整理得2690y ty --=,设1122(,),(,)A x y B x y ,则126y y t +=,129y y =-,所以21212()363x x t y y t +=++=+,222121212()966364y y y y x x =⨯==,因为13||2AF x =+,23||2BF x =+,12FA FB ⋅=,所以1233()()1222x x ++=,所以()1212391224x x x x +++=,所以()1293912424x x +++=,所以125x x +=,所以121233||||||3822AB AF BF x x x x =+=+++=++=.故选:C2.已知过抛物线2y =焦点F 的直线与抛物线交于A ,B 两点,且2AF FB =,则AOB (O 为坐标原点)的面积为()A .32B.2C .3D.【答案】D【解析】由题意,抛物线2y =的焦点坐标为F ,设直线AB为x my =,()11,A x y ,()22,B x y ,因为2AF FB =,可得122y y =-,由2y x my ⎧=⎪⎨=+⎪⎩280y --=,所以128y y =-,又由121282y y y y =-⎧⎨=-⎩,可得224y =,解得22y =-或22y =,当22y =-时,14y =,可得1211||622AOB S OF y y ∆=⨯⨯-==;当22y =时,14y =-,可得1211||622AOB S OF y y ∆=⨯⨯-==.故选:D.3.已知抛物线()2:20C y px p =>的焦点为F ,直线(2)y k x =+与抛物线C 交于点()1,2A ,B ,则FB =()A .3B .4C .5D .6【答案】C【解析】由点()1,2A 在抛物线C 上得2p =,设2,4t B t ⎛⎫ ⎪⎝⎭,由直线过定点()2,0-得()()221224tk t==----,解得4t =(舍去2),()4,4B ,所以||452pFB =+=.故选:C .4.已知点()15,0F -,()25,0F .设点P 满足126PF PF -=,且12MF =,21NF =,则PM PN -的最大值为()A .7B .8C .9D .10【答案】C【解析】解:因为12610PF PF -=<,所以点P 在以1F ,2F 为焦点,实轴长为6,焦距为10的双曲线的右支上,则双曲线的方程为221916x y -=.由题意知M 在圆()221:54F x y ++=上,N 在圆()222:51F x y -+=上,如图所示,12PM PF ≤+,21PN PF ≥-,则()()12122139PM PN PF PF PF PF -≤+--=-+=.当M 是1PF 延长线与圆1F 的交点,N 是2PF 与圆2F 的交点时取等号.故选:C .5.已知双曲线C 的方程为2214y x -=,点P ,Q 分别在双曲线的左支和右支上,则直线PQ 的斜率的取值范围是()A .()2,2-B .11,22⎛⎫-⎪⎝⎭C .()(),22,-∞-+∞ D .11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A【解析】由双曲线的方程2214y x -=可得其渐近线方程为2y x =±,故当点P ,Q 分别在双曲线的左支和右支上时,直线PQ 的斜率的取值范围是()2,2-.故选:A.6.已知F 是抛物线()2:20C y px p =>的焦点,M 是抛物线C 上一点,MF 的延长线交y 轴于点N .若:2:1MF NF =,2NF =,则抛物线C 的方程为()A .2y x =B .24y x =C .28y x =D .216y x=【答案】B【解析】由题意,抛物线()2:20C y px p =>,可得焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,作MA 垂直于y 轴交y 轴于点A ,因为:2:1MF NF =,2NF =,所以F 为线段MN 的三等分点,且24MF NF ==,由NFO NMA △△∽,得13OF MA =,即332p MA OF ==,所以32422p pMF p =+==,所以抛物线C 的方程为24y x =.故选:B.二、填空题7.过抛物线22y px =(0p >)的焦点作与抛物线对称轴垂直的直线交抛物线于A 、B 两点,且||4AB =,则p =___________.【答案】2【解析】设抛物线的焦点坐标为,02p F ⎛⎫⎪⎝⎭,由条件可知2A B F p x x x ===,所以222A B p pAB AF BF x x p =+=+++=,又AB 4=,所以2p =,故答案为:2.8.已知抛物线C :y 2=x ,过C 的焦点的直线与C 交于A ,B 两点.弦AB 长为2,则线段AB 的中垂线与x 轴交点的横坐标为__________.【答案】54【解析】抛物线的焦点为1,04⎛⎫⎪⎝⎭,则可设直线AB 为:()104x ky k =+≠,联立2y x =,消x 得,2104y ky --=,设()()1122,,,A x y B x y ,12y y k +=,212121111122442AB x x ky ky k ⎛⎫⎛⎫=++=++++=+= ⎪ ⎪⎝⎭⎝⎭得1k =±,当1k =时,得12122y y +=,所以AB 中点坐标为31,42⎛⎫ ⎪⎝⎭,则AB 的中垂线方程为1324y x ⎛⎫-=-- ⎪⎝⎭,则与x 轴的交点的横坐标为54;同理,当1k =-时,线段AB 的中垂线与x 轴交点的横坐标为54.故答案为:549.已知双曲线()222210,0x y a b a b-=>>的右顶点为A ,若以点A 为圆心、双曲线的实半轴长为半径的圆与双曲线的一条渐近线交于点B ,与x 轴正半轴交于点D ,且线段BD 交双曲线于点C ,3DC CB =,则双曲线的离心率是______.【解析】由题意知(),0A a 、()2,0D a ,以点A 为圆心、双曲线的实半轴长为半径的圆的方程为()222x a y a -+=.不妨设点B 在第一象限,联立()2220x a y a b y x a x ⎧-+=⎪⎪=⎨⎪>⎪⎩,解得322222a x ca by c ⎧=⎪⎪⎨⎪=⎪⎩,即点322222,a a b B cc ⎛⎫⎪⎝⎭,设点(),C m n ,()2,DC m a n =- ,322222,a a bCB m n c c ⎛⎫=-- ⎪⎝⎭ ,可得322222323a m a m c a b n n c ⎧⎛⎫-=-⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩,解得2231232a m e bn e ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,根据点C 在双曲线()222210,0x y a b a b -=>>上,得22223314e e ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,得22e =,所以,e =..10.已知椭圆()222210x y a b a b+=>>右顶点为()2,0A ,上顶点为B ,该椭圆上一点P 与A 的连线的斜率114k =-,中点为E ,记OE 的斜率为OE k ,且满足140OE k k +=.若C 、D 分别是x 轴、y 轴负半轴上的动点,且四边形ABCD 的面积为2,则三角形COD 面积的最大值是______.【答案】3-【解析】解:设()11,P x y ,()22,A x y ,PA 中点()00,E x y ,则有2211221x y a b +=,2222221x y a b+=,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=,即2121221212y y y y b x x x x a+-⋅=-+-,则212OEb k k a⋅=-,由()2,0A 为椭圆右顶点,所以2a =,又114k =-,140OE k k +=,得到1OE k =,1b =.设(),0C m -,()0,D n -,0m >,0n >,则由四边形ABCD 的面积为2,又B 为上顶点,则()()12122m n ++=,即22mn m n ++=,由基本不等式得2mn ≥+2≤,所以三角形COD 的面积(2112322S mn =≤=-,当且仅当2m n =,即2m =-,1n =时取等号.故答案为:3-。
直线与圆锥曲线的位置关系【知识网络】1.直线与圆锥曲线之间的位置关系及其判定方法. 2.一元二次方程根的判别式及韦达定理的应用. 3.中点问题,弦长问题的求解. 4.进一步应用数形结合思想. 【典型例题】[例1](1)过点(2,4)作直线与抛物线x y 82=有且只有一个公共点,这样的直线有( )A.一条 B.两条 C.三条 D.四条(2)直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,则m 的取值范围是( ) A.[)()+∞,55,1 B.(0,5) C.[)+∞,1 D.(1,5)(3)以圆锥曲线过焦点的弦为直径的圆与对应的准线无交点,则此圆锥曲线是( ) A 不能确定 B 椭圆 C 双曲线 D 抛物线(4)斜率为2的直线与圆锥曲线交于),(),,(2211y x B y x A 两点,若弦长52=AB ,则=-21y y .(5)双曲线122=-y x 的左焦点为F,点P为左支下半支上的动点(异于顶点),则直线PF的斜率的范围是 .[例2] 在椭圆141622=+y x 内,求通过点M(1,1)且被这点平分的弦AB所在直线的方程.[例3] 中心在坐标原点,焦点在x 轴上的椭圆,它的离心率为23,与直线x+y -1=0相交于两点M、N,且OM⊥ON.求椭圆的方程.[例4] 如图,在△ABC 中,∠C =90°,BC =2AC ,A 、B 、C 都是椭圆上的点,其中A 是椭圆的左顶点,直线BC 经过椭圆中心(即原点O ).(1)求证:无论 AC 的长取何正实数,椭圆的离心率恒为定值,并求出该 定值; (2)若PQ 是椭圆的一条弦,PQ ∥AB ,求证∠PCQ 的平分线垂直于AO .【课内练习】1.平面内有一线段AB,其长为33,动点P满足3=-PB PA ,O为AB的中点,则OP的最小值为 ( ) A.23B.1 C.2 D.3 2.已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和,它们所表示的曲线可能是 ( )A B C D3.设A 为双曲线191622=-y x 右支上一点,F 为该双曲线的右焦点,连AF 交双曲线于B ,过B 作直线BC 垂直于双曲线的右准线,垂足为C ,则直线AC 必过定点( )A .(0,1041) B .(0,518) C .(4,0) D .(0,522)4.若直线1-=kx y 与椭圆1422=+ay x 有且只有一公共点,那么 ( ) A.(]⎪⎭⎫ ⎝⎛-∈∈21,21,1,0k a B.()⎪⎭⎫ ⎝⎛-∈∈21,21,1,0k a C.(]⎥⎦⎤⎢⎣⎡-∈∈21,21,1,0k a D.()⎥⎦⎤⎢⎣⎡-∈∈21,21,1,0k a 5.过原点的直线l ,如果它与双曲线14322=-x y 相交,则直线l 的斜率k 的取值范围是 .6.直线y=x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积是 .7.若曲线y 2=|x |+1与直线y=kx +b 没有公共点,则k,b 应满足的条件是 .8.已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y=e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB . (1)证明:λ=1-e 2; (2)若43=λ,△PF 1F 2的周长为6;写出椭圆C 的方程. .9.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。
第3讲 直线与圆锥曲线的位置关系[考情分析] 直线与圆锥曲线的位置关系是高考的必考内容,涉及直线与圆锥曲线的相交、相切、弦长、面积以及弦中点等问题,难度中等. 考点一 弦长、面积问题 核心提炼已知A (x 1,y 1),B (x 2,y 2),直线AB 的斜率为k (k ≠0), 则|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2, 或|AB |=1+1k2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2. 考向1 弦长问题例1 (2022·新高考全国Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63. (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |= 3.(1)解 由题意得,椭圆半焦距c =2且e =c a =63,所以a =3, 又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1. (2)证明 由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不符合题意; 当直线MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2), 必要性:若M ,N ,F 三点共线,可设直线MN :y =k (x -2), 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得|2k |k 2+1=1,解得k =±1, 联立⎩⎪⎨⎪⎧y =±(x -2),x 23+y 2=1,可得4x 2-62x +3=0,所以x 1+x 2=322,x 1·x 2=34,所以|MN |=1+1·(x 1+x 2)2-4x 1·x 2=3, 所以必要性成立;充分性:设直线MN :y =kx +b (kb <0),即kx -y +b =0, 由直线MN 与曲线x 2+y 2=1(x >0)相切可得|b |k 2+1=1,所以b 2=k 2+1, 联立⎩⎪⎨⎪⎧y =kx +b ,x 23+y 2=1,可得(1+3k 2)x 2+6kbx +3b 2-3=0, 所以x 1+x 2=-6kb1+3k 2,x 1·x 2=3b 2-31+3k 2,所以|MN |=1+k 2·(x 1+x 2)2-4x 1·x 2=1+k 2⎝⎛⎭⎫-6kb 1+3k 22-4·3b 2-31+3k 2=1+k 2·24k 21+3k 2=3, 化简得3(k 2-1)2=0,所以k =±1,所以⎩⎨⎧ k =1,b =-2或⎩⎨⎧k =-1,b =2,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立, 所以M ,N ,F 三点共线的充要条件是|MN |= 3. 考向2 面积问题例2 (2022·大庆模拟)已知焦点在x 轴上的椭圆C :x 2a 2+y 2b 2=1(a >b >0),短轴长为23,椭圆左顶点A 到左焦点F 1的距离为1. (1)求椭圆C 的标准方程;(2)设椭圆的右顶点为B ,过F 1的直线l 与椭圆C 交于点M ,N ,且S △BMN =1827,求直线l 的方程.解 (1)由⎩⎪⎨⎪⎧2b =23,a -c =1,a 2-c 2=b 2,得⎩⎪⎨⎪⎧b =3,a =2,c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2)方法一 由题意知,直线的斜率不为0,F 1(-1,0), 设直线l 的方程为x =my -1,M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,x =my -1,得(3m 2+4)y 2-6my -9=0, 即y 1+y 2=6m3m 2+4,y 1·y 2=-93m 2+4.又S △BMN =12·|BF 1|·|y 1|+12·|BF 1|·|y 2|=12·|BF 1|·|y 1-y 2| =12·|BF 1|·(y 1+y 2)2-4y 1·y 2 =18m 2+13m 2+4=1827,解得m =±1,所以直线l 的方程为x -y +1=0或x +y +1=0. 方法二 由(1)知F 1(-1,0),B (2,0),当直线l 的斜率不存在时,|MN |=3,点B (2,0)到直线l :x =-1的距离为3,所以S △BMN =92≠1827,所以直线l 的斜率存在. 设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x +1)得(3+4k 2)x 2+8k 2x +4k 2-12=0, 所以x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.所以|MN |=(x 1-x 2)2+(y 1-y 2)2 =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-8k 23+4k 22-4(4k 2-12)3+4k 2 =1+k 2·144(k 2+1)(3+4k 2)2=12(k 2+1)3+4k 2.因为点B (2,0)到直线l 的距离为d =|3k |k 2+1,所以S △BMN =12·|MN |·d =12·12(k 2+1)3+4k 2·|3k |k 2+1=1827,即k 2=1,得k =±1, 所以直线l 的方程为x -y +1=0或x +y +1=0.易错提醒 (1)设直线方程时,需考虑特殊直线,如直线的斜率不存在、斜率为0等. (2)涉及直线与圆锥曲线相交时,Δ>0易漏掉.(3)|AB |=x 1+x 2+p 是抛物线过焦点的弦的弦长公式,其他情况该公式不成立.跟踪演练1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12. (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 解 (1)由题意可知直线AM 的方程为y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4, 所以a =4.由椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),可得416+9b 2=1,解得b 2=12.所以椭圆C 的方程为x 216+y 212=1.(2)设与直线AM 平行的直线方程为x -2y =m .如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立⎩⎪⎨⎪⎧x -2y =m ,x 216+y 212=1,可得3(m +2y )2+4y 2=48,化简可得16y 2+12my +3m 2-48=0, 所以Δ=144m 2-4×16(3m 2-48)=0, 即m 2=64,解得m =±8,与AM 距离比较远的直线方程为x -2y =8,点N 到直线AM 的距离即两平行线之间的距离, 即d =8+41+4=1255,由两点之间距离公式可得 |AM |=(2+4)2+32=3 5.所以△AMN 的面积的最大值为12×35×1255=18.考点二 中点弦问题 核心提炼已知A (x 1,y 1),B (x 2,y 2)为圆锥曲线E 上两点,AB 的中点C (x 0,y 0),直线AB 的斜率为k . 若E 的方程为x 2a 2+y 2b 2=1(a >b >0),则k =-b 2a 2·x 0y 0;若E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则k =b 2a 2·x 0y 0;若E 的方程为y 2=2px (p >0),则k =py 0.例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63.(1)证明:a =3b ;(2)若点M ⎝⎛⎭⎫910,-310在椭圆C 的内部,过点M 的直线l 交椭圆C 于P ,Q 两点,M 为线段PQ 的中点,且OP ⊥OQ . ①求直线l 的方程; ②求椭圆C 的标准方程. (1)证明 ∵e =ca =c 2a 2=a 2-b 2a 2=1-⎝⎛⎭⎫b a 2=63,∴b a =33,∴a =3b . (2)解 ①由(1)知,椭圆C 的方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2, 当⎝⎛⎭⎫910,-310在椭圆C 的内部时,⎝⎛⎭⎫9102+3·⎝⎛⎭⎫-3102<3b 2,可得b >3010. 设点P (x 1,y 1),Q (x 2,y 2),则⎩⎨⎧x 1+x 22=910,y 1+y 22=-310,所以y 1+y 2x 1+x 2=-39,由已知可得⎩⎪⎨⎪⎧x 21+3y 21=3b 2,x 22+3y 22=3b 2,两式作差得(x 1+x 2)(x 1-x 2)+3(y 1+y 2)(y 1-y 2)=0, 所以y 1-y 2x 1-x 2=-x 1+x 23(y 1+y 2)=-13×⎝⎛⎭⎫-93=3,所以直线l 的方程为y -⎝⎛⎭⎫-310=3⎝⎛⎭⎫x -910, 即y =3x - 3.所以直线l 的方程为3x -y -3=0.②联立⎩⎨⎧x 2+3y 2=3b 2,y =3(x -1),消去y 可得10x 2-18x +9-3b 2=0. Δ=182-40(9-3b 2)=120b 2-36>0,由根与系数的关系可得x 1+x 2=95,x 1x 2=9-3b 210,又∵OP ⊥OQ ,而OP →=(x 1,y 1),OQ →=(x 2,y 2),∴OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+3(x 1-1)·3(x 2-1)=4x 1x 2-3(x 1+x 2)+3 =2(9-3b 2)-27+155=6-6b 25=0,解得b 2=1,合乎题意,故a 2=3b 2=3, 因此椭圆C 的方程为x 23+y 2=1.规律方法 (1)处理中点弦问题常用的求解方法(2)中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足.跟踪演练2 (1)(2022·太原模拟)若过椭圆x 29+y 24=1内一点P (2,1)的弦被该点平分,则该弦所在的直线方程为( ) A .8x +9y -25=0 B .3x -4y -5=0 C .4x +3y -15=0 D .4x -3y -9=0答案 A解析 设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),P 为AB 的中点,因为A ,B 在椭圆上,所以x 219+y 214=1,x 229+y 224=1,两式相减得x 21-x 229+y 21-y 224=0,因为x 1+x 2=4,y 1+y 2=2, 可得y 1-y 2x 1-x 2=-89,则k =-89,且过点P (2,1),所以y -1=-89(x -2),整理得8x +9y -25=0.(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,虚轴的上端点为B ,点P ,Q 在双曲线上,且点M (-2,1)为线段PQ 的中点,PQ ∥BF ,双曲线的离心率为e ,则e 2等于( ) A.2+12 B.3+12 C.2+22 D.5+12答案 A解析 方法一 由题意知F (c ,0),B (0,b ),则k PQ =k BF =-b c .设P (x 1,y 1),Q (x 2,y 2),则⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y22b 2=1,两式相减,得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2).因为线段PQ 的中点为M (-2,1), 所以x 1+x 2=-4,y 1+y 2=2,又k PQ =y 1-y 2x 1-x 2=-b c ,所以-b c =-4b 22a 2,整理得a 2=2bc ,所以a 4=4b 2c 2=4c 2(c 2-a 2),即4e 4-4e 2-1=0,得e 2=2+12. 方法二 由题意知F (c ,0),B (0,b ),则k BF =-bc .设直线PQ 的方程为y -1=k (x +2), 即y =kx +2k +1, 代入双曲线方程,得(b 2-a 2k 2)x 2-2a 2k (2k +1)x -a 2(2k +1)2-a 2b 2=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4,所以2a 2k (2k +1)b 2-a 2k 2=-4,又k =k BF =-b c ,所以2a 2·⎝⎛⎭⎫-b c ⎣⎡⎦⎤2·⎝⎛⎭⎫-b c +1=-4b 2+4a 2⎝⎛⎭⎫-b c 2, 整理得a 2=2bc ,所以c 2-b 2-2bc =0, 即⎝⎛⎭⎫c b 2-2c b -1=0,得cb=2+1, 则e 2=c 2a 2=c2c 2-b 2=⎝⎛⎭⎫c b 2⎝⎛⎭⎫c b 2-1=()2+12()2+12-1=2+12. 考点三 直线与圆锥曲线位置关系的应用 核心提炼直线与圆锥曲线位置关系的判定方法 (1)联立直线的方程与圆锥曲线的方程. (2)消元得到关于x 或y 的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.例4 (1)已知直线l 与椭圆x 2a 2+y 2b 2=1(a >b >0)相切,与直线x =-a ,x =a 分别交于点M ,N ,F 为椭圆的左焦点,若以MN 为直径的圆为E ,则F ( ) A .在圆E 上 B .在圆E 内C .在圆E 外D .以上三种情况都有可能答案 A解析 显然直线l 的斜率存在,设直线l 的方程为y =kx +m , 由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,可得(a 2k 2+b 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0, 因为直线l 与椭圆相切,所以Δ=(2a 2km )2-4(a 2k 2+b 2)(a 2m 2-a 2b 2)=0, 故m 2=a 2k 2+b 2.易知F (-c ,0),M (-a ,-ak +m ), N (a ,ak +m ),则FM →=(c -a ,m -ak ),FN →=(c +a ,m +ak ),则FM →·FN →=c 2-a 2+m 2-a 2k 2=-b 2+a 2k 2+b 2-a 2k 2=0,故∠MFN =90°, 即点F 在圆E 上.(2)(多选)(2022·漳州龙海二中模拟)已知直线y =x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)无公共点,则双曲线的离心率可能为( )A .1 B. 2 C.62D. 3 答案 BC解析 双曲线的一条渐近线为y =b a x ,因为直线y =x 与双曲线无公共点,故有ba ≤1.即b 2a 2=c 2-a 2a 2=e 2-1≤1,所以e 2≤2, 所以1<e ≤ 2.易错提醒 (1)直线与双曲线只有一个交点,包含直线与双曲线相切或直线与双曲线的渐近线平行.(2)直线与抛物线只有一个交点包含直线与抛物线相切、直线与抛物线的对称轴平行(或重合). 跟踪演练3 (2022·沈阳模拟)已知A ,B 分别是椭圆C :x 24+y 2=1的右顶点和上顶点,P 为椭圆C 上一点,若△P AB 的面积是2-1,则P 点的个数为( ) A .0 B .2 C .3 D .4 答案 C解析 由C :x 24+y 2=1可得a =2,b =1 ,所以A (2,0),B (0,1),|AB |= 5 ,所以直线AB 的方程为y -1=-12x ,即y =-12x +1,设过点P 与直线AB 平行的直线l :y =-12x +t ,则直线l 与直线AB 的距离d =|t -1|1+14=25|t -1|, 因为点P 为直线l 与椭圆的交点, 所以点P 到直线AB 的距离为d , 因为△P AB 的面积是2-1,可得S △P AB =12×|AB |×d =12×5×25|t -1|=2-1,解得t =2或t =2-2,当t =2时,由⎩⎨⎧x 24+y 2=1,y =-12x +2,可得(x -2)2=0,解得⎩⎪⎨⎪⎧x =2,y =22,此时P ⎝⎛⎭⎫2,22,当t =2-2时,⎩⎨⎧x 24+y 2=1,y =-12x +2-2,可得x 2+(22-4)x +10-82=0,因为Δ=(22-4)2-4(10-82)=16(2-1)>0,此时直线l 与椭圆有2个交点,此时有2个点P ,所以共有3个点P .专题强化练一、单项选择题1.直线l 经过P (4,2)且与双曲线x 22-y 2=1交于M ,N 两点,如果点P 是线段MN 的中点,那么直线l 的方程为( ) A .x -y -2=0 B .x +y -6=0 C .2x -3y -2=0 D .不存在答案 A解析 当斜率不存在时,显然不符合题意; 当斜率存在时,设M (x 1,y 1),N (x 2,y 2), 因为点P 是线段MN 的中点, 所以x 1+x 2=8,y 1+y 2=4,代入双曲线方程得⎩⎨⎧x 212-y 21=1,x222-y 22=1,两式相减得x 21-x 22=2(y 21-y 22),则k =y 1-y 2x 1-x 2=x 1+x 22(y 1+y 2)=1,又直线过点P ,所以直线方程为y =x -2,联立⎩⎪⎨⎪⎧x 22-y 2=1,y =x -2,得到x 2-8x +10=0,经检验Δ>0,方程有解,所以直线y =x -2满足题意.2.已知F 是抛物线y 2=2px (p >0)的焦点,斜率为-2且经过焦点F 的直线l 交该抛物线于M ,N 两点,若|MN |=52,则该抛物线的方程是( )A .y 2=xB .y 2=2xC .y 2=4xD .y 2=6x答案 B解析 设直线l :y =-2x +p ,联立方程⎩⎪⎨⎪⎧y =-2x +p ,y 2=2px , 得4x 2-6px +p 2=0,设M (x M ,y M ),N (x N ,y N ),则x M +x N =6p 4=3p 2. 又|MN |=52, 所以x M +p 2+x N +p 2=5p 2=52, 所以p =1,所以所求抛物线的方程是y 2=2x .3.(2022·成都模拟)设O 为坐标原点,直线l 过定点(1,0),与抛物线C :y 2=2px (p >0)交于A ,B 两点,若OA ⊥OB ,则抛物线C 的准线方程为( )A .x =-14B .x =-12C .x =-1D .x =-2 答案 A解析 由题意可知直线l 的斜率不为0.设直线l :x =my +1,与y 2=2px (p >0)联立得y 2-2pmy -2p =0,Δ>0恒成立.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-2p .由OA ⊥OB ,得x 1x 2+y 1y 2=0,即y 212p ·y 222p+y 1y 2=0, 即4p 24p 2-2p =0,得p =12, 所以其准线方程为x =-14. 4.过椭圆内定点M 且长度为整数的弦,称作该椭圆过点M 的“好弦”.在椭圆x 264+y 216=1中,过点M (43,0)的所有“好弦”的长度之和为( )A .120B .130C .240D .260答案 C解析 由已知可得a =8,b =4,所以c =43,故M 为椭圆的右焦点,由椭圆的性质可得当过焦点的弦垂直于x 轴时弦长最短,所以当x =43时,最短的弦长为2b 2a =2×168=4, 当弦与x 轴重合时,弦长最长为2a =16,则弦长的取值范围为[4,16],故弦长为整数的弦有4到16的所有整数,则“好弦”的长度之和为4+16+(5+6+7+…+15)×2=240.5.已知过椭圆x 25+y 2=1的右焦点的直线l ,斜率存在且与椭圆交于A ,B 两点,若AB 的垂直平分线与x 轴交于点M ,则点M 横坐标的取值范围为( )A.⎣⎡⎦⎤0,85 B.⎝⎛⎦⎤-85,0 C.⎣⎡⎭⎫0,85 D.⎣⎡⎭⎫-85,0 答案 C解析 当直线AB 的斜率k =0时,即AB 为x 轴,则垂直平分线为y 轴,所以x M =0; 当直线AB 的斜率k ≠0 时,又斜率存在,则设直线方程为y =k (x -2),联立⎩⎪⎨⎪⎧x 2+5y 2=5,y =k (x -2),得(5k 2+1)x 2-20k 2x +20k 2-5=0, 由根与系数的关系得x 1+x 2=20k 25k 2+1,x 1x 2=20k 2-55k 2+1, 设N 为线段AB 的中点,所以x N =10k 25k 2+1,代入直线方程可得y N =-2k 5k 2+1, 则AB 的垂直平分线MN 的方程为y +2k 5k 2+1=-1k ⎝⎛⎭⎫x -10k 25k 2+1, 当y =0时,x =8k 25k 2+1=85+1k 2, 因为k 2>0,所以x ∈⎝⎛⎭⎫0,85, 综上所述,x ∈⎣⎡⎭⎫0,85, 即点M 横坐标的取值范围为⎣⎡⎭⎫0,85. 6.(2022·大连模拟)第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)的国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD (如图),且两切线斜率之积等于-916,则椭圆的离心率为( )A.34B.74C.916D.32答案 B解析 若内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由离心率相同,可设外层椭圆方程为x 2(ma )2+y 2(mb )2=1(m >1),∴A (-ma ,0),B (0,mb ),设切线AC 为y =k 1(x +ma ),切线BD 为y =k 2x +mb ,∴⎩⎪⎨⎪⎧y =k 1(x +ma ),x 2a 2+y 2b 2=1,整理得(a 2k 21+b 2)x 2+2ma 3k 21x +m 2a 4k 21-a 2b 2=0,由Δ=0知, (2ma 3k 21)2-4(a 2k 21+b 2)(m 2a 4k 21-a 2b 2)=0, 整理得k 21=b 2a 2·1m 2-1, 同理,⎩⎪⎨⎪⎧y =k 2x +mb ,x 2a 2+y 2b 2=1,可得k 22=b 2a 2·(m 2-1), ∴(k 1k 2)2=b 4a 4=⎝⎛⎭⎫-9162,即b 2a 2=916,故e =c a =a 2-b 2a 2=74. 二、多项选择题7.(2022·兰州模拟)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线C 的准线的垂线,垂足分别为M ,N ,若线段MN 的中点为P ,且线段FP 的长为4,则直线l 的方程为( )A .x +3y -1=0B .x -3y -1=0 C.3x -y -3=0 D.3x +y -3=0 答案 AB解析 由y 2=4x 得p =2,所以F (1,0),准线为x =-1,设直线l 的方程为x =ty +1,联立⎩⎪⎨⎪⎧x =ty +1,y 2=4x ,消去x 并整理得y 2-4ty -4=0,Δ=16t 2+16>0恒成立, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,所以y 1+y 22=2t , 依题意得M (-1,y 1),N (-1,y 2),则线段MN 的中点P (-1,2t ),因为|PF |=4,所以22+4t 2=4,解得t =±3,所以直线l 的方程为x +3y -1=0或x -3y -1=0.8.已知双曲线E :x 2a 2-y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-3,0),F 2(3,0),两条渐近线的夹角正切值为22,直线l :kx -y -3k =0与双曲线E 的右支交于A ,B 两点,设△F 1AB 的内心为I ,则( )A .双曲线E 的标准方程为x 26-y 23=1 B .满足|AB |=6的直线l 有2条C .IF 2⊥ABD .△F 1AB 与△IAB 的面积的比值的取值范围是(2,6]答案 ACD解析 A 选项,设双曲线E 的一条渐近线的倾斜角为θ,0<θ<π2,因为a >b ,所以0<2θ<π2,从而tan 2θ=2tan θ1-tan 2θ=22,解得tan θ=22或tan θ=-2(舍去),所以b a =22,又a 2+b 2=9,所以a 2=6,b 2=3,所以双曲线E 的标准方程为x 26-y 23=1,故A 正确;B 选项,直线l 的方程kx -y -3k =0,即k (x -3)-y =0,则直线l 恒过右焦点F 2,又过焦点F 2的弦最短为2b 2a =66=6,所以满足|AB |=6的直线l 只有1条,B 错误; C 选项,由双曲线的定义可知,|AF 1|-|AF 2|=26=|BF 1|-|BF 2|,即|AF 1|-|BF 1|=|AF 2|-|BF 2|,因此F 2是△F 1AB 的内切圆在AB 边上的切点,因此IF 2⊥AB ,C 正确;D 选项,由题意知1F ABIAB S S △△=12|IF 2|·(|AF 1|+|BF 1|+|AB |)12|IF 2|·|AB | =26+|AF 2|+26+|BF 2|+|AB ||AB |=46|AB |+2, 因为|AB |≥6,所以1F AB IAB S S △△∈(2,6],D 正确.三、填空题9.直线y =kx +1与椭圆x 24+y 2m=1总有公共点,则实数m 的取值范围是________. 答案 [1,4)∪(4,+∞)解析 直线y =kx +1过定点(0,1),故点(0,1)在椭圆x 24+y 2m=1上或内部, ∴1m≤1,且m >0,m ≠4, ∴m ≥1,且m ≠4.10.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.答案 53解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝⎛⎭⎫53,43, 不妨设A 点的纵坐标y A =-2,B 点的纵坐标y B =43, ∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪-2-43=53. 11.(2022·绵阳模拟)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)与抛物线C :y 2=2px (p >0)有共同的一焦点,过E 的左焦点且与曲线C 相切的直线恰与E 的一条渐近线平行,则E 的离心率为________.答案 2 解析 因为抛物线与双曲线共焦点,所以c =p 2,p =2c ,抛物线方程为y 2=4cx , 双曲线的左焦点为F 1(-c ,0),过F 1与一条渐近线y =b a x 平行的直线方程为y =b a(x +c ), 由⎩⎪⎨⎪⎧y 2=4cx ,y =b a (x +c ),得by 2-4acy +4bc 2=0, 所以Δ=16a 2c 2-16b 2c 2=0,所以a =b ,从而c =a 2+b 2=2a ,离心率为e =c a = 2.12.已知直线y =kx +2(k >0)与抛物线C :x 2=8y 相交于A ,B 两点,点F 为C 的焦点,|F A |=4|FB |,则k =________.答案 34解析 设A (x 1,y 1),B (x 2,y 2),由题意知抛物线的焦点坐标为F (0,2),直线y =kx +2(k >0)与抛物线C :x 2=8y 联立方程得x 2-8kx -16=0,所以x 1+x 2=8k ,x 1x 2=-16,所以y 1+y 2=k (x 1+x 2)+4=8k 2+4,y 1y 2=(kx 1+2)·(kx 2+2)=4,又因为|F A |=4|FB |,所以y 1+2=4(y 2+2),即y 1=4y 2+6,所以由y 1=4y 2+6和y 1y 2=4,解得y 1=8,y 2=12(负值舍去), 所以y 1+y 2=8k 2+4=8+12,解得k 2=916,所以k =34. 四、解答题13.已知点A (0,2),B 为抛物线x 2=2y -2上任意一点,且B 为AC 的中点,设动点C 的轨迹为曲线E .(1)求曲线E 的方程;(2)A 关于直线y =x 的对称点为D ,斜率为12的直线l 交曲线E 于M ,N 两点,且△MDN 是以MN 为底边的等腰三角形,求△MDN 的面积.解 (1)设C (x ,y ),B (m ,n ),∵B 是AC 的中点,∴⎩⎨⎧m =x 2,n =y +22,∵B 在抛物线x 2=2y -2上,∴m 2=2n -2,∴x 24=2×2+y 2-2, ∴曲线E 的方程为x 2=4y .(2)由题意得D (2,0), 设l :y =12x +t ,M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧y =12x +t ,x 2=4y ,得x 2-2x -4t =0, ∴x 1+x 2=2,x 1x 2=-4t ,Δ=4+16t >0,∴y 1+y 2=12(x 1+x 2)+2t =1+2t . 设MN 的中点为P ,则P ⎝⎛⎭⎫1,12+t , ∵△MDN 是以MN 为底边的等腰三角形,则k DP ·k MN =-1,∴12+t 1-2·12=-1,解得t =32,符合Δ>0. ∴x 2-2x -6=0,∴|MN |=1+⎝⎛⎭⎫122·|x 1-x 2|=1+14·4-4×(-6)=35,|DP |=5, ∴S △MDN =12×35×5=572. 14.设中心在原点,焦点在x 轴上的椭圆E 过点⎝⎛⎭⎫1,32,且离心率为32,F 为E 的右焦点,P 为E 上一点,PF ⊥x 轴,圆F 的半径为PF .(1)求椭圆E 和圆F 的方程;(2)若直线l :y =k (x -3)(k >0)与圆F 交于A ,B 两点,与椭圆E 交于C ,D 两点,其中A ,C 在第一象限,是否存在k 使|AC |=|BD |?若存在,求l 的方程;若不存在,请说明理由.解 (1)由题意可设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0), 如图,由e =32,即c a =32, 再由a 2=b 2+c 2,可得a =2b ,①将点⎝⎛⎭⎫1,32代入椭圆方程,可得1a 2+34b 2=1,② 由①②可解得a =2,b =1,故椭圆E 的方程为x 24+y 2=1, ∴F (3,0),∵PF ⊥x 轴,∴P ⎝⎛⎭⎫3,±12,∴圆F 的方程为(x -3)2+y 2=14. (2)由A ,B 在圆上得|AF |=|BF |=|PF |=r =12, 设C (x 1,y 1),D (x 2,y 2),则|CF |=(x 1-3)2+y 21=2-32x 1, 同理|DF |=2-32x 2, 若|AC |=|BD |,则|AC |+|BC |=|BD |+|BC |, 即|AB |=|CD |=1,∴4-32(x 1+x 2)=1,∴x 1+x 2=2 3. 由⎩⎪⎨⎪⎧ x 24+y 2=1,y =k (x -3),得(4k 2+1)x 2-83k 2x +12k 2-4=0,∴x 1+x 2=83k 24k 2+1, ∴83k 24k 2+1=23, 得4k 2=4k 2+1,无解,故不存在.。
精编高二文科数学直线与圆锥曲线的位置关系题型与练习 1直线y =x -1被抛物线y 2
=4x 截得线段的中点坐标是_____. 2.已知椭圆:19
22=+y x ,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长 3:己知斜率为1的直线l 与双曲线C :()22
22100x y a b a b
-=>,>相交于B 、D 两点,且BD 的中点为()1,3M . 求C 的离心率;
5:已知椭圆M :)1(12222≥>=+b a b
y a x 的离心率为23,点P (0,3/2)到椭圆M 上的点的最远距离为7,(1)求此椭圆的方程 (2)若直线y=kx+4交椭圆M 于A ,B 两点,且OA ,OB 的斜率之和为2,(O 是坐标原点),求斜率k 的值
6已知椭圆C :22221x y a b +=(a>b>0F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。
则k =
(A )1 (B (C (D )2
7.(本小题满分12分)
已知抛物线C :22(0)y px p =>过点A (1 , -2)。
(I )求抛物线C 的方程,并求其准线方程;
(II )是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L 的
L 的方程;若不存在,说明理由。
8..若椭圆221ax
by +=与直线1x y +=交于A,B 两点,M 为AB 的中点,直线OM(O 为原点)的斜率
,又OA OB ⊥,求此椭圆的方程。
变式1:已知直线y x b =+与抛物线22x y =交于A,B 两点,且OA OB ⊥(O 为坐标原点),则b 的值是_________________
9.已知一条曲线C 在y 轴右边,C 上没一点到点F (1,0)的距离减去它到y 轴距离的差都是1。
(Ⅰ)求曲线C 的方程
(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,都有FA <0?
若存在,求出m 的取值范围;若不存在,请说明理由。
10已知定圆,16)3(:22=++y x A 圆心为A ,动圆M 过点)0,3(B ,且和圆A 相切,动圆的圆心M 的轨迹记为C .(Ⅰ)求曲线C 的方程;
(Ⅱ)若点),(00y x P 为曲线C 上一点,探究直线044:00=-+y y x x l 与曲线C 是否存在交点? 若存在则求出交点坐标, 若不存在请说明理由.
11 设1F ,2F 分别为椭圆22
22:1x y C a b
+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交
于A ,B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;
(Ⅱ)如果222AF F B =,求椭圆C 的方程.
12设椭圆C :22
221(0)x y a b a b
+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.
(I)
求椭圆C 的离心率; (II)
如果|AB|=154
,求椭圆C 的方程.
13已知椭圆22221x y a b +=(a>b>0)的离心率e=2
,连接椭圆的四个顶点得到的菱形的面积为4. (Ⅰ)求椭圆的方程;
(Ⅱ)设直线l 与椭圆相交于不同的两点A 、B ,已知点A 的坐标为(-a ,0).
(i )若AB |,求直线l 的倾斜角; (ii )若点Q y 0(0,)
在线段AB 的垂直平分线上,且QA QB=4.求y 0的值. 所以直线l 的倾斜角为4π或34π.。