高一数学教案:复习参考题
- 格式:doc
- 大小:53.36 KB
- 文档页数:2
高一数学教案复习设计汇总8篇高一数学教案复习设计汇总8篇好的数学教学课件很有意义的。
20世纪是科学技术空前辉煌的世纪,如何展现那些辉煌的科技成就呢?下面小编给大家带来关于高一数学教案复习设计,希望会对大家的工作与学习有所帮助。
高一数学教案复习设计精选篇1一、教学目标1、知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2、过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
高一数学必修一复习教案高一数学必修一复习教案11.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数(function).记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A}叫做函数的值域(range).注意:1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”○;2 函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f 乘x. ○2. 构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域说明:1 函数的定义域通常由问题的实际背景确定。
○2 如果只给出解析式y=f(x),○而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式. ○2.判断两个函数是否为同一函数说明:1构成函数三个要素是定义域、○对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)2 两个函数相等当且仅当它们的定义域和对应关系完全一致,○而与表示自变量和函数值的字母无关。
判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?(1)f ( x ) = (x -1) 0;g ( x ) = 1(2)f ( x ) = x; g ( x ) = x2(3)f ( x ) = x 2;f ( x ) = (x + 1) 2(4)f ( x ) = | x | ;g ( x ) =(三)课堂练习求下列函数的定义域(1)f(x)x2 1 x|x|(2)f(x) 111x(3)f(x)x24x5(4)f(x)(5)f(x)4x2 x1x26x10(6)f(x)x x3 1十一、归纳小结,强化思想从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
人教版高一数学必修一《复习题》教案及教学反思一、教案编写本次教学主要针对人教版高一数学必修一中的《复习题》章节进行教学。
通过开展《复习题》的教学,学生们可以巩固之前所学的数学知识,同时还能够为下一步的学习打下坚实的基础。
本次教学采用下面的教案设计:1. 教学目的•通过对《复习题》的学习,巩固之前所掌握的知识点。
•强化数学思维,提升数学解题能力。
•注重培养学生的合作学习意识,提高学生应对团队合作和独立思考的能力。
2. 教学内容本次教学的内容主要涉及以下几个方面:•整式的加减运算;•二次根式的化简;•分式的加减运算;•分式方程的求解。
3. 教学过程(1)导入环节在导入环节中,教师可以通过以下几个方面来启发学生的兴趣和激发学习的热情:•通过学生自主提问的方式回顾前期所学的知识点,并进行思考和讨论;•通过教师出示课外拓展题目,引导学生进行自主思考;•通过教师讲述数学知识的重要性,鼓励学生积极参与讨论和学习。
(2)知识讲解本环节教师主要通过演示和讲解的方式,介绍《复习题》的相关知识点。
在讲解中,教师需要注意以下几个方面:•对中文术语的解释和讲解;•给出具体的计算步骤和解题方法;•引导学生区分不同的情况并进行分类讨论;•鼓励学生通过自主思考和独立解题的方式来巩固所学内容。
(3)实例演练本环节教师主要带领学生进行实例演练,巩固之前所学的知识点。
在实例演练中,教师需要注意以下几个方面:•需要对实例演练的难度进行适当的调整,以保证学生能够顺利掌握所讲授的知识点;•鼓励学生通过自主解题,提高自己的解题能力;•引导学生进行合作探讨,提高学生的团队协作能力。
(4)作业布置本环节教师主要通过布置作业,巩固学生所学的知识点,并帮助学生提高自己的解题能力。
在作业布置中,教师需要注意以下几个方面:•布置适量、难度适中的作业;•鼓励学生通过自主思考和独立解题的方式完成作业;•引导学生适时和同学进行解题讨论,以提升学生的合作学习能力。
人教版高中数学必修一优质教案及配套精选练习(全套)课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)∈A,记作a∉A(或a A)(举例)6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
最新人教版高一数学必修1第一章《复习》教案本章的研究内容主要包括集合和函数的基本知识,以及抽象函数和复合函数的相关问题。
通过整合这些知识,可以帮助学生系统化、网络化地理解数学概念,培养他们的理性思维能力和抽象思维能力。
在研究过程中,我们将注重培养学生的分析、探究、思考能力,帮助他们综合运用基本知识解决问题。
同时,我们也会激发学生对数学的兴趣,培养他们的合作、交流和创新意识。
本章的教学重点包括集合与函数的基本知识,含字母问题的研究,以及抽象函数的理解。
教学难点则在于分类讨论的标准和抽象函数的理解。
为了更好地进行教学,我们准备了多媒体课件和投影仪,并计划用两个课时来完成本章的教学任务。
在教学过程中,我们首先对第一章的知识点进行了回顾,包括集合的含义、表示法、元素与集合的关系,集合间的基本关系以及函数的概念和表示方法等等。
我们还介绍了函数的单调性、奇偶性以及应用问题的解法。
在解决函数应用题的过程中,我们需要遵循“设、列、解、答”的步骤,即先分析题意设出变量,然后列出关系式建立函数模型,接着运用函数的性质解出要求的量,最后回到原实际问题作答。
这些步骤可以用框图来表示。
通过本章的研究,我们希望学生能够掌握集合和函数的基本知识,理解抽象函数和复合函数的相关问题,并能够综合运用这些知识解决实际问题。
同时,我们也希望能够培养学生的分析、探究、思考能力,激发他们对数学的兴趣和创新意识。
当涉及到多个变量时,需要寻找与所求量(y)之间的关系式。
确定一个自变量(x),并通过题目中的条件用x表示其他变量,最终得到函数模型y=f(x)。
在证明集合相等时,需要同时满足A包含于B和B包含于A。
判断两个函数是否相同,需要考虑它们的定义域和对应法则。
函数表达式可以通过定义法、换元法和待定系数法求得。
函数的定义域可以通过列出使函数有意义的自变量的不等式来求解。
常见的依据包括分母不为0、偶次根式中被开方数不小于0以及实际问题的实际意义。
本章复习整体设计教材分析这是本章的复习课,在我们学习了集合的表示、集合间的关系、集合的运算等知识的基础上,能够利用集合的语言描述数学对象或生活实例,使得学生能更清晰地表达自己的思想.本课既是对前面三课内容的一个复习、巩固,同时又是一个综合的过程,把各种形式的集合语言、运算做一个检阅.教学中要求主要以读懂集合所表示的语言为主,不必过分加深.三维目标1.加深对集合关系运算的认识.2.学会借助数轴和韦恩图来分析问题.3.对含字母的集合问题有一个初步的了解.4.掌握集合语言与自然语言、图形语言的互译.重点难点教学重点:集合语言的理解.教学难点:带字母的集合问题的研究.课时安排1课时教学过程导入新课设计思路一(复习导入)设计思路二(情境导入)同学们,前几节课我们重点学习了集合的表示、集合间的关系和集合的运算,他们有一个共同特点就是符号化,比如“∈”、“⊆”,大家回忆一下,前面学过哪些符号?写得越多越好.一般写出的是:∈,∉,{,…,},{x|p(x),x∈A},∅,N,N*/N+,Z,Q,R,,,⊆,⊇,∪,∩,[,],(,),[,),(,].还要引导学生注意的有:(-∞,+∞),(a,+∞),(-∞,a).推进新课知识回顾1.∈,∉,{,…,},{x|p(x),x∈A},∅,N,N*/N+,Z,Q,R, A2.交集、并集的定义与符号:A∩B={x∣x∈A,且x∈B} A∪B={x|x∈A,或x∈B}记忆技巧:使用联系、类比的方法记忆.应用示例思路1例1 考虑下面每组对象能否构成一个集合:(1)所有的好人;(2)不超过10的非负数;(3)我班的16岁以下的学生;(4)充分接近大的有理数.分析:使用集合的定义和集合的性质进行判断.解:(1)所有的好人,无明确的标准,对于其中的一个人来说是否是好人无法客观判断,因此(1)不能构成集合.(2)任何一个给定数x ,可以明确地判断是不是“不超过10”的非负数,即“0≤x≤10”与“x >10或x <0”,两者必具其一,且仅具其一,故(2)能构成集合.类似(3)能构成集合,(4)不能构成集合.变式训练1.已知集合A ={1,2,a},则a 应满足什么条件?解:a≠1且a≠22.下列各种说法中,各自所表述的对象是否确定,能否构成集合?(1)我们班的全体学生;(2)我们班的高个子学生;(3)地球上的四大洋;(4)方程x 2-1=0的解;(5)不等式2x -3>0的解;(6)直角三角形.解:(1)、(3)、(4)、(5)、(6)对象是能确定的,能构成集合.(2)是不能确定的,不能构成集合.点评:与集合相关的问题的解决,一般情况下依赖的是集合的三个性质,所以在本章中注意对这三个性质的把握.例2 设A={(x ,y)|y=-4x+6},B={(x ,y)|y=5x-3},求A∩B.解:A∩B ={(x ,y)|y=-4x+6}∩{(x ,y)|y=5x-3}={(x,y)}|⎭⎬⎫⎩⎨⎧-=+-=3564x y x y ={(1,2)}.点评:本题中,(x ,y)可以看作直线上的点的坐标,也可以看作二元一次方程的一个解. 例3 开运动会时,高一(8)共有28名同学参加比赛,有15人参加游泳,有8人参加田径,有14人参加球类,同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项的有多少人?分析:用图示法来表示.解:设参加田径和球类比赛的有x 人,则9+3+8-3-x +3+x +14-3-x=28,解得:x=3. 答:参加田径和球类比赛的有3人,只参加游泳一项的有9人.点评:Venn 图在解决多种关系问题的时候就显示了其简洁性,便于处理各种繁杂的关系,所以要引起注意.例4 已知A={x|2x 2=sx-r},B={x|6x 2+(s+2)x+r=0},且A∩B={21},求A ∪B. 解:因为21∈A 且21∈B ,所以⎪⎪⎩⎪⎪⎨⎧=+++-=,0)2(2123,2121r s r s 即⎩⎨⎧-=+-=-,52,12s r s r 解之得⎪⎩⎪⎨⎧-=-=,23,2r s 所以A={21,23-},B={21,21-},所以A ∪B={21,21-,23-}. 点评:参数问题的解决是本节的难点,也是学生思维的难点,所以充分挖掘题中的隐含条件是解决问题的关键.例5 已知A={x|x 2≤4},B={x|x >a},若A∩B=∅,求实数a 的取值范围.解:A={x|x 2≤4}={x|-2≤x≤2},B={x|x >a},然后从数轴上分析得到a≥2.点评:通过数轴寻找解题途径是解决含参数不等式的一个重要的方法,也是数与形结合的一个重要的部分.思路2例1 用列举法表示下列集合:(1){x|x=|x|,x ∈Z ,x <5};(2){(x,y)|x+y=6,x ∈N +,y ∈N +}.分析:使用列举法的时候,要注意元素的特征,这两道题一个是数,一个是有序的实数对.解:(1)由x=|x|得x≥0,因为x ∈Z 且x <5,所以x=0,1,2,3,4.用列举法表示为{0,1,2,3,4}.(2)由两个变量的取值得符合条件的元素为⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧-=⎩⎨⎧==,1,5,2,4,3,3,4,2,5,1y x y x y x y x y x 用列举法表示为{(1,5),(2,4),(3,3),(4,2),(5,1)}.变式训练1.用列举法表示集合C={x|x=b b a a ||||+,a 、b ∈R }. 解:C={2,-2,0}.2.用列举法表示集合D={x|x-36∈Z ,x ∈N +}. 解:3-x 是6的倍数,所以3-x=±1,±2,±3,±6,所以x=0,-1,1,2,4,5,6,9,因为x ∈N +,所以D={1,2,4,5,6,9}.例2 (1)0与{0};(2)0与∅;(3) ∅与{0};(4){0,1}与{(0,1)};(5){(a,b)}与{(b,a)}各是什么关系?用适当的符号表示出来.分析:首先要分清是“元素与集合”的关系,还是“集合与元素”的关系.解:(1)0与{0}是元素与集合的关系,应为0∈{0};(2)空集不含任何元素,所以0∉∅;(3)∅与{0}都是集合,两者的关系是“包含与否”的关系,空集是任何非空集合的真子集,∅{0};(4){0,1}是含两个元素0与1的集合,而{(0,1)}是以“有序数组”(0,1)为元素的单元素的集合,所以{0,1}与{(0,1)}不相等,即{0,1}≠{(0,1)};(5)当a=b时,{(a,b)}={(b,a)};当a≠b时,{(a,b)}≠{(b,a)}.点评:空集∅是许多特殊性质的重要集合,值得重视.(5)中的a=b是可能的特殊关系,不可不考虑到.例3已知A={x|x<3},B={x|x<a}.(1)若B⊆A,求a的取值范围;(2)若A⊆B,求a的取值范围;(3)若A B,求a的取值范围.分析:紧扣子集、全集、补集的定义,利用数轴,数形结合解出a的范围.解:(1)因为B⊆A,B是A的子集,如图,a≤3.(2)因为A⊆B,A是B的子集,如图,a≥3.(3)因为A={x|x≥3},B={x|x≥a},A B,所以A是B的真子集,如上图a<3.点评:(1)这类问题,注意数形结合,以形定数,才能相得益彰.(2)要注意验证端点值,做到准确无误,要不然会功亏一篑.例4某车间有120人,其中乘电车上班的有84人,乘汽车上班的有32人,两车都乘的有18人,求:(1)只乘电车的人数;(2)不乘电车的人数;(3)乘车的人数;(4)不乘车的人数;(5)只乘一种车的人数.分析:本题是已知全集中元素的个数,求各部分元素的个数,可用图解法.用整个圆表示车间的120人.解:设只乘电车的人数为x,不乘电车的人数为y,乘车的人数为z,不乘车的人数为u,只乘一种车的人数为v.如上图所示,(1)x=66人;(2)y=36人,(3)z=98人;(4)u=22人;(5)v=80人.点评:(1)此种求集合中元素个数的问题,一般用画图解较为方便.(2)此题是一道利用集合知识解决实际问题的应用题,其解题的一般思路是设出各个集合,再分析各集合之间的交集、并集、补集的关系及其含义,以求解问题.知能训练课本第17页复习题3—10题.课堂小结本节课是对集合一章的总结,本章的特点是符号比较多,它比整个初中三年总的符号还多得多,而且又是在很短的时间内教学完毕,所以肯定存在对符号的理解的问题,这个又是学生解决集合问题的最大的障碍.针对这个问题的解决,主要在以后的学习中注意有意识地去不停地渗透.本节课在内容上介绍了集合的基本知识,在教学时不要过分地挖掘,避免造成对数学失去信心,所以多从生活中的实际的例子中去探索用集合语言来描述数学对象的方法.应用集合语言,可以更为清晰地表达我们的思想.集合是整个数学的基础,它在以后的学习中有着极为广泛的应用.作业课本第17页复习题11、12.设计感想通过本章的教学,作为新课程的实施者,在教学方式上和对学生的学习方式应该有所转变,高度概括地说就是自主、合作、创新.所谓自主就是尊重学生学习过程中的自主性,独立性,在学习的内容上、时间上、进度上,更多地给予学生自主支配的机会,给学生自主判断、自主选择和自主承担的机会.过去的课堂是老师控制学生学什么,什么时间学,学生始终处于被动状态,这种过度控制压抑了学习的兴趣和学习过程中的美好体验.习题详解课本第17页复习题1.{0,1,2,3,4}.2.(1)是有限集,(2)、(3)是无限集.3.A={x|x是三边不全相等的三角形}.4.A∩B={1,2},A∪B={0,1,2,3,4}.5.A∩B={x|1<x<2},A∪B=R.6.由数轴可以知道a的取值范围为[4,+∞).7.(1)A=(-∞,-1)∪[2,+∞);(2)A=(-∞,-1)∪[2,3];(3)A=[-2,-1)∪{2};(4)A= .8.满足条件的A有:{5},{1,5},{3,5},{1,3,5}共有4个.9.符合题意的情况有以下几种:(1)A={1,2,3},B={1,2,3,4,5};(2)B={1,2,3},A={1,2,3,4,5};(3)A={1,2,3,4},B={1,2,3,5};(4)B={1,2,3,4},A={1,2,3,5}.10.两门都优秀的百分率至少为45%.由题意可以知道,数学不优秀的为30%,语文不优秀的为25%,为使上述两门学科都优秀的百分率最少,则两门学科不优秀的学生要尽量不重复,故两门学科都优秀的百分率至少为1-(30%+25%)=45%.11.图略,(A∩B)=A∪ B.12.(1)能成立,(2)能成立,(3)不能成立.13.(1)C×D={(a,1),(a,2),(a,3)};(2)A={1,2},B={2};(3)A×B有12个元素.14.略。
有关高一数学复习的教案6篇有关高一数学复习的教案6篇好的数学教学课件很有意义的。
语文是工具学科,是我们学好各门功课的基础。
学好语文有利于提高我们逻辑思维,有利于提高我们的写作能力和语言表达能力,下面小编给大家带来关于高一数学复习的教案,希望会对大家的工作与学习有所帮助。
高一数学复习的教案【篇1】一、教材分析本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。
生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。
函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。
同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。
二、学生学习情况分析函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;(三)高中用导数工具研究函数的单调性和最值。
1.有利条件现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。
初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。
也为我们用集合与对应的观点研究函数打下了一定的基础。
2.不利条件用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。
三、教学目标分析课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.1.知识与能力目标:⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;⑵理解函数的三要素的含义及其相互关系;⑶会求简单函数的定义域和值域2.过程与方法目标:⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.3.情感、态度与价值观目标:感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。
第一章单元复习从容说课通过对本章集合知识与函数知识结构的整合,使学生所学的知识系统化、网络化.本课从知识结构的整体出发,通过对集合知识与函数知识的综合运用,培养学生的理性思维能力,优化学生的数学认知结构.通过解决抽象函数、复合函数的有关问题,培养学生的抽象思维能力;利用分析、讨论的课堂教学手段,培养学生的合作、交流意识;结合函数知识解决实际问题,激发学生学习数学的兴趣,培养他们分析问题、解决问题的能力.三维目标一、知识与技能掌握集合、函数的有关概念,能综合运用集合与函数的基本知识解决问题.对复合函数与抽象函数有新的认识.二、过程与方程培养学生分析、探究、思考的能力,进一步培养学生综合运用基本知识解决问题的能力.三、情感态度与价值观激发学生学习数学的兴趣,培养他们合作、交流、创新意识以及分类讨论、抽象理解能力.教学重点集合与函数的基本知识,含字母问题的研究,抽象函数的理解.教学难点分类讨论的标准、抽象函数的理解.教具准备多媒体课件、投影仪.课时安排2课时教学过程一、知识回顾(一)第一章知识点1.集合:①集合的含义;②表示法;③元素与集合的关系.2.集合间的基本关系:①子集;②真子集;③集合相等.3.集合的运算:①并集;②交集;③补集.4.函数:①函数的概念;②三要素:定义域,值域,对应法则;③映射概念.5.函数的表示:①表示法:解析法,列表法,图象法;②求函数的解析式;③求函数的定义域;④求一些简单函数的值域和最值.6.函数的单调性:①函数单调性定义;②单调函数的概念;③单调区间;④判断或证明函数单调性的方法;⑤单调性的应用;⑥利用函数的单调性求最值.7.函数的奇偶性:①奇偶性的概念;②奇偶性的定义域特征;③判断函数奇偶性的步骤;④奇偶性图象特征.8.函数的应用问题:①解函数应用题的基本方法步骤;②与几何图形有关的应用题的解法;③与物理现象有关的应用题的解法;④与社会生活有关的实际问题的解法.9.(1)解函数应用题的主要步骤是:①“设”即分析题意设出变量;②“列”即列出关系式,建设函数模型;③“解”即运用函数的性质解出要求的量;④“答”即回到原实际问题作答.(2)解实际问题的步骤用框图可表示为(3)当实际问题中的变量较多时,首先寻找所求量(y )与这些变量间的关系式,然后根据实际要求确定一个自变量(x ),而其他变量通过题中条件再用x 表示出来,用代入法即可得到函数模型y =f (x ).(二)方法总结1.证明集合相等的方法:A =B ⇔①A ⊂B ;②A ⊃B (两点必须同时具备).2.相同函数的判定方法:①定义域相同;②对应法则相同(两点必须同时具备).3.函数表达式的求法:①定义法;②换元法;③待定系数法.4.函数的定义域的求法:列出使函数有意义的自变量的不等关系式,求解即得函数的定义域.常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③实际问题要考虑实际意义等.5.函数值域的求法:①配方法(二次或四次);②判别式法;③反表示法;④换元法;⑤不等式法;⑥函数的单调性法.6.函数单调性的判定法:①设x 1、x 2是所研究区间内的任两个自变量,且x 1<x 2;②判定f (x 1)与f (x 2)的大小;③作差比较或作商比较.(注:做有关选择、填空题时,可采用复合函数单调性判定法,做解答题时必须用单调性定义和基本函数的单调性)7.函数奇偶性的判断:首先看函数的定义域是否关于原点对称,再看f (-x )与f (x )的关系.(1)图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用函数图象的对称性描绘函数图象.(2)函数的应用举例(实际问题的解法). a.解决应用问题的一般程序是:①审题:弄清题意,分清条件和结论,理顺数量关系;②建模:将文字语言转化成数学语言,利用相应的数学知识模型. ③求模:求解数学模型,得到数学结论.④还原:将用数学方法得到的结论,还原为实际问题的意义.b.建模类型:①可化为一、二次函数的应用题的解法;②可化为分段函数的应用题解法. 8.常用函数的研究、总结与推广:(1)以二次函数为背景的函数问题(包括通过换元可转化为二次函数的问题).(2)研究函数y =b ax d cx ++(ac ≠b d)的图象性质. (3)研究函数y =x +x1的图象性质并推广.9.抽象函数(即不给出f (x )解析式,只知道f (x )具备的条件)的研究. (1)若f (a +x )=f (a -x ),则f (x )关于直线x =a 对称. (2)若对任意的x 、y ∈R ,都有f (x +y )=f (x )+f (y ),可利用赋值法研究抽象函数的性质.二、讲解新课 典型例题 【例1】 集合A ={x |x 2-mx -8≥0},B ={x |x 2-2mx -n <0},问能否找到两个实数m 、n ,使A ∩B ={x |4≤x <5}?若存在,求出m 、n 的值;若不存在,请说明理由.解:假设存在实数m 、n 满足条件.由题意可知,4是方程x 2-mx -8=0的一根,由韦达定理知方程的另一根为-2. ∴m =4+(-2)=2.∴B ={x |x 2-4x -n <0},A ={x |x ≥4或x ≤2}. 由题意可知,5是方程x 2-4x -n =0的一根,方程x 2-4x -n =0的另一根为x 0,则⎩⎨⎧-=⋅=+,5,4500n x x ∴⎩⎨⎧=-=.5,10n x综上,存在实数m =2,n =5满足题意.方法引导:本题通过集合与一元二次方程结合,给出一类开放性的问题,要求学生自己找出是否存在实数m 、n 能够满足题意.解题的关键就是能发现一元二次不等式解的特点.【例2】 设A ={x |-2≤x ≤a }≠∅,B ={y |y =2x +3,x ∈A },C ={z |z =x 2,x ∈A },且C ⊆B ,求实数a 的取值范围.解:∵A ={x |-2≤x ≤a },∴B ={y |y =2x +3,x ∈A }={y |-1≤y ≤2a +3}. 又C ={z |z =x 2,x ∈A },且C ⊆B ,①当-2≤a ≤0时,C ={z |z =x 2,x ∈A }={z |a 2≤z ≤4},∴⎩⎨⎧≥+-≥,432,12a a 得a ≥21,无解.②当0<a ≤2时,C ={z |0≤z ≤4},∴⎩⎨⎧+≤-≥,324,10a 得a ≥21.∴21≤a ≤2.③当a >2时,C ={z |0≤z ≤a 2}, ∴⎩⎨⎧+≤-≥,32,102a a 得-1≤a ≤3.∴2<a ≤3.综上21≤a ≤3. 方法引导:本题是集合与二次函数相结合的问题,通过对a 进行分类讨论,利用数轴分析集合间的包含关系来解决.【例3】 已知函数f (x )=xax x ++22,x ∈[1,+∞).(1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.(1)解:当a =21时,f (x )=x +x21+2.设1≤x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)(1-2121x x ). ∵2x 1x 2>2,0<2121x x <21, ∴1-2121x x >0.又x 2-x 1>0, ∴f (x 2)-f (x 1)>0,即f (x 1)<f (x 2).∴f (x )在区间[1,+∞)上为增函数,则f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)解法一:在区间[1,+∞]上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞),y =x 2+2x +a =(x +1)2+a -1在区间[1,+∞)上递增, ∴当x =1时,y min =3+a .于是当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.解法二:f (x )=x +xa+2,x ∈[1,+∞),当a ≥0时,函数f (x )的值恒为正;当a <0时,y =x +2与y =xa在[1,+∞)上都是增函数.所以f (x )=x +xa+2在[1,+∞)上是增函数.故当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.方法引导:本题体现了函数思想在解题中的运用,第(1)题用函数单调性求函数的最小值,第(2)题用函数的单调性解决恒成立的问题.在第(2)题的解法一中,还可以这样解:要使x 2+2x +a >0恒成立,只要a >-x 2-2x =-(x +1)2+1恒成立,在[1,+∞)上,由函数单调性得-(x +1)2+1≤-3,所以只要a >-3.【例4】 已知f (x )=-x 2+ax -4a +21,x ∈[0,1],求f (x )的最大值g (a ),且求g (a )的最小值.解:∵f (x )=-x 2+ax -4a +21=-(x -2a )2+42a -4a +21,对称轴x =2a,∵x ∈[0,1],①当2a≤0,即a ≤0时,f (x )max =f (0)=-4a +21.②当0<2a<1,即0<a <2时,f (x )max =f (2a )=42a -4a +21.③当2a≥1,即a ≥2时,f (x )max =f (1)=43a-21.∴g (a )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<+-≤+-.2,2143,20,2144,0,2142a a a a aa a ①当a ≤0时,-4a +21≥21. ②当0<a <2时,42a -4a +21=41(a -21)2+167≥167.③当a ≥2时,43a-21≥1.∴g (a )min =167.方法引导:本题是含参数的二次函数最值问题,通过对称轴x =2a的移动,对a 进行分类讨论,得到的最大值g (a )是关于a 的一个分段函数的形式,注意分段函数的最小值,是每一段最小值的最小值.【例5】 对于任意非零实数x 、y ,已知函数y =f (x )(x ≠0)满足f (xy )=f (x )+f (y ). (1)求f (1),f (-1);(2)判断y =f (x )的奇偶性;(3)若y =f (x )在(0,+∞)上是增函数,且满足f (x )+f (x -21)≤0,求x 的取值范围.解:(1)∵对于任意非零实数x 、y ,有f (xy )=f (x )+f (y ), 取x =y =1,得f (1)=f (1)+f (1), ∴f (1)=0.取x =y =-1,得f (1)=f (-1)+f (-1),∴f (-1)=0.(2)对任意x ≠0,取y =-1,则f (-x )=f (x )+f (-1)=f (x )+0,即f (-x )=f (x ),∴f (x )是偶函数.(3)∵f (x )+f (x -21)≤0,∴f [x (x -21)]≤0.由f (x )是偶函数,得f (|x 2-21x |)≤f (1).又y =f (x )(x ≠0)在(0,+∞)上是增函数,∴0<|x 2-21x |≤1. ∴-1≤x 2-21x <0或0<x 2-21x ≤1. 解得0<x <21或4171-≤x <0或21<x ≤4171+.方法引导:本题求抽象函数的单调性与奇偶性,一般常用赋值法,给x 、y 取一些特殊的值,从而得到一些特殊的函数值,再结合函数的单调性与奇偶性的性质解题.【例6】 已知f (x )∈[83,21],求y =f (x )+)(21x f -的值域.解:∵f (x )∈[83,21],∴2f (x )∈[43,1].∴1-2f (x )∈[0,41].∴)(21x f -∈[0,21].令t =)(21x f -,t ∈[0,21],则f (x )=21(1-t 2).∴y =21(1-t 2)+t =-21(t -1)2+1.由于t ∈[0,21],所以21≤y ≤87.故函数y 的值域为[21,87].方法引导:本题利用换元法求函数的值域,设出新元以后必须给出新元的范围,对于)(21x f -的范围的研究通常由里向外,最后再根据二次函数的性质求值域.【例7】 如下图,灌溉渠的横断面是等腰梯形,底宽及两边坡总长度为a ,边坡的倾斜角为60°.(1)求横断面积y 与底宽x 的函数关系式;(2)已知底宽x ∈[4a ,2a ],求横断面面积y 的最大值和最小值. 解:(1)分别过A 、B 作AE 、BF 垂直于CD ,交CD 于点E 、F , ∵∠ADC =∠BCD =60°,且AB =x ,∴AD =BC =2xa -.∴D E=CF =2x a -·cos60°=4xa -,AE =2xa -·sin60°=4)(3x a -.∴y =21(AB +CD )·AE =21(x +x +2xa -)·4)(3x a -=163(a +3x )(a -x )(0<x<a ).(2)∵y =-1633(x -3a )2+123a 2,x ∈[4a ,2a],∴当x =3a时,y max =123a 2;当x =2a时,y min =6435 a 2.故横断面面积y 的最大值为123a 2,最小值为6435a 2.方法引导:本题是函数在几何图形方面的应用,运用几何图形的性质求出与面积有关的量(用x 表示),根据面积公式列出关系式,这个过程就是建立数学模型,得到的函数是二次函数,但定义域不是R ,而是实际的底宽[4a ,2a].【例8】 某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图甲所示的一条折线表示;西红柿的种植成本与上市时间的关系用图乙的抛物线表示:(1)写出如图甲表示的市场售价与时间的函数关系式P =f (t );写出如图乙表示的种植成本与时间的函数关系式Q =g (t ).(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102 kg ,时间单位:天)解:(1)由图甲可得市场售价与时间的函数关系为f (t )=⎩⎨⎧≤<-≤≤-.300200,3002,2000,300t t t t由图乙可得种植成本与时间的函数关系为g (t )=2001(t -150)2+100,0≤t ≤300. (2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-.300200,2125272001,2000,217521200122t t t t t t当0≤t ≤200时,配方整理得h (t )=-2001(t -50)2+100,所以,当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h (t )=-2001·(t -350)2+100,所以,当t =300时,h (t )取得区间(200,300)上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从2月1日开始的第50天时,上市的西红柿纯收益最大.方法引导:本题是现实生活中的实际问题,题中两图本来是通过实验分析得到相关数据抽象出来的数学模型,这里让我们通过识图找到相应的函数关系式,然后建立纯收益关于时间的分段函数,利用二次函数和分段函数的知识解决问题.【例9】 已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a 、b ∈[-1,1],a +b ≠0,有ba b f a f ++)()(>0.(1)判断函数f (x )在[-1,1]上是增函数还是减函数,并证明你的结论;(2)若满足f (x +21)<f (11-x ),求x 的取值范围;(3)若f (x )≤m 2-2am +1,对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的取值范围.解:(1)任取-1≤x 1<x 2≤1,则x 1-x 2<0.∵ba b f a f ++)()(>0,∴2121)()(x x x f x f --+>0.∴f (x 1)+f (-x 2)<0.又∵f (x )是定义在[-1,1]上的奇函数,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴函数f (x )在[-1,1]上是增函数.(2)∵函数f (x )在[-1,1]上是增函数,由f (x +21)<f (11-x ), 得⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤--≥+,1121,111,121x x x x ⎪⎪⎩⎪⎪⎨⎧<<-<<≥-≥.2311,12,23x x x x x 或或 ∴-23≤x <-1. (3)∵f (x )≤m 2-2am +1,且对所有x ∈[-1,1],a ∈[-1,1]恒成立, ∴m 2-2am +1≥f (x )max =f (1),得m 2-2am ≥0,当a ∈[-1,1]时恒成立. 令f (a )=m 2-2am ,a ∈[-1,1],∴⎪⎩⎪⎨⎧≥+=-≥+-=,02)1(,02)1(22m m f m m f得⎩⎨⎧-≤≥≤≥.20,02m m m m 或或∴m ≥2或m ≤-2或m =0.方法引导:本题是函数的一个综合题,注意对于函数单调性的证明应该用定义法,利用函数的单调性求出自变量之间的关系以及利用最值解决恒成立问题,这是对函数性质的一个综合把握.三、课堂练习 (2课时的练习)课本P 51复习参考题A 组1,2,3,4,5,6,7,8,9. 答案:1.(1)A ={-3,3};(2)B ={1,2};(3)C ={1,2}. 2.(1)集合的点组成线段AB 的垂直平分线;(2)集合的点组成以O 为圆心,3 cm 为半径的圆. 3.三角形的外心.4.a 的值为0,-1,1.5.A ∩B ={(0,0)},A ∩C =∅,(A ∩B )∪(B ∩C )={(0,0),(53,-59}. 6.(1){x |x ≤-2或x ≥2}. (2){x |x ≥2}.(3){x |x ≥4且x ≠5}.7.(1)f (a )+1=a +12; (2)f (a +1)=-aa+2.8.证明:(1)f (-x )=22)(1)(1x x ---+=2211x x -+=f (x );(2)f (x 1)=22)1(1)1(1xx -+=1122-+x x =-2211x x -+=-f (x ). 9.(1)图象略.(2)最大高度为1.08 m. 四、课堂小结1.集合语言是现代数学的基本语言,使用集合语言可以简洁、准确地表达数学的内容.2.运用集合与对应的语言进一步描述了函数概念.与初中的函数概念相比较,突出了函数概念的本质:两个数集间的一种确定的对应关系;明确了函数的三要素.3.函数是描述变量之间依赖关系的重要数学模型.函数的表示方法主要有解析法、图象法、列表法三种.4.研究函数的基本性质不仅是解决实际问题的需要,也是数学本身的自然要求.例如:事物的变化趋势、对称性、用料最省、利润最大、效率最高等,就要研究函数的基本性质,如单调性、最大(小)值和奇偶性等.五、布置作业 (2课时的作业)课本P52复习参考题A组10,11,12,13,14;B组2,3,4,5,6,7,8.板书设计第一章单元复习方法归类要点例题及分析过程课堂小结与布置作业。
直线与圆 复习(一) 直线的倾斜角α与斜率k 求k 方法:1.已知直线上两点1p (1x ,1y )2p (2x ,2y )(1x ≠2x ) 则 2.已知α时,k=tan α(α≠900) k 不存在(α=900) 3.直线Ax+By+C=0,(A ,B 不全为0,) B=0时k 不存在, B ≠0时 k=-BA(二)直线方程(三)位置关系判定方法:当直线不平行于坐标轴时(要特别注意这个限制条件)1212y y x x k --=(四)点P(x0,y0)到直线Ax+By+C=0的距离是 d=两平行直线Ax+By+C1=0和Ax+By+C2=0间的距离为 d= .(五)直线过定点。
如直线(3m+4)x+(5-2m)y+7m -6=0,不论m 取何值恒过定点(-1,2) (六)直线系方程(1)与已知直线Ax+By+C=0平行的直线的设法: Ax+By+m=0 (m ≠C)( 2 ) 与已知直线Ax+By+C=0垂直的直线的设法: Bx -Ay+m=0(3)经过直线1l ∶1A x+1B y+1C =0,2l ∶2A x+2B y+2C =0交点的直线设法: 1A x+1B y+1C +λ(2A x+2B y+2C )=0(λ为参数,不包括2l )2200B A CBy Ax +++2221B A C C +-(七)关于对称(1)点关于点对称(中点坐标公式)(2)线关于点对称(转化为点关于点对称,或代入法,两条直线平行) (3)点关于线对称(点和对称点的连线被线垂直平分,中点在对称轴上、kk’= -1二个方程)(4)线关于线对称(求交点,转化为点关于线对称)(八)圆的标准方程: 222b)-(y a)-(x r =+ 圆心(a,b ) 半径r >0圆的一般方程:022=++++F Ey Dx y x (F E D 422-+>0)圆心(2,2E D ) r=(九)点与圆的位置关系设圆C ∶222b)-(y a)-(x r =+,点M(00,y x )到圆心的距离为d ,则有:(1)d >r 点M 在圆外;(2)d=r 点M 在圆上; (3)d <r 点M 在圆内. (十)直线与圆的位置关系设圆 C ∶222b)-(y a)-(x r =+,直线l 的方程Ax+By+C=0,圆心(a ,b)到直线l 的距离为d,判别式为△,则有:(几何特征) (1)d <r 直线与圆相交; (2)d=r 直线与圆相切; (3)d >r 直线与圆相离; 弦长公式:或(代数特征)(1)△>0 直线与圆相交,圆C 和直线l 组成的方程组有两解; (2)△=0 直线与圆相切, 圆C 和直线l 组成的方程组有一解; (3)△<0 直线与圆相离, 圆C 和直线l 组成的方程组无解。
复习参考题二
A 组
1.答案:A 方法点拨
2.答案:(1)这组数据的个数,频数与总体个数之比. (2)
N
mn . 3.答案:(1)这个结果不能意味着该城市的人比其他地方的人较少地倾向于选咖啡色.
(2)样本抽取的差异,样本对总体的代表性较差. 4.答案:例如可通过了解个人所得税来调查. 5.略. 我们研究对象的全体就是总体.等比例是分层抽样的特点.
调查结果的偏差往往是样本的抽取对总体来说缺乏代表性.
6.答案:(1)可通过各小组打分的方差或标准差来衡量各组成员的相似性,S A =3.73,S B =11.79,显然,A 组成员打的分波动小,近似性较好.
(2)由于A 组打分的标准差较小,显示了其专业的专业性.故A 组应是专业组.
方差或标准差是反映数据波
动大小的统计量,应正确理解其数学意义.
7.答案:(1)中位数是
2
190
175 =182.5,平均数是x =217. (2)由于S =99.25较大,数据离散程度大,故选择中位数更合适. 区分中位数和平均值应从它们的数学意义和性质去理解.
8.答案:(1)如图
1.
图1
(2)意味着平均每年增长0.42%,增速最慢. (3)城市增长最快.(4)略.
可用几何画板来作图.
B 组
1.答案:作频率分布图和频率直方图. (1)求极差
在上述数据中,极差是25.14-12.34=12.8. (2)确定组距与组数
如果将组距定为1.60,那么由12.8÷1.60=8,组数为8. (3)决定分点
根据数据的特点,第1小组的起点可取为12.34,第1小组的终点可取为13.94,所得到的分组是
[12.34,13.94),[13.94,15.54),…,[23.54,25.14).
频率分布图虽不能体现原始数据,但它能使我们了解数据的具体分布情况及在各组的频率.
(4)列频率分布表
(5)平均数x =18.30,结合频率分布表可知指标可定在[15.54,21.94]. 2.答案:(1)将表中的数据制成散点图如图2. 20151050
5
10
15
20
年龄/周岁身高/c m
图2
(2)利用计算机Excel 软件求出回归直线方程如图3.
20151050
5
10
15
20
年龄/周岁
身高/c m y x =6.3167+ 71.984
图3
用回归方程y
ˆ=6.3167x +71.984来近似地表示这种线性关系. [15.54,21.94]内的数据频率约为0.78.根据题意确定使用
线性分析,其一般步骤是:画出散点图;若呈直线形,求回归直线方程;利用回归直线推测实际问题.
(3)回归系数说明平均每年身高增长估计为6.3 cm.
(4)年平均增长数约为6.323 cm.
(5)两相关变量的线性相关较好时,回归系数是年平均增长数的近似值.
正确理解回归系数反映增长率的数学意义.。