重庆市育才成功学校2015届中考数学一诊试卷含答案解析
- 格式:doc
- 大小:610.50 KB
- 文档页数:30
重庆市2015年初中毕业暨高中招生考试数学试卷(A 卷)(全卷共五个大题,满分150分,120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答。
2.作答前认真阅读答题卡的注意事项。
3.考试结束,由监考人员将试题和答题卡一并收回。
参考公式;抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴为直线2bx a =-一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.在—4,0,—1,3这四个数中,最大的数是( )A. —4B. 0C. —1D. 3 2.下列图形是轴对称图形的是( )3)A. B.C.D.4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b 5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况 B. 调查某中学九年级一班学生视力情况 C. 调查重庆市初中学生锻炼所用的时间情况 D. 调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。
若∠1=135°,则∠2的度数为( )A. 65°B. 55°C. 45°D. 35°6题图7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x ==9.如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20° 10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的 过程中,中途休息了一段时间,设他从山脚出发后所用的时 间为t(分钟),所走的路程为s(米),s与t之间的函数 关系如图所示,下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③A. 21B. 24C. 27D. 30 12.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边 BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x= 的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C.D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示9题图10题图12题图为 。
重庆市育才成功学校2015届中考数学一诊试题一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A.B.﹣2 C.0 D.﹣3.42.(﹣4)2的算术平方根是()A.4 B.±4C.2 D.±23.已知2a﹣b=﹣1,则4a﹣2b+1的值为()A.﹣1 B.0 C.1 D.34.一个正多边形的每个内角都是144°,则这个多边形的内角和为()A.1440°B.1296°C.1152°D.1584°5.分式方程的解为()A.1 B.2 C.3 D.46.下列说法正确的是()A.一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D.若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定7.将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为()A.30° B.45° C.50° D.60°8.如图,⊙O是△ABC的外接圆,已知∠B=62°,则∠CAO的度数是()A.28° B.30° C.31° D.62°9.已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<310.2015年3月8日,学校组织女老师到重庆南山看樱花.早上,大客车从学校出发到南山重庆植物园,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后大客车加快速度行驶,按时到达南山重庆植物园.参观结束后,大客车匀速返回.其中,x表示客车从学校出发后所用时间,y表示客车离学校的距离.下面能反映y与x的函数关系的大致图象是()A.B.C.D.11.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A.72 B.64 C.54 D.5012.如图所示,在平面坐标系中,AB⊥x轴,反比例函数y=(k1≠0)过B点,反比例函数y=(k2≠0)过C、D点,OC=BC,B(2,3),则D点的坐标为()A.(,)B.(,)C.(,)D.(,)二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡对应的横线上.13.中国政府宣布2015年的国防预算将在2014年的1300亿美元基础上增加约10%,达到1430亿美元,1430亿元用科学记数法表示为元.14.若a>3,则|6﹣2a|= (用含a的代数式表示).15.如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD= .16.如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.17.一个口袋中装有分别标有﹣2,﹣,1,2,3五个数的完全相同的小球,搅匀后从中摸出一个小球,将小球上的数记为a,则使得关于x的不等式组有解且关于x 的函数y=(a﹣1)x2+2x+a+1与x轴有且只有一个交点的概率是.18.如图所示,在矩形ABC中,AB=4,AD=4,E是线段AB的中点,F是线段BC上的动点,△BEF 沿直线EF翻折到△B′EF,连结DB′,B′C.当DB′最短时,则sin∠B′CF= .三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.20.随着我市减负提质“1+5”行动计划的全面实施,某校决定围绕在“科技、阅读、书法、演讲和英语”活动项目中,你最喜欢哪一项解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值: +÷(2﹣x﹣),其中x是一元一次方程=x+的解.22.如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.(1)求建筑物BC的高度;(2)求旗杆AB的高度.(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)23.2014年9月重庆双福育才中学正式开学,在开学前几个月,学校为了装修教室和机房,计划购置一批新的投影仪和一批电脑.经市场调查,购买1台投影仪比买3台电脑多3000元,购买4台投影仪和5台电脑共需8万元.(1)求购买一台投影仪和一台电脑各需多少元?(2)根据学校实际情况,需购买投影仪和电脑共500台,且电脑的台数不多于投影仪台数的4倍,则当购买电脑多少台时,学校需要的总费用最少?并求出最少的费用.24.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界是1.(1)直接判断函数y=(x>0)和y=﹣2x+1(﹣4<x≤2)是不是有界函数?若是有界函数,直接写出其边界值;(2)若一次函数y=kx+b(﹣2≤x≤1)的边界值是3,且这个函数的最大值是2,求这个一次函数的解析式;(3)将二次函数y=﹣x2(﹣1≤x≤m,m≥0)的图象向上平移m个单位,得到的函数的边界值是n,当m在什么范围时,满足≤n≤1.26.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B两点(点A在点B左侧),与y轴交于点C,且对称轴为x=1,点D为顶点,连接BD、CD,抛物线的对称轴与x轴交于点E.(1)求抛物线的解析式及点D的坐标;(2)若抛物线对称轴右侧上一点M,过点M作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M 的坐标;(3)连接BC交DE于点P,点Q是线段BD上的一个动点,自点D以个单位每秒的速度向终点B运动,连接PQ,将△DPQ沿PQ翻折,点D的对应点为D′,设Q点的运动时间为t(0≤t≤)秒,求使得△D'PQ与△PQB重叠部分的面积为△DPQ面积的时对应的t值.2015年重庆市育才成功学校中考数学一诊试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A.B.﹣2 C.0 D.﹣3.4【考点】有理数.【分析】根据小于0的分数是负分数,可得答案.【解答】解:﹣3.4是负分数,故选:D.【点评】本题考查的是有理数的认识,掌握有理数的分类是解题的关键,负分数是小于0的分数.2.(﹣4)2的算术平方根是()A.4 B.±4C.2 D.±2【考点】算术平方根.【分析】首先计算(﹣4)2=16,再根据算术平方根的定义进一步计算即可求出16的算术平方根.【解答】解:∵(﹣4)2=16,所以16的算术平方根是4.故选A.【点评】此题考查了乘方运算和算术平方根的定义,比较简单.3.已知2a﹣b=﹣1,则4a﹣2b+1的值为()A.﹣1 B.0 C.1 D.3【考点】代数式求值.【专题】整体思想.【分析】4a﹣2b+1可以变形为:2(2a﹣b)+1,把已知的式子代入即可求解.【解答】解:4a﹣2b+1=2(2a﹣b)+1=﹣2+1=﹣1.故选A.【点评】本题考查了代数式的求值,正确把4a﹣2b+1可以变形为:2(2a﹣b)+1是解题的关键.4.一个正多边形的每个内角都是144°,则这个多边形的内角和为()A.1440°B.1296°C.1152°D.1584°【考点】多边形内角与外角.【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的内角和计算公式得出结果即可.【解答】解:设这个正多边形是正n边形,根据题意得:(n﹣2)×180°÷n=144°,解得:n=10.则内角和是:(10﹣2)×180=1440°.故选:A.【点评】本题主要考查了正多边形的内角,在解题时要根据正多边形的内角公式列出式子是本题的关键.5.分式方程的解为()A.1 B.2 C.3 D.4【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.故选D【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.下列说法正确的是()A.一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D.若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定【考点】概率的意义;全面调查与抽样调查;中位数;众数;方差.【分析】根据概率的意义,可判断A;根据调查方式,可判断B;根据众数、中位数的定义,可判断C;根据方差越小越稳定,可判断D.【解答】解:A、一个游戏的中奖概率是,可能会中奖、可能不中奖,故A错误;B、为了解全国中学生的心理健康情况,应该采用抽样调查,故B错误;C、一组数据 8,8,7,10,6,8,9 的众数和中位数都是8,故C正确;D、若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则甲组数据比乙组数据稳定,故C错误;故选:C.【点评】本题考查了概率的意义,概率表示事件发生可能性的大小,而不是一定发生,注意方差越小越稳定.7.将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为()A.30° B.45° C.50° D.60°【考点】平行线的性质.【专题】计算题.【分析】根据平行线的性质得∠2=∠3,再根据互余得到∠3=60°,所以∠2=60°.【解答】解:∵a∥b,∴∠2=∠3,∵∠1+∠3=90°,∴∠3=90°﹣30°=60°,∴∠2=60°.故选:D.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8.如图,⊙O是△ABC的外接圆,已知∠B=62°,则∠CAO的度数是()A.28° B.30° C.31° D.62°【考点】圆周角定理.【专题】计算题.【分析】连接OC.根据圆周角定理求得∠AOC=2∠B,再根据等腰三角形的性质和三角形的内角和定理即可求解.【解答】解:连接OC.∴∠AOC=2∠B=124°.∵OA=OC,∴∠CAO=∠ACO==28°.故选A.【点评】此题主要是考查了圆周角定理、等腰三角形的性质和三角形的内角和定理.9.已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3【考点】解一元二次方程-公式法;估算无理数的大小.【专题】判别式法.【分析】先求出方程的解,再求出的范围,最后即可得出答案.【解答】解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选:C.【点评】本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.10.2015年3月8日,学校组织女老师到重庆南山看樱花.早上,大客车从学校出发到南山重庆植物园,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后大客车加快速度行驶,按时到达南山重庆植物园.参观结束后,大客车匀速返回.其中,x表示客车从学校出发后所用时间,y表示客车离学校的距离.下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据匀速行驶路程逐渐增加,堵车时路程不变,加速行驶时路程迅速增加,返回时路程逐渐减少,可得答案.【解答】解:A、匀速行驶路程逐渐增加,堵车时路程不变,加速行驶时路程迅速增加,返回时路程逐渐减少,故A符合题意;B、加速行驶时路程应迅速增加,故B不符合题意;C、参观时路程不变,故C不符合题意;D、返回时路程逐渐减少,故D错误;故选:A.【点评】本题考查了函数图象,理解题意是解题关键:匀速行驶路程逐渐增加,堵车时路程不变,加速行驶时路程迅速增加,返回时路程逐渐减少.11.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A.72 B.64 C.54 D.50【考点】规律型:图形的变化类.【分析】由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n个图形有9+5×(n﹣1)=5n+4个边长为1的小正方形,由此求得答案即可.【解答】解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n个图形边长为1的小正方形有9+5×(n﹣1)=5n+4个,所以第10个图形中边长为1的小正方形的个数为5×10+4=54个.故选:C.【点评】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.12.如图所示,在平面坐标系中,AB⊥x轴,反比例函数y=(k1≠0)过B点,反比例函数y=(k2≠0)过C、D点,OC=BC,B(2,3),则D点的坐标为()A.(,)B.(,)C.(,)D.(,)【考点】反比例函数图象上点的坐标特征.【分析】首先根据B点的坐标是(2,3),求出k1的值是6;然后分别求出OC、BC的值是多少,再根据OC=BC,求出k2的值是多少;最后根据D点是反比例函数y=(k2≠0)和线段OB所在的直线的交点,求出D点的坐标是多少即可.【解答】解:因为反比例函数y=(k1≠0)过B点,所以k1=2×3=6;0C=,BC=3﹣,因为OC=BC,所以=3﹣,所以4=9﹣3k2,解得;线段OB所在的直线的方程是:y=x,由,可得,即D点的坐标是:(,).故选:D.【点评】此题主要考查了反比例函数图象上点的坐标特征,解答此题的关键是求出k1、k2的值是多少,以及线段OB所在的直线的方程.二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡对应的横线上.13.中国政府宣布2015年的国防预算将在2014年的1300亿美元基础上增加约10%,达到1430亿美元,1430亿元用科学记数法表示为 1.43×1011元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1430亿有12位,所以可以确定n=12﹣1=11.【解答】解:1430亿=143 000 000 000=1.43×1011.故答案为:1.43×1011.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.14.若a>3,则|6﹣2a|= 2a﹣6 (用含a的代数式表示).【考点】绝对值.【分析】根据绝对值的定义解答即可.【解答】解:∵a>3,∴6﹣2a<0,∴|6﹣2a|=2a﹣6,故答案为:2a﹣6.【点评】此题考查了绝对值的代数意义,熟练掌握绝对值的代数意义是解本题的而关键.15.如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD= 1:20 .【考点】相似三角形的判定与性质.【分析】根据等高三角形面积的比等于底的比和相似三角形面积的比等于相似比的平方即可解出结果.【解答】解;∵S△BDE:S△DEC=1:4,∴BE:EC=1:4,∴BE:BC=1:5,∵DE∥AC,∴△BED∽△BCA,∴==,设S△BED=k,则S△DEC=4k,S△ABC=25k,∴S△ADC=20k,∴S△BDE:S△DCA=1:20.故答案为:1:20.【点评】本题考查了相似三角形的性质,相似三角形面积的比等于相似比的平方,注意各三角形面积之间的关系是解题的关键.16.如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.【考点】切线的判定与性质;角平分线的性质;等边三角形的判定与性质;圆周角定理;扇形面积的计算;锐角三角函数的定义.【专题】计算题.【分析】连接OT、OD、过O作OM⊥AD于M,得到矩形OMCT,求出OM,求出∠OAM,求出∠AOT,求出OT∥AC,得出PC是圆的切线,得出等边三角形AOD,求出∠AOD,求出∠DOT,求出∠DTC=∠CAT=30°,求出DC,求出梯形OTCD的面积和扇形OTD的面积.相减即可求出答案.【解答】解:连接OT、OD、DT,过O作OM⊥AD于M,∵OA=OT,AT平分∠BAC,∴∠OTA=∠OAT,∠BAT=∠CAT,∴∠OTA=∠CAT,∴OT∥AC,∵PC⊥AC,∴OT⊥PC,∵OT为半径,∴PC是⊙O的切线,∵OM⊥AC,AC⊥PC,OT⊥PC,∴∠OMC=∠MCT=∠OTC=90°,∴四边形OMCT是矩形,∴OM=TC=,∵OA=2,∴sin∠OAM=,∴∠OAM=60°,∴∠AOM=30°∵AC∥OT,∴∠AOT=180°﹣∠OAM=120°,∵∠OAM=60°,OA=OD,∴△OAD是等边三角形,∴∠AOD=60°,∴∠TOD=120°﹣60°=60°,∵PC切⊙O于T,∴∠DTC=∠CAT=∠BAC=30°,∴tan30°==,∴DC=1,∴阴影部分的面积是S梯形OTCD﹣S扇形OTD=×(2+1)×﹣=.故答案为:.【点评】本题考查了切线的性质和判定,解直角三角形,矩形的性质和判定,勾股定理,扇形的面积,梯形的性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,本题综合性比较强,有一定的难度.17.一个口袋中装有分别标有﹣2,﹣,1,2,3五个数的完全相同的小球,搅匀后从中摸出一个小球,将小球上的数记为a,则使得关于x的不等式组有解且关于x的函数y=(a﹣1)x2+2x+a+1与x轴有且只有一个交点的概率是.【考点】概率公式;解一元一次不等式组;抛物线与x轴的交点.【分析】由关于x的不等式组有解,可得a≤1,由关于x的函数y=(a﹣1)x2+2x+a+1与x轴有且只有一个交点,可得a=±2,继而利用概率公式即可求得答案.【解答】解:,由①得:x≥3a+2,由②得:x≤2a+3,∴当3a+2≤2a+3,即a≤1时,关于x的不等式组有解;∵y=(a﹣1)x2+2x+a+1与x轴有且只有一个交点,∴△=(2)2﹣4(a﹣1)(a+1)=16﹣4a2=0,解得:a=±2,∴使得关于x的不等式组有解且关于x的函数y=(a﹣1)x2+2x+a+1与x轴有且只有一个交点的是:﹣2;∴使得关于x的不等式组有解且关于x的函数y=(a﹣1)x2+2x+a+1与x轴有且只有一个交点的概率是:.故答案为:.【点评】此题考查了概率公式的应用以及不等式组的解集与二次函数的性质.用到的知识点为:概率=所求情况数与总情况数之比.18.如图所示,在矩形ABC中,AB=4,AD=4,E是线段AB的中点,F是线段BC上的动点,△BEF沿直线EF翻折到△B′EF,连结DB′,B′C.当DB′最短时,则sin∠B′CF=.【考点】翻折变换(折叠问题).【分析】当DB′最短时,E、B′、D共线,此时DE=6,DB′=4,作B′M⊥BC垂足为M,易知:B′M=,CM=,所以CB′=,sinB′CF=.【解答】解:由折叠可知:BE=B′E∴B′在以E为圆心,BE为半径的圆上,如图所示,此时DB′最短,由勾股定理得:ED=6,∵B′M⊥AB,B′N⊥BC,∴∠B′ME=∠B′NF=90°,∵∠MB′E+∠EB′N=∠NB′F+∠EB′N=90°∴∠MB′E=∠NB′F,∴△B′ME∽△DAE∴∴B′M=,EM=∴BN=B′M=,B′N=BM=BE+EM=,CN=BC﹣BN=,由勾股定理得:B′C=,∴sinB′CF=.故答案为:.【点评】本题主要考查了线段最短、勾股定理、锐角三角函数和三角形的相似的判定和性质,此题的难点是发现何时线段DB′最短,比较抽象,有一定难度.三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.【考点】全等三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE即可.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.20.随着我市减负提质“1+5”行动计划的全面实施,某校决定围绕在“科技、阅读、书法、演讲和英语”活动项目中,你最喜欢哪一项解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值: +÷(2﹣x﹣),其中x是一元一次方程=x+的解.【考点】分式的化简求值;解一元一次方程.【专题】计算题.【分析】原式第二项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,求出方程的解得到x的值,代入原式计算即可得到结果.【解答】解:原式=+÷=﹣•=﹣=,方程去分母得:3x﹣2=2x+1,解得:x=3,∴当x﹦3时,原式﹦.【点评】此题考查了分式的化简求值,以及解一元一次方程,熟练掌握运算法则是解本题的关键.22.如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.(1)求建筑物BC的高度;(2)求旗杆AB的高度.(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】(1)先过点E作ED⊥BC于D,由已知底部B的仰角为45°得BD=ED=FC=12,DC=EF=1.6,从而求出BC.(2)由已知由E点观测到旗杆顶部A的仰角为52°可求出AD,则AB=AD﹣BD.【解答】解:(1)过点E作ED⊥BC于D,根据题意得:EF⊥FC,ED∥FC,∴四边形CDEF是矩形,已知底部B的仰角为45°即∠BED=45°,∴∠EBD=45°,∴BD=ED=FC=12,∴BC=BD+DC=BD+EF=12+1.6=13.6,答:建筑物BC的高度为13.6m.(2)已知由E点观测到旗杆顶部A的仰角为52°,即∠AED=52°,∴AD=ED•tan52°≈12×1.28≈15.4,∴AB=AD﹣BD=15.4﹣12=3.4.答:旗杆AB的高度约为3.4m.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.23.2014年9月重庆双福育才中学正式开学,在开学前几个月,学校为了装修教室和机房,计划购置一批新的投影仪和一批电脑.经市场调查,购买1台投影仪比买3台电脑多3000元,购买4台投影仪和5台电脑共需8万元.(1)求购买一台投影仪和一台电脑各需多少元?(2)根据学校实际情况,需购买投影仪和电脑共500台,且电脑的台数不多于投影仪台数的4倍,则当购买电脑多少台时,学校需要的总费用最少?并求出最少的费用.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设投影仪每台x元,电脑每台y元,根据条件建立方程组求出其解即可;(2)设电脑为a台,则投影仪为(500﹣a)台,根据电脑的台数不多于投影仪台数的4倍,列出一次函数分析解答即可.【解答】解:(1)设购买一台笔记本电脑需x元,购买1台投影仪需y元,所以得到方程组:,解得:x=4000,y=15000,所以购买买一台笔记本电脑需4000元,购买1台投影仪需15000元;(2)设电脑为a台,则投影仪为(500﹣a)台,总费用为W元;∴a≤4(500﹣a),则:a≤400,W=4000a+15000(500﹣a)=﹣11000a+7500000∵﹣11000<0∴W随a的增大而减小;∴当a=400时,W的最小值=3100000=310万元;答:当购买电脑400台时,总费用最少为310万元.【点评】本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一次函数的解析式的运用,一次函数的性质的运用,一元一次不等式的运用,解答时求出函数的解析式是关键.24.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.【考点】翻折变换(折叠问题);全等三角形的判定与性质;平行线分线段成比例.【专题】证明题.【分析】(1)根据翻折的性质和SAS证明△ABE与△ACF全等,利用全等三角形的性质得出∠AGB=90°证明即可;(2)作IC的中点M,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可.【解答】证明:(1)∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,∴AD=BD=CD,∠ACB=45°,∵在△ADC中,AD=DC,DE⊥AC,∴AE=CE,∵△CDE沿直线BC翻折到△C DF,∴△CDE≌△CDF,∴CF=CE,∠DCF=∠ACB=45°,∴CF=AE,∠ACF=∠DCF+∠ACB=90°,在△ABE与△ACF中,,∴△ABE≌△ACF(SAS),∴∠ABE=∠FAC,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE;(2)作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°∴四边形DECF是正方形,∴EC∥DF,EC=DF,∴∠EAH=∠HFD,AE=DF,在△AEH与△FDH中,∴△AEH≌△FDH(AAS),∴EH=DH,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE,∵M是IC的中点,E是AC的中点,∴EM∥AI,∴,∴DI=IM,∴CD=DI+IM+MC=3DI,∴AD=3DI.【点评】此题考查翻折问题,关键是利用SAS和AAS证明三角形全等,再利用全等三角形的性质进行分析解答.五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界是1.(1)直接判断函数y=(x>0)和y=﹣2x+1(﹣4<x≤2)是不是有界函数?若是有界函数,直接写出其边界值;(2)若一次函数y=kx+b(﹣2≤x≤1)的边界值是3,且这个函数的最大值是2,求这个一次函数的解析式;(3)将二次函数y=﹣x2(﹣1≤x≤m,m≥0)的图象向上平移m个单位,得到的函数的边界值是n,当m在什么范围时,满足≤n≤1.【考点】二次函数综合题.【分析】(1)在x的取值范围内,y=(x>0)的y无最大值,不是有界函数;y=﹣2x+1(﹣4<x≤2)的边界值为9,是有界函数;(2)当k>0时,根据有界函数的定义确定函数过(1,2),(﹣2,﹣3)两点;当k<0时,根据有界函数的定义确定函数过(﹣2,2),(1,﹣3)两点;利用待定系数法解答即可;(3)先设m>1,函数向上平移m个单位后,x=0时,y=m,此时边界值t≥1,与题意不符,故m≤1,判断出函数y=﹣x2所过的点,结合平移,求出0≤m≤或≤m≤1.【解答】解:(1)y=(x>0)不是有界函数;y=﹣2x+1(﹣4<x≤2)是有界函数,边界值为9.(2)当k>0时,由有界函数的定义得函数过(1,2),(﹣2,﹣3)两点,设y=kx+b,将(1,2)(﹣2,﹣3)代入上式得,解得:,所以:y=x+,当k<0时,由有界函数的定义得函数过(﹣2,2),(1,﹣3)两点,设y=kx+b,将(﹣2,2),(1,﹣3)代入上式得,即得,函数解析式为y=﹣x﹣.(3)若m>1,函数向上平移m个单位后,x=0时,y=m,此时边界值t≥1,与题意不符,故m≤1,函数y=﹣x2过点(﹣1,﹣1),(0,0);向上平移m个单位后,平移图象经过(﹣1,﹣1+m);(0,m).∴﹣1≤﹣1+m≤﹣或≤m≤1,即0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题,结合新定义,弄清函数边界值的定义,同时要熟悉平移变换的性质.26.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B两点(点A在点B左侧),与y轴交于点C,且对称轴为x=1,点D为顶点,连接BD、CD,抛物线的对称轴与x轴交于点E.(1)求抛物线的解析式及点D的坐标;(2)若抛物线对称轴右侧上一点M,过点M作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M 的坐标;(3)连接BC交DE于点P,点Q是线段BD上的一个动点,自点D以个单位每秒的速度向终点B运动,连接PQ,将△DPQ沿PQ翻折,点D的对应点为D′,设Q点的运动时间为t(0≤t≤)秒,求使得△D'PQ与△PQB重叠部分的面积为△DPQ面积的时对应的t值.【考点】二次函数综合题.【分析】(1)根据A、B关于对称轴为x=1对称,且A(﹣1,0),得到B(3,0),所以﹣1,3是方程ax2+bx﹣3=0的根,得到﹣1+3=,求出a=1,b=﹣2,所以抛物线y=x2﹣2x﹣3,当x=1时,y=﹣4,即可确定D(1,﹣4).(2)根据点B,C的坐标判断△BCO为等腰直角三角形,得到∠OCB=45°,再求出BC,CD,BD的长度,利用勾股定理逆定理判定BD⊥CD,利用OC∥DE,所以∠OCB+∠BCD+∠CDE=180°,得到∠CDE=45°,再证明∠OCM=∠CDB,延长CM交x轴于点F,则R t△OCF∽△CDB,得到,得到OF=9,确定F(9,0),得到直线CF:y=,和抛物线联立,解方程组即可确定M点的坐标.(3)分两种情况作答,画出图形,利用解三角形,即可解答.【解答】解:∵A、B关于对称轴为x=1对称,且A(﹣1,0),∴B(3,0),∴﹣1,3是方程ax2+bx﹣3=0的根,∴﹣1+3=,解得:a=1,b=﹣2,∴抛物线y=x2﹣2x﹣3,当x=1时,y=﹣4,∴D(1,﹣4).(2)如图①,。
2015年重庆市中考数学模拟试卷(一)一、选择题(本大题12个小题,每小题4分,共48分)在每个小题下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号内.1.(4分)四个数﹣1,0,,中比零小的数为()A.﹣1 B.0 C.D.2.(4分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.43.(4分)下列计算正确的是()A.a+a=a2B.a•a2=a3C.(a2)3=a5D.a2(a+1)=a3+14.(4分)三根长度分别为:3cm,7cm,4cm的木棒能围成三角形的事件是()A.必然事件B.不可能事件C.不确定事件D.以上说法都不对5.(4分)每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况6.(4分)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.87.(4分)如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140° D.170°8.(4分)已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+19.(4分)某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v (米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图象是()A.B.C.D.10.(4分)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156 B.157 C.158 D.15911.(4分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A.3 B.2 C.2 D.212.(4分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积为()A.2 B.1 C.8 D.16二、填空题(共6小题,每小题4分,满分24分)在每小题中,请将答案直接填在横线上.13.(4分)计算:|3﹣2|+(π﹣2014)0+()﹣1=.14.(4分)某校广播体操比赛,六位评委对九年(2)班的打分如下(单位:分):9.5,9.3,9.1,9.5,9.4,9.3.若规定去掉一个最高分和一个最低分,余下分数的平均值作为班级的最后得分,则九年(2)班的最后得分是分.(结果精确到0.1分)15.(4分)如图,在梯形ABCD中,∠C=90°,AD=CD=4,BC=8,以A为圆心,在梯形内画出一个最大的扇形(即图中影阴部分)的面积是.(结果保留π)16.(4分)关于x的方程=1的解是负数,则m的取值范围是.17.(4分)如图是4×3正方形网格,图中已涂灰四个单位正方形,小林分别在A、B两区的剩下四个白色正方形中任取1个涂灰,则小林涂灰后的正方形网格恰好是一个轴对称图形的概率是.18.(4分)如图所示,若四边形ABCD、四边形GFED都是正方形,当AD=4,DG=时,则CH的长为.三、解答题(本大题2个小题,每题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.(7分)解方程:2﹣=.20.(7分)已知:如图,在△ABC中,∠C=90°,点D、E分别在边AB、AC上,DE∥BC,DE=3,BC=9(1)求的值;(2)若BD=10,求sin∠A的值.22.(10分)了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人一周零花钱数的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?23.(10分)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.24.(10分)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E 为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.26.(12分)抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.(1)求点B及点D的坐标.(2)连结BD,CD,抛物线的对称轴与x轴交于点E.①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.四、解答题(本大题4个小题,每题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:,其中x是方程x2+2x+1=0的解.五、解答题(本大题2个小题,每题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.(12分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?2015年重庆市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号内.1.(4分)四个数﹣1,0,,中比零小的数为()A.﹣1 B.0 C.D.【分析】根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.【解答】解:∵在﹣1,0,,这四个数中,1,,是正数,都大于0;﹣1是负数,小于0,∴在﹣1,0,,这四个数中比0小的数是﹣1,故选:A.2.(4分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.4【分析】根据轴对称图形及对称轴的定义求解.【解答】解:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;∴对称轴的条数为2的图形的个数是3;故选:C.3.(4分)下列计算正确的是()A.a+a=a2B.a•a2=a3C.(a2)3=a5D.a2(a+1)=a3+1【分析】根据同底数幂的乘法、幂的乘方和单项式乘以多项式的运算法则计算后利用排除法求解.【解答】解:A、a+a=a2,很明显错误,应该为a+a=2a,故本选项错误;B、a•a2=a3,利用同底数幂的乘法,故本选项正确;C、应为(a2)3=a6,故本选项错误;D、a2(a+1)=a3+a2,故本选项错误.故选:B.4.(4分)三根长度分别为:3cm,7cm,4cm的木棒能围成三角形的事件是()A.必然事件B.不可能事件C.不确定事件D.以上说法都不对【分析】三角形的三条边必须满足:任意两边之和大于第三边.因而三条线段能构成三角形的边的条件是:任意两数的和大于第三个数.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解:∵3+4=7,∴根据三角形的三边关系,知三根木棒不能围成三角形,则是不可能事件.故选:B.5.(4分)每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.【解答】解:样本是所抽取的50名学生对“世界读书日”的知晓情况.故选:B.6.(4分)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.8【分析】根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.【解答】解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.7.(4分)如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140° D.170°【分析】延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,延长∠1的边与直线b相交,∵a∥b,∴∠4=180°﹣∠1=180°﹣130°=50°,由三角形的外角性质,∠3=∠2+∠4=90°+50°=140°.故选:C.8.(4分)已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+1【分析】根据和减去一个加数等于另一个加数,计算即可得到结果.【解答】解:根据题意得:(3x2+4x﹣1)﹣(3x2+9x)=3x2+4x﹣1﹣3x2﹣9x=﹣5x ﹣1,故选:A.9.(4分)某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v (米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图象是()A.B.C.D.【分析】首先判断出函数的横、纵坐标所表示的意义,然后再根据题意进行解答.【解答】解:纵坐标表示的是速度、横坐标表示的是时间;由题意知:小明的走路去学校应分为三个阶段:①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D 选项;②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B 选项;故选:A.10.(4分)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156 B.157 C.158 D.159【分析】根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.【解答】方法一:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.方法二:n=1,s=7;n=2,s=13;n=3,s=21,设s=an2+bn+c,∴,∴,∴s=n2+3n+3,把n=11代入,s=157.方法三:,,,,,,,,,.11.(4分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A.3 B.2 C.2 D.2【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=3,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,∵∠ENG=∠BNM,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=,∴NG=,∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣=,∴BF=2BN=5,∴BC===2.故选B.补充方法:连接EF.易证△EFD≌△EFG,可得FG=DF=2,BG=AB=DC=3,可得BF=5,再利用勾股定理求BC比较简单.12.(4分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积为()A.2 B.1 C.8 D.16【分析】先利用配方法得到抛物线y=x2﹣2x的顶点坐标为(1,﹣1),则抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2﹣2x,然后利用阴影部分的面积等于三角形面积进行计算.【解答】解:y=x2﹣2x=(x﹣1)2﹣1,即平移后抛物线的顶点坐标为(1,﹣1),所以抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2﹣2x,所以对称轴与两抛物线所围成的阴影部分的面积=×1×2=1.故选:B.二、填空题(共6小题,每小题4分,满分24分)在每小题中,请将答案直接填在横线上.13.(4分)计算:|3﹣2|+(π﹣2014)0+()﹣1=2.【分析】本题涉及零指数幂、绝对值、负指数幂等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2﹣3+1+=2﹣3+1+=2﹣3+1+2=2.故答案为:2.14.(4分)某校广播体操比赛,六位评委对九年(2)班的打分如下(单位:分):9.5,9.3,9.1,9.5,9.4,9.3.若规定去掉一个最高分和一个最低分,余下分数的平均值作为班级的最后得分,则九年(2)班的最后得分是9.4分.(结果精确到0.1分)【分析】在比赛中一般去掉一个最低分去掉一个最高分减小极端值对选手的影响,使选手分数更公平.此题用平均数公式计算即可.【解答】解:该班的最后得分==9.4.故答案为:9.415.(4分)如图,在梯形ABCD中,∠C=90°,AD=CD=4,BC=8,以A为圆心,在梯形内画出一个最大的扇形(即图中影阴部分)的面积是6π.(结果保留π)【分析】要求以A为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积,需过点A作AE⊥BC于点E,根据切线的性质求得AE是扇形的半径,再利用直角梯形的性质和直角三角形的性质求得扇形的半径和圆心角度数,再利用扇形面积公式S=解答.【解答】解:过点A作AE⊥BC于点E,∵AD∥BC,∠C=90°,∴四边形ADCE是矩形,∴AD=CE,CD=AE.又∵AD=CD=4,BC=8,∴AE=CE=4,BE=BC﹣CE=8﹣4=4,∴AE=BE,∴∠EAB=45°,∴∠DAB=135°,==6π.∴S阴影故答案是:6π.16.(4分)关于x的方程=1的解是负数,则m的取值范围是m<2且m ≠0.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是负数”建立不等式求m的取值范围.【解答】解:方程去分母得m=x+2即x=m﹣2∵分母x+2≠0∴x≠﹣2∴m﹣2≠﹣2∴m≠0又∵x<0∴m﹣2<0解得m<2,则m的取值范围是m<2且m≠0.17.(4分)如图是4×3正方形网格,图中已涂灰四个单位正方形,小林分别在A、B两区的剩下四个白色正方形中任取1个涂灰,则小林涂灰后的正方形网格恰好是一个轴对称图形的概率是.【分析】先把空白区域分别标上数字,再根据题意列出表格,求出涂灰后的正方形网格恰好是一个轴对称图形的情况数,再除以总的情况数,即可得出答案.【解答】解:把空白区域分别标上数字,列表如下:共有16种情况,涂灰后的正方形网格恰好是一个轴对称图形的情况有:(2,1)(5,4)(6,3)(8,7)四种情况,则小林涂灰后的正方形网格恰好是一个轴对称图形的概率是=;故答案为:.18.(4分)如图所示,若四边形ABCD、四边形GFED都是正方形,当AD=4,DG=时,则CH的长为.【分析】作EN⊥CD于N,如图,先根据正方形的性质得AD=CD=4,DG=DE=,∠GDF=∠EDF,∠ADC=90°,则∠EDC=45°,再证明△ADG≌△CDE得到∠1=∠2,接着在等腰Rt△DEN中计算出DN=EN=DE=1,所以CN=CD﹣DN=3,CE=,然后证明△CEN∽△CMD,利用相似比可计算出DM=,CM=,则AM=AD ﹣DM=,最后证明△AMH∽△CMD,利用相似比可计算出HM=,再把CM 与HM相加即可得到CH的长.【解答】解:作EN⊥CD于N,如图,∵四边形ABCD、四边形GFED都是正方形,∴AD=CD=4,DG=DE=,∠GDF=∠EDF,∠ADC=90°,∴∠EDC=45°,在△ADG和△CDE中,,∴△ADG≌△CDE,∴∠1=∠2,在Rt△DEN中,∵∠EDN=45°,∴DN=EN=DE=×=1,∴CN=CD﹣DN=3,∴CE===,∵EN∥DM,∴△CEN∽△CMD,∴==,即==,∴DM=,CM=,∴AM=AD﹣DM=4﹣=,∵∠1=∠2,∠AMH=∠CMD,∴△AMH∽△CMD,∴=,即=,∴HM=,∴CH=CM+HM=+=.故答案为.三、解答题(本大题2个小题,每题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.(7分)解方程:2﹣=.【分析】先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:去分母得,12﹣2(2x+1)=3(1+x),去括号得,12﹣4x﹣2=3+3x,移项得,﹣4x﹣3x=3﹣12+2,合并同类项得,﹣7x=﹣7,系数化为1得,x=1.20.(7分)已知:如图,在△ABC中,∠C=90°,点D、E分别在边AB、AC上,DE∥BC,DE=3,BC=9(1)求的值;(2)若BD=10,求sin∠A的值.【分析】(1)由平行线可得△ADE∽△ABC,进而由对应边成比例即可得出的值;(2)根据(1)=得出=,再根据BD=10,DE=3,BC=9,得出AD 的值,即可求出AB的值,从而得出sin∠A的值.【解答】解:(1)∵DE∥BC,∴△ADE∽△ABC,即=,又∵DE=3,BC=9∴==;(2)根据(1)=得:=,∵BD=10,DE=3,BC=9,∴=,∴AD=5,∴AB=15,∴sin∠A===.22.(10分)了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人一周零花钱数的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?【分析】(1)零用钱是40元的是10人,占25%,据此即可求得总人数,总人数乘以所占的比例即可求得零用钱是20元的人数,则统计图可以作出;(2)求出零用钱是50元的所占的比例,乘以360度即可求得对应的扇形的圆心角,根据中位数的定义可以求得中位数;(3)首先求得抽取的学生的零用钱的平均数,平均数的一半乘以1000即可求解.【解答】解:(1)随机调查的学生数是:10÷25%=40(人),零花钱是20元的人数是:40×15%=6(人).(2)50元的所占的比例是:=,则圆心角36°,中位数是30元;(3)学生的零用钱是:=33(元),则全校学生共捐款×33×1000=16500元.23.(10分)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.【分析】(1)先设苹果进价为每千克x元,根据两超市将苹果全部售完,其中甲超市获利2100元列出方程,求出x的值,再进行检验即可求出答案;(2)根据(1)求出每个超市苹果总量,再根据大、小苹果售价分别为10元和5.5元,求出乙超市获利,再与甲超市获利2100元相比较即可.【解答】解:(1)设苹果进价为每千克x元,根据题意得:400x+10%x(﹣400)=2100,解得:x=5,经检验x=5是原方程的解,答:苹果进价为每千克5元.(2)由(1)得,每个超市苹果总量为:=600(千克),大、小苹果售价分别为10元和5.5元,则乙超市获利600×(﹣5)=1650(元),∵甲超市获利2100元,∵2100>1650,∴将苹果按大小分类包装销售,更合算.24.(10分)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E 为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.【分析】(1)根据等腰直角△ABC,求出CD是边AB的垂直平分线,求出CD平分∠ACB,根据三角形的外角性质求出∠BDE=∠CDE=60°即可.(2)连接MC,可得△MDC是等边三角形,可求证∠EMC=∠ADC.再证明△ADC ≌△EMC即可.【解答】证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∠ABD=∠ABC﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=15°+45°=60°,∴∠BDE=∠DBA+∠BAD=60°;∴∠CDE=∠BDE,即DE平分∠BDC.(2)如图,连接MC.∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,即CM=CD.∠DMC=∠MDC=60°,∵∠ADC+∠MDC=180°,∠DMC+∠EMC=180°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM.在△ADC与△EMC中,,∴△ADC≌△EMC(AAS),∴ME=AD=BD.26.(12分)抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.(1)求点B及点D的坐标.(2)连结BD,CD,抛物线的对称轴与x轴交于点E.①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.【分析】(1)解方程(x﹣3)(x+1)=0,求出x=3或﹣1,根据抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),确定点B的坐标为(3,0);将y=(x﹣3)(x+1)配方,写成顶点式为y=x2﹣2x﹣3=(x﹣1)2﹣4,即可确定顶点D的坐标;(2)①根据抛物线y=(x﹣3)(x+1),得到点C、点E的坐标.连接BC,过点C作CH⊥DE于H,由勾股定理得出CD=,CB=3,证明△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.根据两角对应相等的两三角形相似证明△BCD∽△QOC,则==,得出Q的坐标(﹣9,0),运用待定系数法求出直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6,解方程组,即可求出点P的坐标;②分两种情况进行讨论:(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN ∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(Ⅱ)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点M,都有∠MCN<45°,所以点M不存在.【解答】解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x﹣3)(x+1)=0,解得x=3或﹣1,∴点B的坐标为(3,0).∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4);(2)①如右图.∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,∴C点坐标为(0,﹣3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=,CB=3,△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴==,∴OQ=3OC=9,即Q(﹣9,0).∴直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6.由方程组,解得.∴点P的坐标为(,﹣);②(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y 轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN+NF=3a,∴MG=FG=a,∴CG=FG﹣FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=a,∴MG=FG=a,∴CG=FG+FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=5,∴M(5,12);(Ⅱ)当点M在对称轴左侧时.∵∠CMN=∠BDE<45°,∴∠MCN>45°,而抛物线左侧任意一点M,都有∠MCN<45°,∴点M不存在.综上可知,点M坐标为(,﹣)或(5,12).四、解答题(本大题4个小题,每题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:,其中x是方程x2+2x+1=0的解.【分析】首先利用分式的混合运算法则化简分式进而解一元二次方程x2+2x+1=0,得出x的值,求出分式的值即可.【解答】解:,=(﹣)×,=×,=x﹣2,∵x是方程x2+2x+1=0的解,∴(x+1)2=0,解得:x1=x2=﹣1,将x=﹣1代入原式=x﹣2得:x﹣2=﹣1﹣2=﹣3.五、解答题(本大题2个小题,每题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.(12分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?【分析】(1)①已知两对值代入T中计算求出a与b的值;②根据题中新定义化简已知不等式,根据不等式组恰好有3个整数解,求出p 的范围即可;(2)由T(x,y)=T(y,x)列出关系式,整理后即可确定出a与b的关系式.【解答】解:(1)①根据题意得:T(1,﹣1)==﹣2,即a﹣b=﹣2;T=(4,2)==1,即2a+b=5,解得:a=1,b=3;②根据题意得:,由①得:m≥﹣;由②得:m<,∴不等式组的解集为﹣≤m <,∵不等式组恰好有3个整数解,即m=0,1,2, ∴2<≤3,解得:﹣2≤p <﹣;(2)由T (x ,y )=T (y ,x ),得到=,整理得:(x 2﹣y 2)(2b ﹣a )=0,∵T (x ,y )=T (y ,x )对任意实数x ,y 都成立, ∴2b ﹣a=0,即a=2b .赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:a+bbx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
重庆市育才成功学校初 2012级初三(下)第一次诊断性考试数学试题(满分150分,时间120分钟)、选择题: (本大题共10小题,每小题4分,共40分.在每个小题给出的四个选项 中,只有一项是符合题目要求的)B •对我市食品合格情况的调查C .对重庆电视台《天天 630》收视率的调查D •对你所在的班级同学的身高情况的调查.1. F 列各数中最大的数是(2. F 列运算正确的是(A . a 3 a 2 a 6 /3、X 6 3. C . X 5 X 5X 10(ab)5(ab)23. 3a bF 列图形中,中心对称图形有(© OC . 2个D . 1个4. 函数X 的取值范围是C .5. 如图,直线 11 H 12, / 1=40。
,/ 2=75 °, A . 55 ° B . 60 °6. C . 65 °D . 70 °F 面调查中,适合采用全面调查的事件是(A •对全国中学生心理健康现状的调查3D.3等于(则/ 117.如图,△ ABC 是O O 的内接三角形,若 ABC 70 ,贝U AOC 的度数等于(&如图,按图中堆放规律,若依次由上向下称之为第一层,第二层,第三层, …,第n 层,设最底层的正方体的个数为 a n .则a n 用含n 的代数式表示为()9.如图,一艘旅游船从码头A 驶向景点C ,途经景点B 、D .它先从码头A 沿以D 为圆心的弧AB 行驶到景点B ,且然后从B 沿直径BC 行驶到O D 上的景点C .假如旅游船在 D 的距离随时间变化的图2A . 140B . 130C . 120D . 110A . 2n 1C .D .3n 1A . 2个B . 3个C . 4个D . 1个&題图整个行驶过程中保持匀速,则下面各图中能反映旅游船与景点10.如图所示的二次函数 yax bx c的图象中,刘星同学观察得出了下面四条信息:(1) b2 4ac 0 ; (2) c>1 ; (3) 2a-b<0; (4) a+b+c<0 .你认为其中正确的有( )第10题图二、填空题:(本大题共6个小题,每小题4分,共24分)11.某市“十二五”经济发展规划已经出炉,到2015年,经济总量将达到3200亿元.将数据3200亿元用科学记数法表示为 _______________ 元.12 . △ ABC 与厶DEF相似且对应中线的比为3:5,则△ ABC与厶DEF 对应面积的比为________ .13•若O 01的半径为7 0 02的半径为3, 0102=6,则O 01与O 02的位置关系为 ___________ . 14•化简:(3a 2b)(2b 3a) _____________________ (2a b)(a b).15•有5张正面分别标有数字0, 1, 2, 3的不透明卡片,它们除数字不同外其余都相同•现将它们背面朝上,洗匀后任选两张,将这两张卡片上的数分别记为m、n的值,记点P m, n则点P在由直线y 3, y x 1, y轴所构成区域内(不含边界)的概率为______ .16 •育才中学准备搞一次大型的文艺表演•大会的组织者有这样一个变队列的设想:现有一个8排(每排人数一样)的一个矩形队列,然后平均..分成A、B两个队列,如果从 A 队列中抽调32人到B队列,这样A、B队列都可以形成一个正方形队列•那么,这个8排的矩形队列有___________ 人.三、解答题(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤)17.计算:(2亦5)0 3 ( 1)2011(丄)2旷2720.如图,已知点C 、E 、B 、F 在一条直线上, AC // FD , AC = FD , CE = FB .18.解分式方程:19•为建设平安重庆,政府拟在如图所示的 ABCD 地区建一个治安交巡警平台,为了快速出警,使其到 A 、B 两个小区的路程相等,到DA 、DC 两条公路的距离相等,请你找出符合条件的P 点,并画出平台出警的路线图。
2015年重庆市初中毕业暨高中招生考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a ,4ac-b24a),对称轴为x=-b2a.第Ⅰ卷(选择题,共48分)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.在-4,0,-1,3这四个数中,最大的数是( )A.-4B.0C.-1D.32.下列图形是轴对称图形的是( )3.化简√12的结果是( )A.4√3B.2√3C.3√2D.2√64.计算(a2b)3的结果是( )A.a6b3B.a2b3C.a5b3D.a6b5.下列调查中,最适合用普查方式的是( )A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为( )A.65°B.55°C.45°D.35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B.218C.216D.2098.一元二次方程x2-2x=0的根是( )A.x1=0,x2=-2B.x1=1,x2=2C.x1=1,x2=-2D.x1=0,x2=29.如图,AB是☉O的直径,点C在☉O上,AE是☉O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( )A.40°B.50°C.60°D.20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是( )··A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,……,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.21B.24C.27D.3012.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐的图象经过A,B两点,则菱形ABCD的面积为( )标分别为3,1,反比例函数y=3xA.2B.4C.2√2D.4√2第Ⅱ卷(非选择题,共102分)二、填空题:(本大题6个小题,每小题4分,共24分)13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为.14.计算:20150-|2|= .15.已知△ABC∽△DEF,△ABC与△DEF的相似比为4∶1,则△ABC与△DEF对应边上的高之比为.16.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4√2.以A为圆心,AC长为半径作弧,交AB 于点D,则图中阴影部分的面积是.(结果保留π)的解, 17.从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是.不等式组{2x+3<4,3x-1>-11又在函数y=1的自变量取值范围内的概率是.2x2+2x18.如图,在矩形ABCD中,AB=4√6,AD=10,连结BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC'E'.当射线BE'和射线BC'都与线段AD相交时,设交点分别F,G.若△BFD为等腰三角形,则线段DG长为.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).19.解方程组{y=2x-4,①3x+y=1.②20.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线). 21.计算:(1)y(2x-y)+(x+y)2;(2)(y -1-8y+1)÷y 2-6y+9y 2+y.22.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有小微企业按年利润w(万元)的多少分为以下四个类型:A 类(w<10),B 类(10≤w<20),C 类(20≤w<30),D 类(w ≥30),该镇政府对辖区内所有的小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是 ,扇形统计图中B 类所对应扇形圆心角的度数为 度,请补全条形统计图;(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.23.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12 321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.24.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC 正前方有两艘渔船M,N,观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1∶0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1∶1.75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).25.如图1,在△ABC中,∠ACB=90°,∠BAC=60°.点E是∠BAC角平分线上一点.过点E作AE 的垂线,过点A作AB的垂线,两垂线交于点D,连结DB,点F是BD的中点.DH⊥AC,垂足为H,连结EF,HF.(1)如图1,若点H是AC的中点,AC=2√3,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连结CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.图1图226.如图1,在平面直角坐标系中,抛物线y=-√3x2+√3x+3√3交x轴于A,B两点(点A在点B的4左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE',FF'分别垂直于x轴,交抛物线于点E',F',交BC于点M,N,当ME'+NF'的值最大时,在y轴上找一点R,使|RF'-RE'|的值最大,请求出R点的坐标及|RF'-RE'|的最大值;(3)如图2,已知x轴上一点P(9,0),现以P为顶点,2√3为边长在x轴上方作等边三角形QPG,2使GP⊥x轴.现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止.记平移后的△QPG为△Q'P'G',设△Q'P'G'与△ADC的重叠部分面积为s,当点Q'到x轴的距离与点Q'到直线AW的距离相等时,求s的值.图1图2答案全解全析:一、选择题1.D3>0>-1>-4,所以最大的数是3,故选D.2.A A选项是轴对称图形,B、C、D选项都不是轴对称图形,故选A.3.B√12=√4×3=2√3,故选B.4.A(a2b)3=(a2)3·b3=a6b3,故选A.5.B A、C、D选项适合抽样调查,B选项适合普查,故选B.6.C因为AB∥CD,所以∠2=∠BGE,因为∠BGE=180°-∠1=45°,所以∠2=45°,故选C.7.C把五个数据从小到大排列为198,209,216,220,230,则中位数是216,故选C.8.D x2-2x=0,x(x-2)=0,解得x1=0,x2=2,故选D.∠AOC=40°,∴∠ADB=90°-∠B=50°,故选9.B∵AE是☉O的切线,∴∠BAE=90°,∵∠B=12B.10.C从题图可看出A选项正确;小明休息前爬山的平均速度为2 800=70米/分钟,休息后爬40山的平均速度为3 800-2 800=25米/分钟,所以小明休息前爬山的平均速度大于休息后爬山的100-60平均速度,B、D选项正确;从题图看出小明所走的总路程为3800米,所以C选项错误,故选C.11.B第①个图形中有2×3=6个小圆圈;第②个图形中有3×3=9个小圆圈;第③个图形中有3×4=12个小圆圈;……;第⑦个图形中有3×8=24个小圆圈,故选B.12.D由题意可得A(1,3),B(3,1),底边BC=AB=√(3-1)2+(1-3)2=2√2,菱形BC边上的高为3-1=2,所以菱形ABCD的面积是4√2,故选D.评析本题重点考查反比例函数的图象与性质,平面直角坐标系内线段长度的计算方法,试题新颖别致,属于中等难度题.二、填空题13.答案 3.7×104解析37000=3.7×104.14.答案-1解析20150-|2|=1-2=-1.15.答案4∶1解析两个相似三角形对应边上的高之比等于相似比,所以答案是4∶1.16.答案8-2π解析 在Rt △ABC 中,BC=AC=AB ·cos 45°=4,所以阴影部分的面积为12×4×4-45π·42360=8-2π. 17.答案 25解析 解不等式组{2x +3<4,3x -1>-11,得-103<x<12①,函数y=12x 2+2x 的自变量的取值范围是x ≠0且x ≠-1②,从-3,-2,-1,0,4这五个数中随机抽取一个数,共有5种可能,其中同时满足①②的有-3,-2,共2种可能,所以所求的概率是25. 18.答案 9817解析 过点F 作FH ∥BD 交BG 的延长线于点H,在矩形ABCD 中,BD=√(4√6)2+102=14,∵AD ∥BC,∴∠ADB=∠DBC,∵BE平分∠DBC,∴∠FBG=∠EBC=12∠DBC,∴∠FBG=12∠FDB,由题可得BF=FD,∴∠FBD=∠FDB,∴∠FBG=12∠FBD,∴∠FBG=∠GBD,∵FH ∥BD,∴∠H=∠GBD,∴∠H=∠F BG,∴FB=FH=FD,设FD=x(x>0),在Rt △ABF 中,由勾股定理得BF 2=AF 2+AB 2,即x 2=(10-x)2+(4√6)2,解得x=495,∴FB=FH=FD=495.∵FH ∥BD,∴△FHG ∽△DBG,∴FH BD =FGGD ,设GD=y(y>0),∴49514=495-y y,解得y=9817,∴GD=9817.评析 本题重点考查勾股定理,矩形的性质,相似三角形的性质与判定,方程思想等,综合性较强,属于难题.三、解答题19.解析 将①代入②,得3x+2x-4=1,(2分)解得x=1.(4分)将x=1代入①,得y=-2.(6分) 所以原方程组的解是{x =1,y =-2.(7分)20.证明 ∵BC=DE,∴BC+CD=DE+CD,即DB=CE.(3分) 又∵AB=FE,∠B=∠E,∴△ABD ≌△FEC.(6分) ∴∠ADB=∠FCE.(7分)四、解答题21.解析 (1)原式=2xy-y 2+x 2+2xy+y 2(3分) =x 2+4xy.(5分)(2)原式=[(y+1)(y -1)y+1-8y+1]÷(y -3)2y(y+1)(8分)=(y+3)(y -3)y+1·y(y+1)(y -3)2(9分)=y 2+3yy -3.(10分)22.解析 (1)25;72.补全条形统计图如下:某镇各类型小微企业个数条形统计图(6分)(2)记来自高新区的2个代表为A 1,A 2,来自开发区的2个代表为B 1,B 2,画树状图如下:(8分)或列表如下:第一个第二个A1A2B1B2A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)(8分)由树状图或列表可知,共有12种等可能情况,其中2个发言代表都来自高新区的有2种.所以,2个发言代表都来自高新区的概率P=212=16.(10分)23.解析(1)写出3个满足条件的数即可.(千位上的数字与个位上的数字相同,百位上的数字与十位上的数字相同)猜想:任意一个四位“和谐数”能被11整除.设一个四位“和谐数”个位上的数字为a(1≤a≤9且a为自然数),十位上的数字为b(0≤b≤9且b 为自然数),则这个四位“和谐数”可表示为1000a+100b+10b+a.∵1000a+100b+10b+a=1001a+110b=11×91a+11×10b=11(91a+10b),∴1000a+100b+10b+a能被11整除,即任意一个四位“和谐数”能被11整除.(5分)(2)∵这个三位“和谐数”的个位上的数字为x,十位上的数字为y,∴这个三位“和谐数”可表示为100x+10y+x.(6分)∵100x+10y+x=99x+11y+2x-y=11(9x+y)+(2x-y),又这个三位“和谐数”能被11整除,且x,y是自然数,∴2x -y 能被11整除.(8分) ∵1≤x ≤4,0≤y ≤9,∴2x -y=0.∴y 与x 的函数关系式为y=2x(1≤x ≤4且x 为自然数).(10分)24.解析 (1)由题意得,∠E=90°,∠PME=∠α=31°,∠PNE=∠β=45°,PE=30米. 在Rt △PEN 中,PE=NE=30(米).(2分) 在Rt △PEM 中,tan 31°=PEME , ∴ME ≈300.60=50(米).(4分)∴MN=ME -NE=50-30=20(米).答:两渔船M,N 之间的距离约为20米.(5分) (2)过点D 作DG ⊥AB 于G,坝高DG=24米.∵背水坡AD 的坡度i=1∶0.25,∴DG∶AG=1∶0.25. ∴AG=6(米).∵加固后背水坡DH 的坡度i=1∶1.75,∴DG∶GH=1∶1.75, ∴GH=42(米).∴AH=GH -GA=42-6=36(米).(6分) ∴S △ADH =12AH ·DG=12×36×24=432(平方米).∴需要填筑土石方432×100=43 200(立方米).(7分) 设施工队原计划平均每天填筑土石方x 立方米, 根据题意,得10+43 200-10x =43 200-20.(9分)解方程,得x=864.经检验,x=864是原方程的根且符合题意.答:施工队原计划平均每天填筑土石方864立方米.(10分)五、解答题25.解析(1)∵点H是AC的中点,AC=2√3,∴AH=1AC=√3.(1分)2∵∠ACB=90°,∠BAC=60°,∴∠ABC=30°,∴AB=2AC=4√3.(2分)∵DA⊥AB,DH⊥AC,∴∠DAB=∠DHA=90°.∴∠DAH=30°,∴AD=2.(3分)在Rt△ADB中,∵∠DAB=90°,∴BD2=AD2+AB2.∴BD=√22+(4√3)2=2√13.(4分)(2)证明:连结AF,如图.∵F是BD的中点,∠DAB=90°,∴AF=DF,∴∠FDA=∠FAD.(5分)∵DE⊥AE,∴∠DEA=90°.∵∠DHA=90°,∠DAH=30°,∴DH=1AD.∠BAC=30°.∵AE平分∠BAC,∴∠CAE=12∴∠DAE=60°,∴∠ADE=30°.∴AE=1AD,∴AE=DH.(6分)∵∠FDA=∠FAD,∠HDA=∠EAD=60°,∴∠FDA-∠HDA=∠FAD-∠EAD.∴∠FDH=∠FAE.(7分)∴△FDH≌△FAE(SAS).∴FH=FE.(8分)(3)△CEF是等边三角形.(9分)理由如下:取AB的中点G,连结FG,CG.如图.∵F 是BD 的中点,∴FG ∥DA,FG=12DA. ∴∠FGA=180°-∠DAG=90°, 又∵AE=12AD,∴AE=FG. 在Rt △ABC 中,∠ACB=90°, 点G 为AB 的中点,∴CG=AG.又∵∠CAB=60°,∴△GAC 为等边三角形.(10分) ∴AC=CG,∠ACG=∠AGC=60°. ∴∠FGC=30°,∴∠FGC=∠EAC. ∴△FGC ≌△EAC(SAS).(11分)∴CF=CE,∠ACE=∠GCF.∵∠ECF=∠ECG+∠GCF=∠ECG+∠ACE=∠ACG=60°. ∴△CEF 是等边三角形.(12分)26.解析 (1)∵-√34x 2+√3x+3√3=0的解为x 1=-2,x 2=6,∴抛物线y=-√34x 2+√3x+3√3与x 轴交于点A(-2,0),B(6,0).(1分)∵y=-√34x 2+√3x+3√3=-√34(x-2)2+4√3,∴顶点C(2,4√3).(2分)设直线BC 的解析式为y=kx+b(k ≠0),将点(6,0),(2,4√3)代入得,{6k +b =0,2k +b =4√3.解得{k =-√3,b =6√3.∴直线BC 的解析式为y=-√3x+6√3.(4分) (2)由已知得E'(m,-√34m 2+√3m +3√3),M(m,-√3m+6√3), F'(m +2,-√34(m +2)2+√3(m +2)+3√3),N(m+2,-√3(m+2)+6√3).ME'=-√34m 2+2√3m-3√3,NF'=-√34m 2+√3m.(5分)ME'+NF'=-√34m 2+2√3m-3√3-√34m 2+√3m=-√32(m-3)2+3√32(2<m<4). 当m=3时,ME'+NF'的值最大.(6分) 此时E'(3,15√34),F'(5,7√34),构造直角三角形可得E'F'=4,且直线E'F'的解析式为y=-√3x+27√34. 当R 是直线E'F'与y 轴交点时,|RF'-RE'|取得最大值,最大值为E'F'的长度. 因此|RF'-RE'|的最大值为4,此时点R (0,27√34).(8分)(3)由题意得Q (32,√3),设平移时间为t 秒,∴Q'(32-t,√3),P'(92-t,0).如图①,过点Q'作Q'K ∥x 轴交AW 于K,Q'H ⊥AW 交AW 于H. ∵Q'到x 轴的距离为√3,∴点Q'到直线AW 的距离Q'H=√3. 又∵A(-2,0),W(0,3√3), ∴直线AW 的解析式为y=3√3x+3√3. ∴K (-43,√3).又∵点Q'可能在点K 的左边或右边, ∴KQ'=|3-t +4|=|17-t|.在Rt △WAO 中,∠WOA=90°,AO=2,WO=3√3,∴AW=√31. 由题意易证Rt △WAO ∽Rt △Q'KH,∴Q'H Q'K =WOAW , 即√3|176-t |=√331,∴t 1=17-2√316,t 2=17+2√316.(10分)∵0≤t 1≤132,0≤t 2≤132,∴t 1,t 2符合条件. 现分两种情况讨论: ①当t 1=17-2√316时,Q'(√31-43,√3),P'(5+√313,0),∵0<√31-43<2,5+√313>2. ∴重叠部分为如图①所示的等边三角形Q'H 1I 1,图①s=12I 1H 1·Q'K 1=√33(t +12)2=√33×(17-2√316+12)2=131√3-20√9327. ②当t 2=17+2√316时,Q'(-4-√313,√3),P'(5-√313,0), ∵-4-√313<-2,-2<5-√313<0, ∴重叠部分为如图②所示的直角三角形H 2I 2P',图②∴s=12H 2I 2·I 2P'=3√38(132-t)2=3√38(132-17+2√316)2=76√3-11√9312. 综上,当点Q'到x 轴的距离与点Q'到直线AW 的距离相等时,s=131√3-20√9327或s=76√3-11√9312.(12分)。
重庆市2015年初中中考数学试卷含答案重庆市2015年初中毕业暨高中招生考试数学试题bb4ac?b2在每个小题的下面,都给出了代号为A、B、C、D的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.在—4,0,—1,3这四个数中,最大的数是 A. —4 B. 0 C. —1 D. 3 考点:有理数大小比较.分析:先计算| ﹣4|=4 ,| ﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4 <﹣1,再根据正数大于0,负数小于0 得到﹣4 <﹣1<0<3 .解答:解:∵| ﹣4|=4 ,| ﹣1|=1,∴﹣4 <﹣1,∴﹣4 ,0,﹣1,3 这四个数的大小关系为﹣4 <﹣1<0<3 .故选D .点评:本题考查了有理数大小比较:正数大于0,负数小于0 ;负数的绝对值越大,这个数越小.2.下列图形是轴对称图形的是A.B.C. D 考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、是轴对称图形,故正确;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误; D 、不是轴对称图形,故错误.故选A.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.化简12的结果是 A. 43 B. 23 C. 32 D. 26 考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2.故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.计算a2b的结果是 A.a6b3 B. a2b3 C. a5b3 D. a6b 考点:幂的乘方与积的乘方.mn mnn分析:根据幂的乘方和积的乘方的运算方法:①=a ;②=an bn ;求出a2b 的结果是多少即可.解答:解:a2b= 3 ?b 3= a6b3 即计算a2b 的结果是a6b3.故选:A.mn mn 点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①=a;②n =an bn .??3??3??3??3 5.下列调查中,最适合用普查方式的是 A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况 C. 调查重庆市初中学生锻炼所用的时间情况 D. 调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A 不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故 B 符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故 C 不符合题意; D 、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D 不符合题意;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H。
重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(,对称轴为2b x a =-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(2015•重庆A )在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3考点:有理数大小比较.分析:先计算| ﹣4|=4 ,| ﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4 <﹣1,再根据正 数大于0,负数小于0 得到﹣4 <﹣1<0<3 . 解答:解:∵| ﹣4|=4 ,| ﹣1|=1, ∴﹣4 <﹣1,∴﹣4 ,0,﹣1,3 这四个数的大小关系为﹣4 <﹣1<0<3 . 故选D .点评:本题考查了有理数大小比较:正数大于0,负数小于0 ;负数的绝对值越大,这个数 越小.2.(2015•重庆A )下列图形是轴对称图形的是( )A .B .C . D考点:轴对称图形.分析:根据轴对称图形的概念求解. 解答:解:A 、是轴对称图形,故正确; B 、不是轴对称图形,故错误; C 、不是轴对称图形,故错误; D 、不是轴对称图形,故错误. 故选A .点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称 轴折叠后可重合.3.(2015•重庆A )化简12的结果是( )A. 43B. 23C. 32D. 26考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2 .故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.(2015•重庆A)计算()32a b的结果是()A. 63a b D. 6a ba b C. 53a b B. 23考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n =a mn(m ,n 是正整数);②(ab )n =a n b n(n 是正整数);求出()32a b的结果是多少即可.解答:解:()32a b= (a 2)3•b 3= 63a b即计算()32a b的结果是63a b.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n =a mn (m ,n 是正整数);②(ab )n=a n b n.5.(2015•重庆A)下列调查中,最适合用普查方式的是()A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A 不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B 符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C 不符合题意;D 、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D 不符合题意;故选:B .点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对 象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义 或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用 普查.6.(2015•重庆A )如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。
重庆市2015年初中毕业暨高中招生考试数学试卷(A 卷)(全卷共五个大题,满分150分,120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答。
2.作答前认真阅读答题卡上的注意事项。
3.考试结束,由监考人员将试题和答题卡一并收回。
参考公式;抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴为直线2bx a =-一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.在—4,0,—1,3这四个数中,最大的数是( )A. —4B. 0C. —1D. 3 2.下列图形是轴对称图形的是( )3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b 5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况 B. 调查某中学九年级一班学生视力情况 C. 调查重庆市初中学生锻炼所用的时间情况 D. 调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。
若∠1=135°,则∠2的度数为( )A. 65°B. 55°C. 45°D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则6题图这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x ==9.如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20° 10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的 过程中,中途休息了一段时间,设他从山脚出发后所用的时 间为t(分钟),所走的路程为s(米),s与t之间的函数 关系如图所示,下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③A. 21B. 24C. 27D. 30 12.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边 BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x= 的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。
重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(,对称轴为2b x a =-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。
若∠1=135°,则∠2的度数为( )A. 65°B. 55°C. 45°D. 35° 7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x ==6题图9题图9.如图,AB 是O 的直径,点C 在O 上,AE 是O 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。
2015年重庆市育才成功学校中考数学一诊试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A.B.﹣2 C.0 D.﹣3.42.(﹣4)2的算术平方根是()A.4 B.±4 C.2 D.±23.已知2a﹣b=﹣1,则4a﹣2b+1的值为()A.﹣1 B.0 C.1 D.34.一个正多边形的每个内角都是144°,则这个多边形的内角和为()A.1440°B.1296°C.1152°D.1584°5.分式方程的解为()A.1 B.2 C.3 D.46.下列说法正确的是()A.一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8,8,7,10,6,8,9 的众数和中位数都是8D.若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定7.将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为()A.30°B.45°C.50°D.60°8.如图,⊙O是△ABC的外接圆,已知∠B=62°,则∠CAO的度数是()A.28°B.30°C.31°D.62°9.已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<310.2015年3月8日,学校组织女老师到重庆南山看樱花.早上,大客车从学校出发到南山重庆植物园,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后大客车加快速度行驶,按时到达南山重庆植物园.参观结束后,大客车匀速返回.其中,x表示客车从学校出发后所用时间,y表示客车离学校的距离.下面能反映y与x的函数关系的大致图象是()A.B.C.D.11.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A.72 B.64 C.54 D.5012.如图所示,在平面坐标系中,AB⊥x轴,反比例函数y=(k1≠0)过B点,反比例函数y=(k2≠0)过C、D点,OC=BC,B(2,3),则D点的坐标为()A.(,)B.(,)C.(,)D.(,)二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡对应的横线上.13.中国政府宣布2015年的国防预算将在2014年的1300亿美元基础上增加约10%,达到1430亿美元,1430亿元用科学记数法表示为元.14.若a>3,则|6﹣2a|=(用含a的代数式表示).15.如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=.16.如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.17.一个口袋中装有分别标有﹣2,﹣,1,2,3五个数的完全相同的小球,搅匀后从中摸出一个小球,将小球上的数记为a,则使得关于x的不等式组有解且关于x的函数y=(a﹣1)x2+2x+a+1与x轴有且只有一个交点的概率是.18.如图所示,在矩形ABC中,AB=4,AD=4,E是线段AB的中点,F是线段BC上的动点,△BEF沿直线EF翻折到△B′EF,连结DB′,B′C.当DB′最短时,则sin∠B′CF=.三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.20.随着我市减负提质“1+5”行动计划的全面实施,某校决定围绕在“科技、阅读、书法、演讲和英语”活动项目中,你最喜欢哪一项解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:+÷(2﹣x﹣),其中x是一元一次方程=x+的解.22.如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A 的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.(1)求建筑物BC的高度;(2)求旗杆AB的高度.(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)23.2014年9月重庆双福育才中学正式开学,在开学前几个月,学校为了装修教室和机房,计划购置一批新的投影仪和一批电脑.经市场调查,购买1台投影仪比买3台电脑多3000元,购买4台投影仪和5台电脑共需8万元.(1)求购买一台投影仪和一台电脑各需多少元?(2)根据学校实际情况,需购买投影仪和电脑共500台,且电脑的台数不多于投影仪台数的4倍,则当购买电脑多少台时,学校需要的总费用最少?并求出最少的费用.24.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界是1.(1)直接判断函数y=(x>0)和y=﹣2x+1(﹣4<x≤2)是不是有界函数?若是有界函数,直接写出其边界值;(2)若一次函数y=kx+b(﹣2≤x≤1)的边界值是3,且这个函数的最大值是2,求这个一次函数的解析式;(3)将二次函数y=﹣x2(﹣1≤x≤m,m≥0)的图象向上平移m个单位,得到的函数的边界值是n,当m在什么范围时,满足≤n≤1.26.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B两点(点A在点B左侧),与y轴交于点C,且对称轴为x=1,点D为顶点,连接BD、CD,抛物线的对称轴与x轴交于点E.(1)求抛物线的解析式及点D的坐标;(2)若抛物线对称轴右侧上一点M,过点M作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标;(3)连接BC交DE于点P,点Q是线段BD上的一个动点,自点D以个单位每秒的速度向终点B运动,连接PQ,将△DPQ沿PQ翻折,点D的对应点为D′,设Q点的运动时间为t(0≤t≤)秒,求使得△D'PQ与△PQB重叠部分的面积为△DPQ面积的时对应的t值.2015年重庆市育才成功学校中考数学一诊试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A.B.﹣2 C.0 D.﹣3.4【考点】有理数.【分析】根据小于0的分数是负分数,可得答案.【解答】解:﹣3.4是负分数,故选:D.【点评】本题考查的是有理数的认识,掌握有理数的分类是解题的关键,负分数是小于0的分数.2.(﹣4)2的算术平方根是()A.4 B.±4 C.2 D.±2【考点】算术平方根.【分析】首先计算(﹣4)2=16,再根据算术平方根的定义进一步计算即可求出16的算术平方根.【解答】解:∵(﹣4)2=16,所以16的算术平方根是4.故选A.【点评】此题考查了乘方运算和算术平方根的定义,比较简单.3.已知2a﹣b=﹣1,则4a﹣2b+1的值为()A.﹣1 B.0 C.1 D.3【考点】代数式求值.【专题】整体思想.【分析】4a﹣2b+1可以变形为:2(2a﹣b)+1,把已知的式子代入即可求解.【解答】解:4a﹣2b+1=2(2a﹣b)+1=﹣2+1=﹣1.故选A.【点评】本题考查了代数式的求值,正确把4a﹣2b+1可以变形为:2(2a﹣b)+1是解题的关键.4.一个正多边形的每个内角都是144°,则这个多边形的内角和为()A.1440°B.1296°C.1152°D.1584°【考点】多边形内角与外角.【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的内角和计算公式得出结果即可.【解答】解:设这个正多边形是正n边形,根据题意得:(n﹣2)×180°÷n=144°,解得:n=10.则内角和是:(10﹣2)×180=1440°.故选:A.【点评】本题主要考查了正多边形的内角,在解题时要根据正多边形的内角公式列出式子是本题的关键.5.分式方程的解为()A.1 B.2 C.3 D.4【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.故选D【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.下列说法正确的是()A.一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8,8,7,10,6,8,9 的众数和中位数都是8D.若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定【考点】概率的意义;全面调查与抽样调查;中位数;众数;方差.【分析】根据概率的意义,可判断A;根据调查方式,可判断B;根据众数、中位数的定义,可判断C;根据方差越小越稳定,可判断D.【解答】解:A、一个游戏的中奖概率是,可能会中奖、可能不中奖,故A错误;B、为了解全国中学生的心理健康情况,应该采用抽样调查,故B错误;C、一组数据8,8,7,10,6,8,9 的众数和中位数都是8,故C正确;D、若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则甲组数据比乙组数据稳定,故C错误;故选:C.【点评】本题考查了概率的意义,概率表示事件发生可能性的大小,而不是一定发生,注意方差越小越稳定.7.将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为()A.30°B.45°C.50°D.60°【考点】平行线的性质.【专题】计算题.【分析】根据平行线的性质得∠2=∠3,再根据互余得到∠3=60°,所以∠2=60°.【解答】解:∵a∥b,∴∠2=∠3,∵∠1+∠3=90°,∴∠3=90°﹣30°=60°,∴∠2=60°.故选:D.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8.如图,⊙O是△ABC的外接圆,已知∠B=62°,则∠CAO的度数是()A.28°B.30°C.31°D.62°【考点】圆周角定理.【专题】计算题.【分析】连接OC.根据圆周角定理求得∠AOC=2∠B,再根据等腰三角形的性质和三角形的内角和定理即可求解.【解答】解:连接OC.∴∠AOC=2∠B=124°.∵OA=OC,∴∠CAO=∠ACO==28°.故选A.【点评】此题主要是考查了圆周角定理、等腰三角形的性质和三角形的内角和定理.9.已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3【考点】解一元二次方程-公式法;估算无理数的大小.【专题】判别式法.【分析】先求出方程的解,再求出的范围,最后即可得出答案.【解答】解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选:C.【点评】本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.10.2015年3月8日,学校组织女老师到重庆南山看樱花.早上,大客车从学校出发到南山重庆植物园,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后大客车加快速度行驶,按时到达南山重庆植物园.参观结束后,大客车匀速返回.其中,x表示客车从学校出发后所用时间,y表示客车离学校的距离.下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据匀速行驶路程逐渐增加,堵车时路程不变,加速行驶时路程迅速增加,返回时路程逐渐减少,可得答案.【解答】解:A、匀速行驶路程逐渐增加,堵车时路程不变,加速行驶时路程迅速增加,返回时路程逐渐减少,故A符合题意;B、加速行驶时路程应迅速增加,故B不符合题意;C、参观时路程不变,故C不符合题意;D、返回时路程逐渐减少,故D错误;故选:A.【点评】本题考查了函数图象,理解题意是解题关键:匀速行驶路程逐渐增加,堵车时路程不变,加速行驶时路程迅速增加,返回时路程逐渐减少.11.下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(10)个图形中面积为1的正方形的个数为()A.72 B.64 C.54 D.50【考点】规律型:图形的变化类.【分析】由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n个图形有9+5×(n﹣1)=5n+4个边长为1的小正方形,由此求得答案即可.【解答】解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n个图形边长为1的小正方形有9+5×(n﹣1)=5n+4个,所以第10个图形中边长为1的小正方形的个数为5×10+4=54个.故选:C.【点评】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.12.如图所示,在平面坐标系中,AB⊥x轴,反比例函数y=(k1≠0)过B点,反比例函数y=(k2≠0)过C、D点,OC=BC,B(2,3),则D点的坐标为()A.(,)B.(,)C.(,)D.(,)【考点】反比例函数图象上点的坐标特征.【分析】首先根据B点的坐标是(2,3),求出k1的值是6;然后分别求出OC、BC的值是多少,再根据OC=BC,求出k2的值是多少;最后根据D点是反比例函数y=(k2≠0)和线段OB所在的直线的交点,求出D点的坐标是多少即可.【解答】解:因为反比例函数y=(k1≠0)过B点,所以k1=2×3=6;0C=,BC=3﹣,因为OC=BC,所以=3﹣,所以4=9﹣3k2,解得;线段OB所在的直线的方程是:y=x,由,可得,即D点的坐标是:(,).故选:D.【点评】此题主要考查了反比例函数图象上点的坐标特征,解答此题的关键是求出k1、k2的值是多少,以及线段OB所在的直线的方程.二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡对应的横线上.13.中国政府宣布2015年的国防预算将在2014年的1300亿美元基础上增加约10%,达到1430亿美元,1430亿元用科学记数法表示为 1.43×1011元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1430亿有12位,所以可以确定n=12﹣1=11.【解答】解:1430亿=143 000 000 000=1.43×1011.故答案为:1.43×1011.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.14.若a>3,则|6﹣2a|=2a﹣6(用含a的代数式表示).【考点】绝对值.【分析】根据绝对值的定义解答即可.【解答】解:∵a>3,∴6﹣2a<0,∴|6﹣2a|=2a﹣6,故答案为:2a﹣6.【点评】此题考查了绝对值的代数意义,熟练掌握绝对值的代数意义是解本题的而关键.15.如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=1:20.【考点】相似三角形的判定与性质.【分析】根据等高三角形面积的比等于底的比和相似三角形面积的比等于相似比的平方即可解出结果.【解答】解;∵S△BDE:S△DEC=1:4,∴BE:EC=1:4,∴BE:BC=1:5,∵DE∥AC,∴△BED∽△BCA,∴==,设S△BED=k,则S△DEC=4k,S△ABC=25k,∴S△ADC=20k,∴S△BDE:S△DCA=1:20.故答案为:1:20.【点评】本题考查了相似三角形的性质,相似三角形面积的比等于相似比的平方,注意各三角形面积之间的关系是解题的关键.16.如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.【考点】切线的判定与性质;角平分线的性质;等边三角形的判定与性质;圆周角定理;扇形面积的计算;锐角三角函数的定义.【专题】计算题.【分析】连接OT、OD、过O作OM⊥AD于M,得到矩形OMCT,求出OM,求出∠OAM,求出∠AOT,求出OT∥AC,得出PC是圆的切线,得出等边三角形AOD,求出∠AOD,求出∠DOT,求出∠DTC=∠CAT=30°,求出DC,求出梯形OTCD的面积和扇形OTD的面积.相减即可求出答案.【解答】解:连接OT、OD、DT,过O作OM⊥AD于M,∵OA=OT,AT平分∠BAC,∴∠OTA=∠OAT,∠BAT=∠CAT,∴∠OTA=∠CAT,∴OT∥AC,∵PC⊥AC,∴OT⊥PC,∵OT为半径,∴PC是⊙O的切线,∵OM⊥AC,AC⊥PC,OT⊥PC,∴∠OMC=∠MCT=∠OTC=90°,∴四边形OMCT是矩形,∴OM=TC=,∵OA=2,∴sin∠OAM=,∴∠OAM=60°,∴∠AOM=30°∵AC∥OT,∴∠AOT=180°﹣∠OAM=120°,∵∠OAM=60°,OA=OD,∴△OAD是等边三角形,∴∠AOD=60°,∴∠TOD=120°﹣60°=60°,∵PC切⊙O于T,∴∠DTC=∠CAT=∠BAC=30°,∴tan30°==,∴DC=1,∴阴影部分的面积是S 梯形OTCD ﹣S 扇形OTD =×(2+1)×﹣=.故答案为:.【点评】本题考查了切线的性质和判定,解直角三角形,矩形的性质和判定,勾股定理,扇形的面积,梯形的性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,本题综合性比较强,有一定的难度.17.一个口袋中装有分别标有﹣2,﹣,1,2,3五个数的完全相同的小球,搅匀后从中摸出一个小球,将小球上的数记为a ,则使得关于x 的不等式组有解且关于x的函数y=(a ﹣1)x 2+2x+a+1与x 轴有且只有一个交点的概率是 . 【考点】概率公式;解一元一次不等式组;抛物线与x 轴的交点.【分析】由关于x 的不等式组有解,可得a ≤1,由关于x 的函数y=(a﹣1)x 2+2x+a+1与x 轴有且只有一个交点,可得a=±2,继而利用概率公式即可求得答案.【解答】解:, 由①得:x ≥3a+2,由②得:x ≤2a+3,∴当3a+2≤2a+3,即a ≤1时,关于x 的不等式组有解;∵y=(a ﹣1)x 2+2x+a+1与x 轴有且只有一个交点,∴△=(2)2﹣4(a﹣1)(a+1)=16﹣4a2=0,解得:a=±2,∴使得关于x的不等式组有解且关于x的函数y=(a﹣1)x2+2x+a+1与x轴有且只有一个交点的是:﹣2;∴使得关于x的不等式组有解且关于x的函数y=(a﹣1)x2+2x+a+1与x轴有且只有一个交点的概率是:.故答案为:.【点评】此题考查了概率公式的应用以及不等式组的解集与二次函数的性质.用到的知识点为:概率=所求情况数与总情况数之比.18.如图所示,在矩形ABC中,AB=4,AD=4,E是线段AB的中点,F是线段BC上的动点,△BEF沿直线EF翻折到△B′EF,连结DB′,B′C.当DB′最短时,则sin∠B′CF=.【考点】翻折变换(折叠问题).【分析】当DB′最短时,E、B′、D共线,此时DE=6,DB′=4,作B′M⊥BC垂足为M,易知:B′M=,CM=,所以CB′=,sinB′CF=.【解答】解:由折叠可知:BE=B′E∴B′在以E为圆心,BE为半径的圆上,如图所示,此时DB′最短,由勾股定理得:ED=6,∵B′M⊥AB,B′N⊥BC,∴∠B′ME=∠B′NF=90°,∵∠MB′E+∠EB′N=∠NB′F+∠EB′N=90°∴∠MB′E=∠NB′F,∴△B′ME∽△DAE∴∴B′M=,EM=∴BN=B′M=,B′N=BM=BE+EM=,CN=BC﹣BN=,由勾股定理得:B′C=,∴sinB′CF=.故答案为:.【点评】本题主要考查了线段最短、勾股定理、锐角三角函数和三角形的相似的判定和性质,此题的难点是发现何时线段DB′最短,比较抽象,有一定难度.三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.【考点】全等三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE即可.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.20.随着我市减负提质“1+5”行动计划的全面实施,某校决定围绕在“科技、阅读、书法、演讲和英语”活动项目中,你最喜欢哪一项解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:+÷(2﹣x﹣),其中x是一元一次方程=x+的解.【考点】分式的化简求值;解一元一次方程.【专题】计算题.【分析】原式第二项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,求出方程的解得到x的值,代入原式计算即可得到结果.【解答】解:原式=+÷=﹣•=﹣=,方程去分母得:3x﹣2=2x+1,解得:x=3,∴当x﹦3时,原式﹦.【点评】此题考查了分式的化简求值,以及解一元一次方程,熟练掌握运算法则是解本题的关键.22.如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A 的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.(1)求建筑物BC的高度;(2)求旗杆AB的高度.(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】(1)先过点E作ED⊥BC于D,由已知底部B的仰角为45°得BD=ED=FC=12,DC=EF=1.6,从而求出BC.(2)由已知由E点观测到旗杆顶部A的仰角为52°可求出AD,则AB=AD﹣BD.【解答】解:(1)过点E作ED⊥BC于D,根据题意得:EF⊥FC,ED∥FC,∴四边形CDEF是矩形,已知底部B的仰角为45°即∠BED=45°,∴∠EBD=45°,∴BD=ED=FC=12,∴BC=BD+DC=BD+EF=12+1.6=13.6,答:建筑物BC的高度为13.6m.(2)已知由E点观测到旗杆顶部A的仰角为52°,即∠AED=52°,∴AD=ED•tan52°≈12×1.28≈15.4,∴AB=AD﹣BD=15.4﹣12=3.4.答:旗杆AB的高度约为3.4m.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.23.2014年9月重庆双福育才中学正式开学,在开学前几个月,学校为了装修教室和机房,计划购置一批新的投影仪和一批电脑.经市场调查,购买1台投影仪比买3台电脑多3000元,购买4台投影仪和5台电脑共需8万元.(1)求购买一台投影仪和一台电脑各需多少元?(2)根据学校实际情况,需购买投影仪和电脑共500台,且电脑的台数不多于投影仪台数的4倍,则当购买电脑多少台时,学校需要的总费用最少?并求出最少的费用.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设投影仪每台x元,电脑每台y元,根据条件建立方程组求出其解即可;(2)设电脑为a台,则投影仪为(500﹣a)台,根据电脑的台数不多于投影仪台数的4倍,列出一次函数分析解答即可.【解答】解:(1)设购买一台笔记本电脑需x元,购买1台投影仪需y元,所以得到方程组:,解得:x=4000,y=15000,所以购买买一台笔记本电脑需4000元,购买1台投影仪需15000元;(2)设电脑为a台,则投影仪为(500﹣a)台,总费用为W元;∴a≤4(500﹣a),则:a≤400,W=4000a+15000(500﹣a)=﹣11000a+7500000∵﹣11000<0∴W随a的增大而减小;∴当a=400时,W的最小值=3100000=310万元;答:当购买电脑400台时,总费用最少为310万元.【点评】本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一次函数的解析式的运用,一次函数的性质的运用,一元一次不等式的运用,解答时求出函数的解析式是关键.24.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.【考点】翻折变换(折叠问题);全等三角形的判定与性质;平行线分线段成比例.【专题】证明题.【分析】(1)根据翻折的性质和SAS证明△ABE与△ACF全等,利用全等三角形的性质得出∠AGB=90°证明即可;(2)作IC的中点M,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可.【解答】证明:(1)∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,∴AD=BD=CD,∠ACB=45°,∵在△ADC中,AD=DC,DE⊥AC,∴AE=CE,∵△CDE沿直线BC翻折到△CDF,∴△CDE≌△CDF,∴CF=CE,∠DCF=∠ACB=45°,∴CF=AE,∠ACF=∠DCF+∠ACB=90°,在△ABE与△ACF中,,∴△ABE≌△ACF(SAS),∴∠ABE=∠FAC,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE;(2)作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°∴四边形DECF是正方形,∴EC∥DF,EC=DF,∴∠EAH=∠HFD,AE=DF,在△AEH与△FDH中,∴△AEH≌△FDH(AAS),∴EH=DH,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE,∵M是IC的中点,E是AC的中点,∴EM∥AI,∴,∴DI=IM,∴CD=DI+IM+MC=3DI,∴AD=3DI.【点评】此题考查翻折问题,关键是利用SAS和AAS证明三角形全等,再利用全等三角形的性质进行分析解答.五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界是1.(1)直接判断函数y=(x>0)和y=﹣2x+1(﹣4<x≤2)是不是有界函数?若是有界函数,直接写出其边界值;(2)若一次函数y=kx+b(﹣2≤x≤1)的边界值是3,且这个函数的最大值是2,求这个一次函数的解析式;(3)将二次函数y=﹣x2(﹣1≤x≤m,m≥0)的图象向上平移m个单位,得到的函数的边界值是n,当m在什么范围时,满足≤n≤1.【考点】二次函数综合题.【分析】(1)在x的取值范围内,y=(x>0)的y无最大值,不是有界函数;y=﹣2x+1(﹣4<x≤2)的边界值为9,是有界函数;(2)当k>0时,根据有界函数的定义确定函数过(1,2),(﹣2,﹣3)两点;当k<0时,根据有界函数的定义确定函数过(﹣2,2),(1,﹣3)两点;利用待定系数法解答即可;(3)先设m>1,函数向上平移m个单位后,x=0时,y=m,此时边界值t≥1,与题意不符,故m≤1,判断出函数y=﹣x2所过的点,结合平移,求出0≤m≤或≤m≤1.【解答】解:(1)y=(x>0)不是有界函数;y=﹣2x+1(﹣4<x≤2)是有界函数,边界值为9.(2)当k>0时,由有界函数的定义得函数过(1,2),(﹣2,﹣3)两点,设y=kx+b,将(1,2)(﹣2,﹣3)代入上式得,解得:,所以:y=x+,当k<0时,由有界函数的定义得函数过(﹣2,2),(1,﹣3)两点,设y=kx+b,将(﹣2,2),(1,﹣3)代入上式得,即得,函数解析式为y=﹣x﹣.(3)若m>1,函数向上平移m个单位后,x=0时,y=m,此时边界值t≥1,与题意不符,故m≤1,函数y=﹣x2过点(﹣1,﹣1),(0,0);向上平移m个单位后,平移图象经过(﹣1,﹣1+m);(0,m).∴﹣1≤﹣1+m≤﹣或≤m≤1,即0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题,结合新定义,弄清函数边界值的定义,同时要熟悉平移变换的性质.26.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B两点(点A在点B左侧),与y轴交于点C,且对称轴为x=1,点D为顶点,连接BD、CD,抛物线的对称轴与x轴交于点E.(1)求抛物线的解析式及点D的坐标;(2)若抛物线对称轴右侧上一点M,过点M作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标;(3)连接BC交DE于点P,点Q是线段BD上的一个动点,自点D以个单位每秒的速度向终点B运动,连接PQ,将△DPQ沿PQ翻折,点D的对应点为D′,设Q点的运动时间为t(0≤t≤)秒,求使得△D'PQ与△PQB重叠部分的面积为△DPQ面积的时对应的t值.【考点】二次函数综合题.【分析】(1)根据A、B关于对称轴为x=1对称,且A(﹣1,0),得到B(3,0),所以﹣1,3是方程ax2+bx﹣3=0的根,得到﹣1+3=,求出a=1,b=﹣2,所以抛物线y=x2﹣2x﹣3,当x=1时,y=﹣4,即可确定D(1,﹣4).(2)根据点B,C的坐标判断△BCO为等腰直角三角形,得到∠OCB=45°,再求出BC,CD,BD 的长度,利用勾股定理逆定理判定BD⊥CD,利用OC∥DE,所以∠OCB+∠BCD+∠CDE=180°,得到∠CDE=45°,再证明∠OCM=∠CDB,延长CM交x轴于点F,则Rt△OCF∽△CDB,得到,得到OF=9,确定F(9,0),得到直线CF:y=,和抛物线联立,解方程组即可确定M点的坐标.(3)分两种情况作答,画出图形,利用解三角形,即可解答.【解答】解:∵A、B关于对称轴为x=1对称,且A(﹣1,0),∴B(3,0),∴﹣1,3是方程ax2+bx﹣3=0的根,∴﹣1+3=,解得:a=1,b=﹣2,∴抛物线y=x2﹣2x﹣3,当x=1时,y=﹣4,∴D(1,﹣4).(2)如图①,。