创新设计高二数学人教B选修22规范训练:第一章 导数及其应用 本章测试 含解析
- 格式:doc
- 大小:161.50 KB
- 文档页数:9
第一章导数及其应用测试题一、 选择题1.设 y1 x 2( ).,则 y'sin xA .2x sin x (1x 2 ) cos x2x sin x(1 x 2 ) cos xsin 2xB .sin2x2x sin x (1x 2 )2x sin x(1 x 2 )C .sin xD .sin x2.设 f ( x)ln x21 ,则 f ' (2) ( ).42C .1 D .3A .B .55553.已知 f (3)2, f ' (3)2 ,则 lim2x3 f ( x) 的值为( ).x3x 3A . 4B . 0C . 8D .不存在4.曲线 yx 3 在点( 2,8) 处的切线方程为().A . y6x 12 B . C . y8x10D . y 12x 16y2x 325.已知函数 f ( x) ax 3 bx 2cx d 的图象与 x 轴有三个不一样交点(0,0), ( x 1,0) ,(x 2 ,0) ,且 f (x) 在 x1, x 2 时获得极值,则 x 1 x 2 的值为()A . 4B . 5C . 6D .不确立6.在 R 上的可导函数 f ( x)1 x 3 1 ax2 2bx c ,当 x (0,1) 获得极大值, 当 x (1,2)32获得极小值,则 b2的取值范围是().a 1A . (1,1)B . (1,1)C .( 1,1)D . ( 1,1)422 42 27.函数 f ( x)1 e x (sin x cos x) 在区间 [0, ] 的值域为( ).22A .[1 , 1e 2 ]B . (1 , 1e 2 )C . [1, e 2 ]D . (1, e2)2 22 2aa2x 2dx ().8.积分aA.1a2 B.1a 2 C.a2 D .2 a24 29.由双曲线x 2 y 21,直线 y b, y b 围成的图形绕y 轴旋转一周所得旋转体的体a 2 b2积为()A.8ab2 B.8a2b C.4a2b D.4ab2 3 3 3 310.由抛物线y2 2x 与直线 y x 4 所围成的图形的面积是().A .1838 16D.16 B.C.3 311.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为().A. 3 V B.3 2V C.34V D.23V二、填空题13.曲线y x3在点 (a, a 3 )( a 0) 处的切线与 x 轴、直线 x a 所围成的三角形的面积为1,则 a _________ 。
第一章知能基础测试时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.曲线y =12x 2-2x 在点⎝⎛⎭⎫1,-32 处的切线的倾斜角为( ) A .-1 B .45° C .-45° D .135°Dy ′=x -2,所以斜率k =1-2=-1,因此倾斜角为135°.故选D. 2.下列求导运算正确的是( ) A.⎝⎛⎭⎫x +3x ′=1+3x 2 B .(log 2x )′=1x ln2C .(3x )′=3x ·log 3eD .(x 2cos x )′=-2x sin x B⎝⎛⎭⎫x +3x ′=1-3x2,所以A 不正确; (3x )′=3x ln3,所以C 不正确;(x 2cos x )′=2x cos x +x 2·(-sin x ),所以D 不正确;(log 2x )′=1x ln2,所以B 对.故选B.3.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为S (t )(S (0)=0),则导函数y =S ′(t )的图像大致为( )A由图象知,五角星露出水面的面积的变化率是增→减→增→减,其中恰露出一个角时变化不连续,故选A.4.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <32A因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2.令f ′(x )=0,得x =0或x =3.经检验知x =3是函数的一个最小值点,所以函数的最小值点为f (3)=3m -272.不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32.5.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4 D 如图所示由⎩⎪⎨⎪⎧ y =4x ,y =x 3.解得⎩⎪⎨⎪⎧ x =2,y =8,或⎩⎪⎨⎪⎧x =-2,y =-8.∴第一象限的交点坐标为(2,8) 由定积分的几何意义得S =⎠⎛2(4x -x 3)dx =(2x 2-x 44)|2=8-4=4. 6.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A .e 2 B .e C.ln22 D .ln2Bf (x )的定义域为(0,+∞),f ′(x )=ln x +1, 由f ′(x 0)=2,得ln x 0+1=2,解得x 0=e.7.(2015·会宁县期中)曲线f (x )=x 3+x -2的一条切线平行于直线y =4x -1,则切点P 0的坐标为( )A .(0,-1)或(1,0)B .(1,0)或(-1,-4)C .(-1,-4)或(0,-2)D .(1,0)或(2,8)B由y =x 3+x -2,得y ′=3x 2+1, 由已知得3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4. ∴切点P 0的坐标为(1,0)或(-1,-4).8.函数f (x )=x 3-2x +3的图象在x =1处的切线与圆x 2+y 2=8的位置关系是( ) A .相切B .相交且过圆心C .相交但不过圆心D .相离C切线方程为y -2=x -1,即x -y +1=0.圆心到直线的距离为12=22<22,所以直线与圆相交但不过圆心.故选C.9.f ′(x )是f (x )的导函数,f ′(x )的图象如图所示,则f (x )的图象可能是( )D由图可知,当b >x >a 时,f ′(x )>0,故在上,f (x )为增函数.且又由图知f ′(x )在区间上先增大后减小,即曲线上每一点处切线的斜率先增大再减小,故选D.10.曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2 B .4e 2 C .2e 2 D .e 2D∵y ′=12e x 2,∴在点(4,e 2)处的切线方程为y =12e 2x -e 2,令x =0得y =-e 2,令y =0得x =2, ∴围成三角形的面积为e 2.故选D.11.已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )D由导函数图象可知,当x <0时,函数f (x )递减,排除A ,B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.12.(2015·甘肃省会宁一中高二期中)对于任意的两个实数对(a ,b )和(c ,d ),规定:(a ,b )=(c ,d ),当且仅当a =c ,b =d ;运算“⊗”为:(a ,b )⊗(c ,d )=(ac -bd ,bc +ad );运算“⊕”为:(a ,b )⊕(c ,d )=(a +c ,b +d ),设p ,q ∈R ,若(1,2)⊗(p ,q )=(5,0),则(1,2)⊕(p ,q )=( )A .(4,0)B .(2,0)C .(0,2)D .(0,-4)B由(1,2)⊕(p ,q )=(5,0)得⎩⎪⎨⎪⎧ p -2q =52p +q =0⇒⎩⎪⎨⎪⎧p =1q =-2, 所以(1,2)⊕(p ,q )=(1,2)⊕(1,-2)=(2,0).二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.经过点(2,0)且与曲线y =1x相切的直线方程为______________.x +y -2=0设切点为⎝⎛⎭⎫x 0,1x 0,则1x 0x 0-2=-1x 20,解得x 0=1,所以切点为(1,1),斜率为-1,直线方程为x +y -2=0.14.若函数f (x )=ax 2-1x 在(0,+∞)上为增函数,则实数a 的取值范围是________.a ≥0f ′(x )=⎝⎛⎭⎫ax -1x ′=a +1x2, 由题意得,a +1x 2≥0对x ∈(0,+∞)恒成立,即a ≥-1x2,x ∈(0,+∞)恒成立.∴a ≥0.15.(2015·安徽理,15)设x 3+ax +b =0,其中a ,b 均为实数.下列条件中,使得该三次方程仅有一个实根的是________.(写出所有正确条件的编号)①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2;④a =0,b =2;⑤a =1,b =2.①③④⑤令f (x )=x 3+ax +b ,求导得f ′(x )=3x 2+a ,当a ≥0时,f ′(x )≥0,所以f (x )单调递增,且至少存在一个数使f (x )<0,至少存在一个数使f (x )>0,所以f (x )=x 3+ax +b 必有一个零点,即方程x 3+ax +b =0仅有一根,故④⑤正确;当a <0时,若a =-3,则f ′(x )=3x 2-3=3(x +1)(x -1),易知,f (x )在(-∞,-1),(1,+∞)上单调递增,在上单调递减,所以f (x )极大=f (-1)=-1+3+b =b +2,f (x )极小=f (1)=1-3+b =b -2,要使方程仅有一根,则f (x )极大=f (-1)=-1+3+b =b +2<0或者f (x )极小=f (1)=1-3+b =b -2>0,解得b <-2或b >2,故①③正确.所以使得三次方程仅有一个实根的是①③④⑤.16.已知函数f (x )=x 3-3x ,若过点A (1,m )(m ≠-2)可作曲线y =f (x )的三条切线,则实数m 的取值范围为________.(-3,-2)f ′(x )=3x 2-3,设切点为P (x 0,y 0),则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),∵切线经过点A (1,m ),∴m -(x 30-3x 0)=(3x 20-3)(1-x 0),∴m =-2x 30+3x 20-3,m ′=-6x 20+6x 0,∴当0<x 0<1时,此函数单调递增,当x 0<0或x 0>1时,此函数单调递减,当x 0=0时,m =-3,当x 0=1时,m =-2,∴当-3<m <-2时,直线y =m 与函数y =-2x 30+3x 20-3的图象有三个不同交点,从而x 0有三个不同实数根,故过点A (1,m )可作三条不同切线,∴m 的取值范围是(-3,-2).三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值; (2)求函数f (x )的极值.(1)因为f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x 2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x =12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x 2.令f ′(x )=0,解得x 1=1,x 2=-13(因为x 2=-13不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3.18.(本题满分12分)已知函数f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,当x =1时,f (x )取得极值-2.(1)求函数f (x )的解析式;(2)求函数f (x )的单调区间和极大值;(3)证明:对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立. (1)∵f (x )是R 上的奇函数, ∴f (-x )=-f (x ),即-ax 3-cx +d =-ax 3-cx -d ,∴d =-d , ∴d =0(或由f (0)=0得d =0). ∴f (x )=ax 3+cx ,f ′(x )=3ax 2+c , 又当x =1时,f (x )取得极值-2,∴⎩⎪⎨⎪⎧f (1)=-2,f ′(1)=0,即⎩⎪⎨⎪⎧a +c =-2,3a +c =0,解得⎩⎪⎨⎪⎧a =1,c =-3.∴f (x )=x 3-3x .(2)f ′(x )=3x 2-3=3(x +1)(x -1),令f ′(x )=0,得x =±1, 当-1<x <1时,f ′(x )<0,函数f (x )单调递减; 当x <-1或x >1时,f ′(x )>0,函数f (x )单调递增;∴函数f (x )的递增区间是(-∞,-1)和(1,+∞);递减区间为(-1,1). 因此,f (x )在x =-1处取得极大值,且极大值为f (-1)=2.(3)由(2)知,函数f (x )在区间上单调递减,且f (x )在区间上的最大值为M =f (-1)=2.最小值为m =f (1)=-2.∴对任意x 1、x 2∈(-1,1),|f (x 1)-f (x 2)|<M -m =4成立.即对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立. 19.(本题满分12分)计算定积分⎠⎛-40|x +3|d x .因为f (x )=|x +3|=⎩⎪⎨⎪⎧-x -3,x <-3,x +3,x ≥-3,所以原式=⎠⎜⎛-4-3(-x -3)d x +⎠⎛-30 (x +3)d x .分别取F 1(x )=-12x 2-3x ,F 2(x )=12x 2+3x ,则F ′1(x )=-x -3,F ′2(x )=x +3.所以⎠⎛-40|x +3|d x =⎠⎜⎛-4-3(-x -3)d x +⎠⎛-30 (x +3)d x =(-12x 2-3x )|-3-4+(12x 2+3x )|0-3=5. 20.(本题满分12分)某银行准备新设一种定期存款业务,经预测:存款量与存款利率的平方成正比,比例系数为k (k >0),借款的利率为4.8%.又银行吸收的存款能全部放贷出去.(1)若存款利率为x ,x ∈(0,0.048),试写出存款量g (x )及银行应支付给储户的利息h (x )与存款利率x 之间的关系式;(2)存款利率定为多少时,银行可获得最大收益?(1)由题意,存款量g (x )=kx 2.银行应支付的利息h (x )=xg (x )=kx 3. (2)设银行可获得收益为y ,则y =0.048kx 2-kx 3. ∴y ′=0.096kx -3kx 2.令y ′=0,得x =0(舍去)或x =0.032。
高中数学第一章导数及其应用B章末测试新人教B版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章导数及其应用B章末测试新人教B版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章导数及其应用B章末测试新人教B版选修2-2的全部内容。
高中数学第一章导数及其应用B章末测试新人教B版选修2-2(高考体验卷)(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014课标全国Ⅱ高考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( )A.0 B.1 C.2 D.32.(2014陕西高考)定积分错误!错误!(2x+e x)d x的值为()A.e+2 B.e+1 C.e D.e-13.(2012陕西高考)设函数f(x)=错误!+ln x,则( )A.x=错误!为f(x)的极大值点B.x=错误!为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点4.(2014课标全国Ⅱ高考)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(-∞,-2] B.(-∞,-1]C.[2,+∞) D.[1,+∞)5.(2013江西高考)若S1=∫错误!x2d x,S2=错误!错误!错误!d x,S3=错误!错误!e x d x,则S1,S,S3的大小关系为()2A.S1<S2<S3 B.S2<S1<S3 C.S2<S3<S1 D.S3<S2<S16.(2014山东高考)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为() A.2错误! B.4错误! C.2 D.47.(2013浙江高考)已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值8.(2014湖南高考)若0<x1<x2<1,则( )A.ex2-ex1>ln x2-ln x1 B.ex2-ex1<ln x2-ln x1C.x2ex1>x1ex2 D.x2ex1<x1ex29.(2012辽宁高考)函数y=错误!x2-ln x的单调递减区间为()A.(-1,1] B.(0,1] C.[1,+∞) D.(0,+∞)10.(2013辽宁高考)设函数f(x)满足x2f′(x)+2xf(x)=错误!,f(2)=错误!,则x>0时,f(x)( )A.有极大值,无极小值 B.有极小值,无极大值C.既有极大值又有极小值 D.既无极大值也无极小值二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11.(2012广东高考)曲线y=x3-x+3在点(1,3)处的切线方程为__________.12.(2013江西高考)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.13.(2013课标全国Ⅰ高考)若函数f(x)=(1-x2)(x2+ax+b)的图象关于直线x=-2对称,则f(x)的最大值为__________.14.(2014江苏高考)在平面直角坐标系x O y中,若曲线y=ax2+错误!(a,b为常数)过点P (2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是__________.15.(2014大纲全国高考)若函数f(x)=cos 2x+a sin x在区间错误!是减函数,则a 的取值范围是________.三、解答题(本大题共4小题,共30分.解答时应写出文字说明、证明过程或演算步骤)16.(本小题6分)(2014重庆高考)已知函数f(x)=错误!+错误!-ln x-错误!,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=错误!x。
第一章 1.2 第3课时一、选择题1.函数f (x )=a 4+5a 2x 2-x 6的导数为( )A .4a 3+10ax 2-x 6B .4a 3+10a 2x -6x 5C .10a 2x -6x 5D .以上都不对[答案] C[解析] f ′(x )=(a 4)′+(5a 2x 2)′-(x 6)′=-6x 5+10a 2x .2.函数y =2sin x cos x 的导数为( )A .y ′=cos xB .y ′=2cos2xC .y ′=2(sin 2x -cos 2x )D .y ′=-sin2x [答案] B[解析] y ′=(2sin x cos x )′=2(sin x )′·cos x+2sin x (cos x )′=2cos 2x -2sin 2x =2cos2x .3.下列求导运算正确的是( )A .(x +1x )′=1+1x 2B .(log 2x )′=1x ln2C .(3x )′=3xD .(x 2cos x )′=-2x sin x [答案] B[解析] 根据对数函数的求导法则可知B 正确.4.(2014·贵州湄潭中学高二期中)曲线f (x )=x ln x 在x =1处的切线方程为( )A .y =2x +2B .y =2x -2C .y =x -1D .y =x +1 [答案] C[解析] ∵f ′(x )=ln x +1,∴f ′(1)=1,又f (1)=0,∴在x =1处曲线f (x )的切线方程为y =x -1.5.函数y =(x -a )(x -b )的导数是( )A .abB .-a (x -b )C .-b (x -a )D .2x -a -b [答案] D[解析] 解法1:y ′=(x -a )′(x -b )+(x -a )(x -b )′=x -b +x -a =2x -a -b .解法2:∵y =(x -a )(x -b )=x 2-(a +b )x +ab∴y ′=(x 2)′-[(a +b )x ]′+(ab )′=2x -a -b ,故选D.6.函数f (x )=x 2+a 2x(a >0)在x =x 0处的导数为0,则x 0是( ) A .a B .±a C .-a D .a 2[答案] B[解析] 解法1:f ′(x )=⎝ ⎛⎭⎪⎫x 2+a 2x ′ =2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, ∴f ′(x 0)=x 20-a 2x 20=0,得:x 0=±a . 解法2:∵f ′(x )=⎝ ⎛⎭⎪⎫x 2+a 2x ′=⎝⎛⎭⎫x +a 2x ′=1-a 2x 2, ∴f ′(x 0)=1-a 2x 20=0,即x 20=a 2,∴x 0=±a . 故选B.7.下列函数在x =0处没有切线的是( )A .y =3x 2+cos xB .y =x sin xC .y =1x+2x D .y =1cos x[答案] C[解析] ∵函数y =1x+2x 在x =0处不可导, ∴函数y =1x+2x 在x =0处没有切线.故选C. 8.(2014·济南市高二下学期期末测试)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则f (x )的解析式可能是( )A .f (x )=a xB .f (x )=log a xC .f (x )=x e xD .f (x )=x ln x[答案] D[解析] 若f (x )=a x ,则f ′(x )=(a x )′=a x ln a ,x ∈R ,不满足题意,排除A ;若f (x )=log a x ,则f ′(x )=1x ln a (a >0,a ≠1),x ≠0,不满足题意,排除B ;若f (x )=x e x ,则f ′(x )=e x +x e x ,x ∈R ,不满足题意,排除C ,故选D.二、填空题9.函数y =2x 3-3x 2+4x -1的导数为____________.[答案] 6x 2-6x +4[解析] y ′=(2x 3)′-(3x 2)′+(4x )′=6x 2-6x +4.10.(2014·江西文,11)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.[答案] (e ,e )[解析] 本题主要考查求导公式及导数的几何意义,∵y =x ln x ,∴y ′=ln x +1,设P (x 0,y 0),∵P 处的切线平行于直线2x -y +1=0,∴y |x =x 0=ln x 0+1=2,∴x 0=e ,将x 0=e 代入y =x ·ln x 得y 0=e ,∴P 点坐标为(e ,e ),解答本题的关键在于掌握曲线在某点处的切线斜率为此点处的导数值.11.曲线y =sin3x 在点P ⎝⎛⎭⎫π3,0处切线的斜率为________.[答案] -3[解析] 设u =3x ,则y =sin u ,∴y ′x =cos u ·(3x )′=3cos u =3cos3x∴所求斜率k =3·cos ⎝⎛⎭⎫3×π3=3cosπ=-3. 三、解答题12.求下列函数的导数.(1)y =3x -lg x ;(2)y =(x 2+1)(x +1);(3)y =x +3x 2+3; (4)y =-sin x +e x .[解析] (1)y ′=(3x )′-(lg x )′=3x ·ln3-1x ln10. (2)y =(x 2+1)(x +1)=x 3+x 2+x +1,∴y ′=3x 2+2x +1.(3)y ′=⎝ ⎛⎭⎪⎫x +3x 2+3′ =(x +3)′(x 2+3)-(x +3)(x 2+3)′(x 2+3)2=(x 2+3)-(x +3)·2x (x 2+3)2=-x 2-6x +3(x 2+3)2. (4)y ′=(-sin x )′+(e x )′=-cos x +e x .一、选择题1.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A .3B .2C .1D.12 [答案] A[解析] 由f ′(x )=x 2-3x =12得x =3.故选A. 2.曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为( ) A.π22B .π2C .2π2D .12(2+π)2 [答案] A[解析] 曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的面积为π22.故选A.3.(2014·新课标Ⅱ理,8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3 [答案] D[解析] 本题考查导数的基本运算及导数的几何意义.令f (x )=ax -ln(x +1),∴f ′(x )=a -1x +1. ∴f (0)=0,且f ′(0)=2.联立解得a =3,故选D.4.(2013·全国大纲文,10)已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =( )A .9B .6C .-9D .-6 [答案] D[解析] y ′=4x 3+2ax ,y ′|x =-1=-4-2a =8,∴a =-6.二、填空题5.若f (x )=log 3(x -1),则f ′(2)=________.[答案] 1ln3[解析] ∵f ′(x )=[log 3(x -1)]′=1(x -1)ln3(x -1)′=1(x -1)ln3, ∴f ′(2)=1ln3. 6.(2012·新课标全国文)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________________.[答案] 4x -y -3=0[解析] 本题考查导数的几何意义,考查切线方程的求法.y ′=3ln x +4,故y ′|x =1=4,所以曲线在点(1,1)处的切线方程为y -1=4(x -1),化为一般式方程为4x -y -3=0.在求过某一点的切线方程时,先通过求导得出切线的斜率,利用点斜式即可写出切线方程,注意最后应将方程化为一般式.7.(2014·三亚市一中月考)曲线y =x 2x -1在点(1,1)处的切线为l ,则l 上的点到圆x 2+y 2+4x +3=0上的点的最近距离是________.[答案] 22-1[解析] y ′|x =1=-1(2x -1)2|x =1=-1,∴切线方程为y -1=-(x -1),即x +y -2=0,圆心(-2,0)到直线的距离d =22,圆的半径r =1,∴所求最近距离为22-1.三、解答题8.设y =8sin 3x ,求曲线在点P ⎝⎛⎭⎫π6,1处的切线方程.[解析] ∵y ′=(8sin 3x )′=8(sin 3x )′=24sin 2x (sin x )′=24sin 2x cos x ,∴曲线在点P ⎝⎛⎭⎫π6,1处的切线的斜率k =y ′|x =π6=24sin 2π6·cos π6=3 3. ∴适合题意的曲线的切线方程为y -1=33⎝⎛⎭⎫x -π6,即63x -2y -3π+2=0. 9.已知抛物线y =ax 2+bx +c (a ≠0)通过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a 、b、c 的值.[解析] ∵y =ax 2+bx +c 过(1,1)点,∴a +b +c =1① ∵y ′=2ax +b ,y ′|x =2=4a +b ,∴4a +b =1② 又曲线过(2,-1)点,∴4a +2b +c =-1③ 解由①②③组成的方程组,得a =3,b =-11,c =9.。
章末检测卷(一)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y =x 2+2x -2在点M 处的切线与x 轴平行,则点M 的坐标是( ) A .(-1,3) B .(-1,-3) C .(-2,-3) D .(-2,3)答案答案 B解析解析 ∵f ′(x )=2x +2=0,∴x =-1. f (-1)=(-1)2+2×2×((-1)-2=-3.∴M (-1,-3).2.函数y =x 4-2x 2+5的单调递减区间是( ) A .(-∞,-1)和(0,1) B .(-1,0)和(1,+∞) C .(-1,1) D .(-∞,-1)和(1,+∞) 答案答案 A解析解析 y ′=4x 3-4x =4x (x 2-1),令y ′<0得x 的范围为(-∞,-1)∪(0,1),故选A. 3.函数f (x )=x 3+ax 2+3x -9,在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .5 答案答案 D解析解析 f ′(x )=3x 2+2ax +3.∵f (x )在x =-3时取得极值,时取得极值, 即f ′(-3)=0,∴27-6a +3=0,∴a =5. 4.函数y =ln 1|x +1|的大致图象为( )答案答案 D解析解析 函数的图象关于x =-1对称,排除A 、C ,当x >-1时,y =-ln(x +1)为减函数,故选D.5.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时F (x )作的功为( )A.3JB.B.2233JC.433J D .23J答案答案 C解析解析 由于F (x )与位移方向成30°角.如图:F 在位移方向上的分力F ′=F ·cos 30°,W =ʃ21(5-x 2)·)·cos 30°cos 30°cos 30°d d x =32ʃ21(5-x 2)d x =32(5x -13x 3)|21=32×83=433(J). 6.二次函数y =f (x )的图象过原点,且它的导函数y =f ′(x )的图象是过第一、二、三象限的一条直线,则函数y =f (x )的图象的顶点所在象限是( ) A .一.一 B .二.二 C .三.三 D .四.四 答案答案 C解析解析 ∵y =f ′(x )的图象过第一、二、三象限,故二次函数y =f (x )的图象必然先下降再上升且对称轴在原点左侧,又因为其图象过原点,故顶点在第三象限.且对称轴在原点左侧,又因为其图象过原点,故顶点在第三象限.7.已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( ) A .(-∞,-3]∪[3,+∞) B .[-3,3]C .(-∞,-3]∪[3,+∞)D .[-3,3] 答案答案 B解析解析 在f ′(x )=-3x 2+2ax -1≤0在(-∞,+∞)恒成立,Δ=4a 2-12≤0⇒-3≤a ≤ 3. 8.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,f (1)+f ′(1)的值等于( ) A .1 B.52 C .3 D .0答案答案 C解析解析 由已知切点在切线上,所以f (1)=12+2=52,切点处的导数为切线斜率,所以f ′(1)=12,所以f (1)+f ′(1)=3.9.曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )A .π20ò(sin x -cos x )d xB .2π40ò(sin x -cos x )d xC .π20ò(cos x -sin x )d x D .2π40ò(cos x -sin x )d x 答案答案 D解析解析 如图所示,两阴影部分面积相等,所示两阴影面积之和等于0<x <π4阴影部分面积的2倍.故选D.10.设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间(1e ,1),(1,e)内均有零点内均有零点B .在区间(1e,1),(1,e)内均无零点内均无零点 C .在区间(1e ,1)内无零点,在区间(1,e)内有零点内有零点D .在区间(1e ,1)内有零点,在区间(1,e)内无零点内无零点答案答案 C解析解析 由题意得f ′(x )=x -33x,令f ′(x )>0得x >3;令f ′(x )<0得0<x <3;f ′(x )=0得x =3,故知函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)上为增函数,在点x =3处有极小值1-ln 3<0;又f (1)=13>0,f (e)=e 3-1<0,f (1e )=13e +1>0.11.方程2x 3-6x 2+7=0在(0,2)内根的个数为( ) A .0 B .1 C .2 D .3 答案答案 B解析解析 令f (x )=2x 3-6x 2+7, ∴f ′(x )=6x 2-12x ,由f ′(x )>0得x >2或x <0;由f ′(x )<0得0<x <2;又f (0)=7>0,f (2)=-1<0, ∴方程在(0,2)内只有一实根.内只有一实根. 12.设曲线y =xn +1(n ∈N *)在(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2 014x 1+log 2 014x 2+…+log 2 014x 2 015的值为( ) A .-log 2 0142 013B .-1C .(log 2 0142 013)-1D .1解析解析 ∵y ′|x =1=n +1,∴切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =n n +1.所以log 2 014x 1+log 2 014x 2+…+log 2 014x 2 013 =log 2 014(x 1·x 2·…·x 2 013)=log 2 014èæøö12·23·…·2 0132 014=log 2 01412 014=-1.二、填空题(本大题共4小题,每小题5分,共20分)13.若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =________. 答案答案 -1解析解析 ∵y ′=k +1x ,∴y ′|x =1=k +1=0,∴k =-1.14.已知函数f (x )=-x 3+ax 在区间(-1,1)上是增函数,则实数a 的取值范围是________. 答案答案 a ≥3解析解析 由题意应有f ′(x )=-3x 2+a ≥0,在区间(-1,1)上恒成立,则a ≥3x 2,x ∈(-1,1)恒成立,故a ≥3.15.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________ 答案答案 (-2,15)解析解析 y ′=3x 2-10=2⇒x =±2,又点P 在第二象限内,∴x =-2,得点P 的坐标为(-2,15)16.函数f (x )=x 3+ax 2+bx +a 2,在x =1时有极值10,那么a ,b 的值分别为________. 答案答案 4,-11解析解析 f ′(x )=3x 2+2ax +b ,f ′(1)=2a +b +3=0,f (1)=a 2+a +b +1=10,îïíïì 2a +b =-3a 2+a +b =9,解得îïíïì a =-3b =3,或îïíïìa =4b =-11,当a =-3时,x =1不是极值点,a ,b 的值分别为4,-11.三、解答题(本大题共6小题,共70分)17.(10分)设函数f (x )=2x 3-3(a +1)x 2+6ax +8,其中a ∈R.已知f (x )在x =3处取得极值.处取得极值. (1)求f (x )的解析式;的解析式;(2)求f (x )在点A (1,16)处的切线方程.处的切线方程. 解 (1)f ′(x )=6x 2-6(a +1)x +6a . ∵f (x )在x =3处取得极值,处取得极值, ∴f ′(3)=6×6×99-6(a +1)×1)×33+6a =0,∴f (x )=2x 3-12x 2+18x +8. (2)A 点在f (x )上,上,由(1)可知f ′(x )=6x 2-24x +18, f ′(1)=6-24+18=0, ∴切线方程为y =16.18.(12分)已知f (x )=log 3x 2+ax +bx ,x ∈(0,+∞),是否存在实数a 、b ,使f (x )同时满足下列两个条件:(1)f (x )在(0,1)上是减函数,在[1,+∞)上是增函数;(2)f (x )的最小值是1,若存在,求出a 、b ,若不存在,说明理由.,若不存在,说明理由.解 设g (x )=x 2+ax +b x ,∵f (x )在(0,1)上是减函数,在[1,+∞)上是增函数,上是增函数, ∴g (x )在(0,1)上是减函数,在[1,+∞)上是增函数,上是增函数,∴îïíïì g ′(1)=0g (1)=3,∴îïíïì b -1=0a +b +1=3,解得îïíïìa =1b =1经检验,a =1,b =1时,f (x )满足题设的两个条件.满足题设的两个条件. 19.(12分)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;的单调区间; (2)若f (x )在(0,1]上的最大值为12,求a 的值.的值.解 函数f (x )的定义域为(0,2), f ′(x )=1x -12-x +a .(1)当a =1时,f ′(x )=-x 2+2x(2-x ), 所以f (x )的单调递增区间为(0,2), 单调递减区间为(2,2).(2)当x ∈(0,1]时,f ′(x )=2-2xx(2-x )+a >0, 即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.20.(12分)某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品需向总公司缴纳a 元(a 为常数,2≤a ≤5)的管理费,根据多年的管理经验,预计当每件产品的售价为x 元时,产品一年的销售量为ke x (e 为自然对数的底数)万件.已知每件产品的售价为40元时,该产品的一年销售量为500万件,经物价部门核定每件产品的售价x 最低不低于35元,最高不超过41元.元.(1)求分公司经营该产品一年的利润L (x )(万元)与每件产品的售价x 的函数关系式;的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L (x )最大?并求出L (x )的最大值.的最大值. 解 (1)由于年销售量为Q (x )=k e x ,则ke 40=500,所以k =500e 40,则年售量为Q (x )=500e 40ex 万件,万件,则年利润L (x )=(x -a -30)500e 40e x=500e 40·x -a -30ex (35≤x ≤41). (2)L ′(x )=500e 40·31+a -x e x . ①当2≤a ≤4时,33≤a +31≤35, 当35≤x ≤41时,L ′(x )≤0;所以x =35时,L (x )取最大值为500(5-a )e 5. ②当4<a ≤5时,35<a +31≤36,令L ′(x )=0,得x =a +31,易知x =a +31时,L (x )取最大值为500e 9-a .综上所述,当2≤a ≤4,每件产品的售价为35元时,该产品一年的利润最大,最大利润为500(5-a )e 5万元;当4<a ≤5,每件产品的售价为(31+a )元时,该产品一年的利润最大,最大利润为500e 9-a 万元.万元.21.(12分)设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;的值;(2)求函数f (x )的单调区间与极值.的单调区间与极值. 解 (1)因为f (x )=a (x -5)2+6ln x , 故f ′(x )=2a (x -5)+6x .令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为处的切线方程为 y -16a =(6-8a )(x -1),由点(0,6)在切线上可得6-16a =8a -6,故a =12.(2)由(1)知,f (x )=12(x-5)2+6ln x (x >0), f ′(x )=x -5+6x =(x -2)(x -3)x . 令f ′(x )=0,解得x 1=2,x 2=3. 当0<x <2或x >3时,f ′(x )>0,故f (x )在(0,2)和(3,+∞)上为增函数;上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.上为减函数.由此可知,f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.22.(12分)已知函数f (x )=ax 3-32x 2+1(x ∈R),其中a >0. (1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程;处的切线方程; (2)若在区间[-12,12]上,f (x )>0恒成立,求a 的取值范围.的取值范围. 解 (1)当a =1时,f (x )=x 3-32x 2+1,f (2)=3.f ′(x )=3x 2-3x ,f ′(2)=6,所以曲线y =f (x )在点(2,f (2))处的切线方程为处的切线方程为 y -3=6(x -2),即y =6x -9. (2)f ′(x )=3ax 2-3x =3x (ax -1). 令f ′(x )=0,解得x =0或x =1a . 以下分两种情况讨论:以下分两种情况讨论: ①若0<a ≤2,则1a ≥12.当x 变化时,f ′(x ),f (x )的变化情况如下表:的变化情况如下表:x (-12,0) 0 (0,12)f ′(x ) +0 -f (x )f (x )极大值当x ∈[-12 ,12]时,时,f (x )>0等价于îíìf (-12)>0,f (12)>0,即îíì5-a8>05+a8>0.解不等式组得-5<a <5.因此0<a ≤2. ②若a >2,则0<1a <12.当x 变化时,f ′(x ),f (x )的变化情况如下表:的变化情况如下表:x (-12,0) 0 (0,1a )1a (1a ,12) f ′(x ) +- 0 + f (x )极大值单调递单调递极小值单调递单调递当x ∈[-12,12]时,时,f (x )>0等价于îíìf (-12)>0,f (1a )>0,即îíì5-a8>01-12a2>0解不等式组得22<a <5或a <-22. 因此2<a <5.综合①②,可知a 的取值范围为0<a <5.。
第一章 1.3 第2课时一、选择题1.已知函数f (x )在点x 0处连续,下列命题中正确的是( ) A .导数为零的点一定是极值点B .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极小值C .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值D .如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极大值 [答案] C[解析] 由极大值的定义可知C 正确.2.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 [答案] C[解析] f ′(x )的图象有4个零点,且全为变号零点,所以f (x )有4个极值点,且f ′(x )的函数值由正变负为极大值点,由负变正为极小值点,故选C.3.函数f (x )=x +1x 的极值情况是( )A .当x =1时,极小值为2,但无极大值B .当x =-1时,极大值为-2,但无极小值C .当x =-1时,极小值为-2;当x =1时,极大值为2D .当x =-1时,极大值为-2;当x =1时,极小值为2 [答案] D[解析] f ′(x )=1-1x2,令f ′(x )=0,得x =±1,函数f (x )在区间(-∞,-1)和(1,+∞)上单调增,在(-1,0)和(0,1)上单调减,∴当x =-1时,取极大值-2,当x =1时,取极小值2.故选D.4.(2013·北师大附中高二期中)函数y =14x 4-13x 3的极值点的个数为( )A .0B .1C .2D .3[答案] B[解析] y ′=x 3-x 2=x 2(x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表故选5.函数y =f (x )=x 3-3x 的极大值为m ,极小值为n ,则m +n 为( ) A .0 B .1 C .2 D .4[答案] A[解析] y ′=3x 2-3,令y ′=0,得3(x +1)(x -1)=0, 解得x 1=-1,x 2=1,当x <-1时,y ′>0;当-1<x <1时,y ′<0; 当x >1时,y ′>0,∴函数在x =-1处取得极大值,m =f (-1)=2; 函数在x =1处取得极小值,n =f (1)=-2. ∴m +n =2+(-2)=0.6.函数y =f (x )=(x 2-1)3+1在x =-1处( ) A .有极大值 B .有极小值C .无极值D .无法判断极值情况 [答案] C[解析] f ′(x )=6x (x 2-1)2=6x (x -1)2·(x +1)2虽有f ′(-1)=0,但f ′(x )在x =-1的左右不变号,∴函数f (x )在x =-1处没有极值.故选C.7.对于函数f (x )=x 3-3x 2,给出命题: ①f (x )是增函数,无极值;②f (x )是减函数,无极值;③f (x )的递增区间为(-∞,0),(2,+∞),递减区间为(0,2); ④f (0)=0是极大值,f (2)=-4是极小值. 其中正确的命题有( ) A .1个 B .2个 C .3个 D .4 个[答案] B[解析] f ′(x )=3x 2-6x =3x (x -2),令f ′(x )>0,得x >2或x <0, 令f ′(x )<0,得0<x <2,∴①②错误.故选B.8.(2013·辽宁实验中学期中)函数f (x )=-xe x (a <b <1),则( )A .f (a )=f (b )B .f (a )<f (b )C .f (a )>f (b )D .f (a ),f (b )的大小关系不能确定 [答案] C[解析] f ′(x )=(-x e x )′=(-x )′·e x -(-x )·(e x )′(e x )2=x -1ex .当x <1时,f ′(x )<0,∴f (x )为减函数, ∵a <b <1,∴f (a )>f (b ).9.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为34B .最大值为1,最小值为4C .最大值为13,最小值为1D .最大值为-1,最小值为-7 [答案] A[解析] 由y ′=2x -1=0,得x =12,f (-3)=13,f ⎝⎛⎭⎫12=34,f (0)=1,∴f (x )在[-3,0]上的最大值为13,最小值为34.故选A.二、填空题10.函数f (x )=x (x -m )2在x =2处有极大值,则常数m 的值为____________. [答案] 6[解析] ∵f (x )=x (x -m )2=x 3-2mx 2+m 2x , ∴f ′(x )=3x 2-4mx +m 2,由题意得,f ′(2)=0, ∴m =6或2,当m =2时,函数f (x )在x =2处取极小值,故m =6.11.函数y =x -2x 在[0,4]上的最大值是__________,最小值是____________. [答案] 0 -1 [解析] y ′=1-1x,令y ′=0,得x =1, f (0)=0,f (1)=-1,f (4)=0,∴函数y =x -2x 的最大值为0,最小值为-1.12.(2014·河北冀州中学期中)若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________.[答案] [-1,1][解析] f ′(x )=1+a cos x ,由条件知f ′(x )≥0在R 上恒成立,∴1+a cos x ≥0,a =0时显然成立;a >0时,∵-1a ≤cos x 恒成立,∴-1a ≤-1,∴a ≤1,∴0<a ≤1;a <0时,∵-1a ≥cos x 恒成立,∴-1a ≥1,∴a ≥-1,即-1≤a <0,综上知-1≤a ≤1.三、解答题13.求下列函数的极值. (1)y =x 2-7x +6;(2)y =x 3-27x .[分析] 求函数极值需求f ′(x )=0的解及f ′(x )>0和f ′(x )<0的范围. [解析] (1)y ′=(x 2-7x +6)′=2x -7. 令y ′=0,解得x =72.当x 变化时,y ′,y 的变化情况如下表.当x =72时,y 有极小值,且y 极小值=-254.(2)y ′=(x 3-27x )′=3x 2-27=3(x +3)(x -3).令y ′=0,解得x 1=-3,x 2=3. 当x 变化时,y ′,y 的变化情况如下表:极大值极小值一、选择题1.(2013·聊城市莘县实验高中高二下学期模块测试)函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内极值点有( )A .1个B .2个C .3个D .4个[答案] C[解析] 由f ′(x )的图象可知,函数f (x )在区间(a ,b )内,先增,再减,再增,最后再减,故函数f (x )在区间(a ,b )内有三个极值点.故选C.2.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为( ) A .-1<a <2 B .-3<a <6 C .a <-1或a >2 D .a <-3或a >6 [答案] D[解析] f ′(x )=3x 2+2ax +a +6.因为f (x )既有极大值又有极小值,所以Δ>0,即4a 2-4×3×(a +6)>0,即a 2-3a -18>0,解得a >6或a <-3.故选D.3.函数y =ax 3+bx 2取得极大值或极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0 [答案] D[解析] y ′=3ax 2+2bx ,由题设知0和13是方程3ax 2+2bx =0的两根,∴a +2b =0.故选D.4.(2014·山东省德州市期中)已知函数f (x )=e x (sin x -cos x ),x ∈(0,2013π),则函数f (x )的极大值之和为( )A.e 2π(1-e 2012π)e 2π-1B .e π(1-e 2012π)1-e 2πC.e π(1-e 1006π)1-e 2πD .e π(1-e 1006π)1-e π[答案] B[解析] f ′(x )=2e x sin x ,令f ′(x )=0得sin x =0,∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增,当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减,∴当x =(2k +1)π时,f (x )取到极大值,∵x ∈(0,2013π),∴0<(2k +1)π<2013π,∴0≤k <1006,k ∈Z .∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2011π)=e π+e 3π+e 5π+…+e 2011π=e π[1-(e 2π)1006]1-e 2π=e π(1-e 2012π)1-e 2π,故选B.二、填空题5.若函数y =2x 3-3x 2+a 的极大值是6,则a =________. [答案] 6[解析] y ′=6x 2-6x =6x (x -1),易知函数f (x )在x =0处取得极大值6,即f (0)=6,∴a =6. 6.函数f (x )=sin x +cos x ,x ∈⎣⎡⎦⎤-π2,π2的最大、最小值分别是________. [答案]2,-1[解析] f ′(x )=cos x -sin x =0, ∴tan x =1,∵x ∈⎣⎡⎦⎤-π2,π2,∴x =π4, 当-π2<x <π4时,f ′(x )>0,π4<x <π2时,f ′(x )<0, ∴x =π4是函数f (x )的极大值点.∵f ⎝⎛⎭⎫-π2=-1,f ⎝⎛⎭⎫π2=1,f ⎝⎛⎭⎫π4= 2. ∴f (x )的最大值为2,最小值为-1.7.已知f (x )=x 3-3bx +3b 在(0,1)内有极小值,则实数b 的取值范围是________. [答案] (0,1)[解析] ∵f ′(x )=3x 2-3b =3(x 2-b ).因为函数f (x )在(0,1)内有极小值,故方程3(x 2-b )=0在(0,1)内有解,所以0<b <1,即0<b <1. 三、解答题8.(2013·新课标Ⅰ文,20)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. [解析] (1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)(e x -12).令f ′(x )=0得,x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2). 9.(2014·三峡名校联盟联考)已知函数f (x )=ln x +x 2+ax . (1)当a =-3时,求函数y =f (x )的极值点;(2)当a =-4时,求方程f (x )+x 2=0在(1,+∞)上的根的个数. [解析] (1)f (x )=ln x +x 2-3x ,f ′(x )=1x +2x -3,令f ′(x )=0,则x =1或x =12,由f ′(x )>0得0<x <12,或x >1,∴f (x )在(0,12)和(1,+∞)上单调递增,在(12,1)上单调递减,∴f (x )的极大值点x =12,极小值点x =1.(2)当a =-4时,f (x )+x 2=0,即ln x +2x 2-4x =0, 设g (x )=ln x +2x 2-4x ,则g ′(x )=1x +4x -4=4x 2-4x +1x≥0,则g(x)在(0,+∞)上单调递增,又g(1)=-2<0,g(2)=ln2>0,所以g(x)在(1,+∞)上有唯一实数根.。
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.已知曲线y=f(x)在点(1,f(1))处的切线方程为2x-y+2=0,则f′(1)=() A.4B.-4C.-2D.2【解析】由导数的几何意义知f′(1)=2,故选D.【答案】 D2.(2016·衡水高二检测)若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y+1=0,则()A.f′(x0)>0B.f′(x0)=0C.f′(x0)<0 D.f′(x0)不存在【解析】切线的斜率为k=-2,由导数的几何意义知f′(x0)=-2<0,故选C.【答案】 C3.已知曲线y=x3在点P处的切线的斜率k=3,则点P的坐标是()【导学号:05410006】A.(1,1) B.(-1,1)C.(1,1)或(-1,-1) D.(2,8)或(-2,-8)【解析】因为y=x3,所以y′=limΔx→0(x+Δx)3-x3Δx=limΔx→0[3x2+3x·Δx+(Δx)2]=3x2.由题意,知切线斜率k=3,令3x2=3,得x=1或x=-1.当x=1时,y=1;当x=-1时,y=-1.故点P的坐标是(1,1)或(-1,-1),故选C.【答案】 C4.(2016·银川高二检测)若曲线f(x)=x2的一条切线l与直线x+4y-8=0垂直,则l 的方程为( )A .4x -y -4=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0【解析】 设切点为(x 0,y 0),∵f ′(x )=lim Δx →0 (x +Δx )2-x 2Δx =lim Δx →0 (2x +Δx )=2x .由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,∴x 0=2,∴切点坐标为(2,4),∴切线方程为y -4=4(x -2),即4x -y -4=0,故选A.【答案】 A5.曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2处的切线的斜率为( )A .2B .-4C .3D.14【解】 因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2处的切线斜率为k =-4,故选B. 【答案】 B 二、填空题6.已知函数y =f (x )的图象如图1-1-3所示,则函数y =f ′(x )的图象可能是__________(填序号).图1-1-3【解析】 由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时f ′(x )=0,当x >0时f ′(x )<0,故②符合.【答案】 ②7.曲线y =x 2-2x +3在点A (-1,6)处的切线方程是 __________.【解析】 因为y =x 2-2x +3,切点为点A (-1,6),所以斜率k =lim Δx →0(-1+Δx )2-2(-1+Δx )+3-(1+2+3)Δx=lim Δx →0(Δx -4)=-4,所以切线方程为y -6=-4(x +1),即4x +y -2=0. 【答案】 4x +y -2=08.若曲线y =x 2+2x 在点P 处的切线垂直于直线x +2y =0,则点P 的坐标是__________.【解析】 设P (x 0,y 0),则y ′=lim Δx →0 (x 0+Δx )2+2(x 0+Δx )-x 20-2x 0Δx=lim Δx →0(2x 0+2+Δx )=2x 0+2.因为点P 处的切线垂直于直线x +2y =0, 所以点P 处的切线的斜率为2,所以2x 0+2=2,解得x 0=0,即点P 的坐标是(0,0). 【答案】 (0,0) 三、解答题9.(2016·安顺高二检测)已知抛物线y =f (x )=x 2+3与直线y =2x +2相交,求它们交点处抛物线的切线方程.【解】 由方程组⎩⎨⎧y =x 2+3,y =2x +2,得x 2-2x +1=0,解得x=1,y=4,所以交点坐标为(1,4),又(Δx+1)2+3-(12+3)Δx=Δx+2.当Δx趋于0时,Δx+2趋于2,所以在点(1,4)处的切线斜率k=2,所以切线方程为y-4=2(x-1),即y=2x+2.10.试求过点P(3,5)且与曲线y=x2相切的直线方程.【解】y′=limΔx→0ΔyΔx=limΔx→0(x+Δx)2-x2Δx=2x.设所求切线的切点为A(x0,y0).∵点A在曲线y=x2上,∴y0=x20,又∵A是切点,∴过点A的切线的斜率k=2x0,∵所求切线过P(3,5)和A(x0,y0)两点,∴其斜率为y0-5x0-3=x20-5x0-3.∴2x0=x20-5 x0-3,解得x0=1或x0=5.从而切点A的坐标为(1,1)或(5,25).当切点为(1,1)时,切线的斜率为k1=2x0=2;当切点为(5,25)时,切线的斜率为k2=2x0=10.∴所求的切线有两条,方程分别为y-1=2(x-1)和y-25=10(x-5),即y=2x-1和y=10x-25.[能力提升]1.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于() A.2 B.-1C.1 D.-2【解析】依导数定义可求得,y ′=3x 2+a ,则⎩⎨⎧13×a +b =3.3×12+a =k ,k +1=3,由此解得⎩⎨⎧a =-1,b =3,k =2,所以2a +b =1,选C.【答案】 C2.(2016·天津高二检测)设f (x )为可导函数,且满足lim Δx →0f (1)-f (1-x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( ) 【导学号:05410007】A .2B .-1C .1D .-2【解析】 ∵lim Δx →0f (1)-f (1-x )2x=12lim Δx →0f (1-x )-f (1)-x =-1,∴lim Δx →0f (1-x )-f (1)-x =-2,即f ′(1)=-2.由导数的几何意义知,曲线在点(1,f (1))处的切线斜率k =f ′(1)=-2,故选D.【答案】 D3.(2016·郑州高二检测)已知直线x -y -1=0与抛物线y =ax 2相切,则a 的值为________.【解析】 设切点为P (x 0,y 0). 则f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0a (x 0+Δx )2-ax 20Δx=lim Δx →0(2ax 0+a Δx )=2ax 0,即2ax 0=1.又y 0=ax 20,x 0-y 0-1=0,联立以上三式,得⎩⎨⎧2ax 0=1,y 0=ax 20,x 0-y 0-1=0,解得a =14. 【答案】 144.已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公切线,求a ,b 的值.【解】 因为f ′(x )=lim Δx →0ΔyΔx=lim Δx →0 a (x +Δx )2+1-(ax 2+1)Δx =2ax ,所以f ′(1)=2a ,即切线斜率k 1=2a . 因为g ′(x )=lim Δx →0ΔyΔx=lim Δx →0 (x +Δx )3+b (x +Δx )-(x 3+bx )Δx =3x 2+b ,所以g ′(1)=3+b ,即切线的斜率k 2=3+b . 因为在交点(1,c )处有公切线, 所以2a =3+b .①又因为c =a +1,c =1+b , 所以a +1=1+b ,即a =b , 代入①式,得⎩⎨⎧a =3,b =3.。
新课标高二数学选修2-2第一章导数及其应用测试题(含答案)案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作1)眼神关注客人,当客人距3米距离侯客迎询问客户送客户要求注意事项时,应主动跨出自己的位置迎宾,然后15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
描述:例题:高中数学选修2-2(人教B版)知识点总结含同步练习题及答案
第一章 导数及其应用 1.3 导数的应用
一、学习任务
1. 理解函数的单调性与导数的关系;会利用导数研究函数的单调性;会求不超过三次的多项式
函数的单调区间.2. 了解函数的极大(小)值,最大(小)值的概念;了解函数的极值与最值的区别和联系;掌
握求函数的极值与最值的方法.
3. 体会导数在解决实际问题中的作用;会利用导数解决实际生活中的有关利润最大、用料最
省、效率最高等优化问题;掌握最优化问题的建模及求解.二、知识清单
导数与函数的图象
利用导数研究函数的单调性
利用导数求函数的极值
利用导数求函数的最值
利用导数处理生活中的优化问题
三、知识讲解
1.导数与函数的图象
(1)导数 表示函数 在点 处的切线斜率.当切线斜率为正值时,
切线的倾斜角小于 ,函数曲线呈上升状态;当切线的斜率为负值时,切线的倾斜角大于 且小于 ,函数曲线呈下降状态.
(2)如果在区间 内恒有 ,那么函数 在区间 内是常函数.
()f ′x 0y =f (x )(,f ()x 0x 090∘90∘180∘(a ,
b )
(x )=0f ′y =f (x )(a ,b ) 是函数 的导函数, 的图象如图所示,则 的图象最有可能是下列选
项中的( )
(x )f ′f (x )y =(x )f ′f (x )
y=f
(x)
已知函数 的图象如图所示,则导函数
f(x)(a,b)则函数 在开区间
0.001 m
)?
S
(2)求面积 的最大值.解:(1)依题意,以
y=f(x)(−3,1)
2。
章末质量评估(一)(时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.曲线y =12x 2-2x 在点⎝ ⎛⎭⎪⎫1,-32处的切线的倾斜角为( ).A .-135°B .45°C .-45°D .135°解析 y ′=x -2,所以斜率k =1-2=-1,因此,倾斜角为135°. 答案 D2.下列求导运算正确的是( ).A.⎝ ⎛⎭⎪⎫x +3x ′=1+3x 2 B .(log 2x )′=1x ln 2 C .(3x )′=3x log 3eD .(x 2cos x )′=-2x sin x解析 ⎝ ⎛⎭⎪⎫x +3x ′=1-3x 2,所以A 不正确;(3x )′=3x ln 3,所以C 不正确;(x 2cosx )′=2x cos x +x 2·(-sin x ),所以D 不正确;(log 2x )′=1x ln 2,所以B 正确.故选B. 答案 B 3.|sin x |d x 等于( ).A .0B .1C .2D .4解析 |sin x |d x =sin x d x +(-sin x )d x =()-cos x ⎪⎪⎪π+cosx ⎪⎪⎪2ππ=1+1+1+1=4. 答案 D4.函数y =1+3x -x 3有( ).A .极小值-1,极大值1B .极小值-2,极大值3C .极小值-2,极大值2D .极小值-1,极大值3解析 y ′=-3x 2+3,令y ′=0得,x =1或x =-1, ∴f (1)=3,f (-1)=-1. 答案 D 5.函数f (x )=x 2x -1( ).A .在(0,2)上单调递减B .在(-∞,0)和(2,+∞)上单调递增C .在(0,2)上单调递增D .在(-∞,0)和(2,+∞)上单调递减 解析 f ′(x )=2x (x -1)-x 2(x -1)2=x 2-2x(x -1)2=x (x -2)(x -1)2. 令f ′(x )=0得x 1=0,x 2=2.∴x ∈(-∞,0)和(2,+∞)时,f ′(x )>0. x ∈(0,1)∪(1,2)时,f ′(x )<0. 答案 B6.函数y =x 4-4x +3在区间[-2,3]上的最小值为( ).A .72B .36C .12D .0解析y′=4x3-4,令y′=0,4x3-4=0,x=1,当x<1时,y′<0;当x>1时,y′>0得y极小值=y|x=1=0,而端点的函数值y|x=-2=27,y|x=3=72,得y min=0.答案 D7.一物体在力F(x)=3x2-2x+5(力单位:N,位移单位:m)作用力下,沿与力F(x)相同的方向由x=5 m直线运动到x=10 m处做的功是().A.925 J B.850 J C.825 J D.800 J解析W=F(x)d x=(3x2-2x+5)d x=(x3-x2+5x)⎪⎪105=(1 000-100+50)-(125-25+25)=825 (J).答案 C8.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为().A.-1<a<2 B.-3<a<6C.a<-1或a>2 D.a<-3或a>6解析因为f(x)有极大值和极小值,所以导函数f′(x)=3x2+2ax+(a+6)有两个不等实根,所以Δ=4a2-12(a+6)>0,得a<-3或a>6.答案 D9.已知f(x)的导函数f′(x)图象如右图所示,那么f(x)的图象最有可能是图中的().解析∵x∈(-∞,-2)时,f′(x)<0,∴f(x)为减函数;同理f(x)在(-2,0)上为增函数,(0,+∞)上为减函数.答案 A10.由直线y=x,y=-x+1及x轴围成平面图形的面积为().解析画出图形,由定积分定义可知选C.答案 C11.设曲线y=x n+1(n∈N*)在(1,1)处的切线与x轴的交点的横坐标为x n,则log2 010x1+log2 010x2+…+log2 010x2 009的值为( ).A .-log 2 0102 009B .-1C .(log 2 0102 009)-1D .1解析 ∵y ′|x =1=n +1,∴切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =nn +1.所以log 2 010x 1+log 2 010x 2+…+log 2 010x 2 009 =log 2 010(x 1·x 2·…·x 2 009)=log 2 010⎝ ⎛⎭⎪⎫12·23·…·2 0092 010=log 2 01012 010=-1. 答案 B12.由曲线y =x 2和直线x =0,x =1,y =t 2,t ∈(0,1)所围成的图形(阴影部分)的面积的最小值为 ( ) A.14 B.13 C.12D.23解析 面积为(t 2-x 2)d x + (x 2-t 2)d x=⎝ ⎛⎭⎪⎫t 2x -13x 3⎪⎪ t 0+⎝ ⎛⎭⎪⎫13x 3-t 2x ⎪⎪1t =43t 3-t 2+13, 下面求函数f (t )=43t 3-t 2+13在(0,1)上的最小值.f ′(x )=4t 2-2t ,在⎝ ⎛⎭⎪⎫0,12上f ′(t )<0,在⎝ ⎛⎭⎪⎫12,1上f ′(t )>0,所以f (t )=43t 3-t 2+13在⎝ ⎛⎭⎪⎫0,12上为减函数,在⎝ ⎛⎭⎪⎫12,1上为增函数,所以当t =12时,f (t )有最小值f ⎝ ⎛⎭⎪⎫12=43⎝ ⎛⎭⎪⎫123-⎝ ⎛⎭⎪⎫122+13=14.答案 A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若f (x )=x 3,f ′(x 0)=3,则x 0的值为________. 解析 f ′(x 0)=3x 20=3,∴x 0=±1. 答案 ±114.曲线y =ln x 在点M (e,1)处的切线的斜率是________,切线的方程为________. 解析 由于y ′=1x ,∴k =y ′|x =e =1e ,故切线的方程为y -1=1e (x -e),故y =1ex . 答案 1e x -e y =015.函数y =x 3+x 2-5x -5的单调递增区间是________. 解析 由y ′=3x 2+2x -5>0得x <-53,或x >1. 答案 ⎝ ⎛⎭⎪⎫-∞,-35,(1,+∞)16.若(x -k )d x =32,则实数k 的值为________.解析 ∫10(x -k )d x =⎝ ⎛⎭⎪⎫12x 2-k x ⎪⎪⎪10=12-k =32,∴k =-1. 答案 -1三、解答题(本大题共4小题,共40分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设函数f (x )=2x 3-3(a +1)x 2+6ax +8,其中a ∈R .已知f (x )在x =3处取得极值. (1)求f (x )的解析式;(2)求f (x )在点A (1,16)处的切线方程. 解 (1)f ′(x )=6x 2-6(a +1)x +6a . ∵f (x )在x =3处取得极值,∴f′(3)=6×9-6(a+1)×3+6a=0,解得a=3.∴f(x)=2x3-12x2+18x+8.(2)A点在f(x)上,由(1)可知f′(x)=6x2-24x+18,f′(1)=6-24+18=0,∴切线方程为y=16.18.(10分)给定函数f(x)=x33-ax2+(a2-1)x和g(x)=x+a2x.(1)求证:f(x)总有两个极值点;(2)若f(x)和g(x)有相同的极值点,求a的值.(1)证明因为f′(x)=x2-2ax+(a2-1)=[x-(a+1)]·[x-(a-1)],令f′(x)=0,解得x1=a+1,x2=a-1.当x<a-1时,f′(x)>0;当a-1<x<a+1,f′(x)<0.所以x=a-1为f(x)的一个极大值点.同理可证x=a+1为f(x)的一个极小值点.所以f(x)总有两个极值点.(2)解因为g′(x)=1-a2x2=(x-a)(x+a)x2.令g′(x)=0,则x1=a,x2=-a.因为f(x)和g(x)有相同的极值点,且x1=a和a+1,a-1不可能相等,所以当-a=a+1时,a=-1 2;当-a=a-1时,a=1 2.经检验,当a=-12和a=12时,x1=a,x2=-a都是g(x)的极值点.19.(10分)已知函数f(x)=x3+ax2+bx+c在x=-1与x=2处都取得极值.(1)求a ,b 的值及函数f (x )的单调区间;(2)若对x ∈[-2,3],不等式f (x )+32c <c 2恒成立,求c 的取值范围. 解 (1)f ′(x )=3x 2+2ax +b ,由题意得⎩⎨⎧ f ′(-1)=0,f ′(2)=0,即⎩⎨⎧3-2a +b =0,12+4a +b =0,解得⎩⎪⎨⎪⎧a =-32,b =-6.∴f (x )=x 3-32x 2-6x +c ,f ′(x )=3x 2-3x -6. 令f ′(x )<0,解得-1<x <2; 令f ′(x )>0,解得x <-1或x >2. ∴f (x )的减区间为(-1,2),增区间为(-∞,-1),(2,+∞). (2)由(1)知,f (x )在(-∞,-1)上单调递增; 在(-1,2)上单调递减;在(2,+∞)上单调递增. ∴x ∈[-2,3]时,f (x )的最大值即为 f (-1)与f (3)中的较大者. f (-1)=72+c ,f (3)=-92+c . ∴当x =-1时,f (x )取得最大值. 要使f (x )+32c <c 2,只需c 2>f (-1)+32c , 即2c 2>7+5c ,解得c <-1或c >72. ∴c 的取值范围为(-∞,-1)∪⎝ ⎛⎭⎪⎫72,+∞.20.(10分)若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43. (1)求函数的解析式.(2)若方程f (x )=k 有3个不同的根,求实数k 的取值范围. 解 f ′(x )=3ax 2-b .(1)由题意得⎩⎪⎨⎪⎧f ′(2)=12a -b =0,f (2)=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13,b =4,故所求函数的解析式为f (x )=13x 3-4x +4.(2)由(1)可得f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =2或x =-2. 当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-2)-2 (-2,2) 2 (2,+∞)f ′(x ) +0 -0 +f (x )283-43f (x )有极大值283,当x =2时,f (x )有极小值-43,所以函数f (x )=13x 3-4x +4的图象大致如图所示.若f (x )=k 有3个不同的根,则直线y =k 与函数f (x )的图象有3个交点,所以-43<k <283.。