人教版八年级下册数学:第十六章 二次根式小结与复习
- 格式:pptx
- 大小:1.60 MB
- 文档页数:18
第16章二次根式小结与复习教学目标:1、了解二次根式的概念和意义、理解并掌握二次根式的性质和混合运算法则;2、用二次根式的意义和性质进行求取值范围化简和运算;3、会初步运用二次根式的性质及运算解决简单的实际数学问题。
教学重难点:重点:二次根式的性质和运算.难点:整式的运算性质及公式在二次根式运算中的灵活运用教学过程:一、回顾与思考本章在数的开方知识的基础上,学习了二次根式的概念、运算法则和加减乘除运算.对于二次根式,要注意被开方数必须是非负数.在二次根式的运算和化简中,要利用运算法则.二次根式的加减法与整式的加减法类似,只要将根式化为最简二次根式后,去括号与合并被开方数相同的二次根式就可以了。
二次根式的乘法与整式的乘法类似,以往学过的乘法公式等都可以运用,二次根式的除法与分式的运算类似,如果分子分母中含有相同的因式,可以直接约去。
至此,我们已经学习了整式(单项式、多项式)、分式、二次根式等代数式的概念和运算,因为字母表示数,所以代数式的运算也就是含有字母符号的算式之间的运算,实际上就是用实数的运算律对这些符号进行运算.请你带着下面的问题,复习一下全章的内容吧。
1.什么是二次根式?二次根式有意义的条件是什么?2.二次根式运算的结果必须是最简二次根式.什么是最简二次根式?试举两例.3.二次根式的乘、除法法则是什么?4.积的算术平方根、商的算术平方根等于什么?5.怎样进行二次根式的加减法?6.怎样进行二次根式的混合运算?二、本章知识结构图三、知识点梳理1、二次根式的概念:一般地,形如√a (a ≥0)的式子叫做二次根式。
对于二次根式的理解: ①带有二次根号;②被开方数是非负数,即a ≥0.[易错点] 二次根式中,被开方数一定是非负数,否则就没有意义.2、二次根式的性质3、最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含_______;(2)被开方数中不含能___________的因数或因式.4.二次根式的乘除法则:5、二次根式的加减:可以先将二次根式化成_____________,再将________________的二次平方根化简(最简二次根式) 二次根式 算术平方根 基本性质 乘除法则 乘除运算 混合运算加减运算 字母表示数 分配律根式进行合并.6、二次根式的混合运算:有理数的混合运算与类似:先算乘(开)方,再算乘除,最后算加减,有括号先算括号里面的.四、考题分类题型一:二次根式有意义的条件及性质教材19页复习题16第1题题型二:二次根式的化简教材19页复习题16第2题题型三:二次根式的化简教材19页复习题16第3题题型四:二次根式的实际应用教材19页复习题16第4题、第7题题型五:二次根式的化简求值教材19页复习题16第5题、第6题五、本章思想方法:一、分类讨论思想二、整体思想三、类比思想六、课后作业必做题:教材复习题16第8题选做题:教材复习题16第9题、第10题。
1 第十六章小结与复习【学习目标】1.通过复习理清本章的知识结构和重要知识点.2.总结本章的重要思想方法和技能技巧.【学习重点】二次根式的性质和运算.【学习难点】整式的运算性质及公式在二次根式运算中的灵活运用.情景导入 生成问题知识结构我能建: 二次根式―→(a )2=a (a ≥0)a 2=a (a ≥0)―→二次根式的化简与运算—⎣⎢⎢⎡二次根式的乘除二次根式的加减自学互研 生成能力知识模块一基础知识【自主探究】 1.若a≥0,a a 的算术平方根表示为2.当a ≤12时,1-2a 有意义;当a <-53时3a +5没有意义. 3.(π-3)2=π-3,(3-2)2,125-20 4.14×48,72÷18=2,12+27 【合作探究】1.在15,0.3,3-1,40中最简二次根式的个数是( A )A .1个B .2个C .3个D .4个 2.已知12-n 是整数,那么自然数n 可以是3、8.(请你写出两个) 3.计算:(1)27+12-45; (2)8+313-12+32;(3)(3-2)100×(3+2)101; (4)(5-2)2+(5+1)(5+3).解:(1)原式=33+23-35=53-35;(2)原式=22+3-22+32=322+323;(3)原式=[(3-2)(3+2)]100×(3+2)=(-1)100×(3+2)=3+2;(4)原式=5-45+4+5+45+3=17. 知识模块二 二次根式的化简求值【自主探究】已知a =3+22,b =3-22,求a 2b -ab 2的值.解:∵a=3+22,b =3-22,∴ab =1,a -b =4 2.2 ∴a 2b -ab 2=ab(a -b)=1·42=4 2.【合作探究】已知m ,m 为实数,满足m =n 2-9+9-n 2+4n -3,求6m -3n 的值. 解:依题意得⎩⎪⎨⎪⎧n 2-9≥0,9-n 2≥0,n -3≠0,解得n =-3,∴m =-23,∴6m -3n =6×⎝ ⎛⎭⎪⎫-23-3×(-3)=5. 知识模块三 二次根式的综合应用【自主探究】 对于任意的正数m 、n 定义运算※为m※n=⎩⎨⎧m -n (m≥n),m +n (m<n ).计算(3※2)×(8※12)的结果为( B ) A .2-4 6 B .2 C .2 5 D .20【合作探究】已知实数x 、y 、a 满足:x +y -8+8-x -y =3x -y -a +x -2y +a +3,试问长度分别为x 、y 、a 的三条线段能否组成一个三角形?如果能,请求出该三角形的周长;如果不能,请说明理由.解:根据二次根式的意义,得⎩⎪⎨⎪⎧x +y -8≥0,8-x -y≥0,解得x +y =8, ∴3x -y -a +x -2y +a +3=0,根据非负数的意义,得⎩⎪⎨⎪⎧x +y =8,3x -y -a =0,x -2y +a +3=0,解得⎩⎪⎨⎪⎧x =3,y =5,a =4.∴可以组成三角形,它的周长为3+5+4=12.交流展示 生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 基础知识知识模块二 二次根式的化简求值知识模块三 二次根式的综合应用检测反馈 达成目标【当堂检测】1.如果代数式x x -1有意义,那么x 的取值范围是( D ) A .x ≥0 B .x ≠1C .x>0D .x ≥0且x≠12.若y =x -3+3-x +2,则x y=9.3.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为3.34.如图,一个长方形被分割成四部分,其中图形①②③都是正方形,且正方形①②的面积分别为4和3,求图中阴影部分的面积.解:阴影部分的面积为(2-3)[3-(2-3)]=(2-3)(3-2+3)=(2-3)(23-2)=63-10.【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
2019人教版八年级数学下册第十六章二次根式二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如√a(a≥0)的式子称为二次根式,其中a为被开方数,√为根号符号。
2.二次根式的双重非负性:对于任何实数a,有√a≥0,且(√a)²=a。
3.二次根式的有理化:将二次根式的分母中含有根号的有理数化为分母中不含根号的有理数。
4.积的算术平方根的性质:√(ab)=√a×√b(a≥0,b≥0)。
5.商的算术平方根的性质:√(a/b)=(√a)/(√b)(b>0)。
6.若a≥0,则√a²=a。
知识点二、二次根式的运算1.二次根式的乘除运算:1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算:1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A、3;B、x;C、x²+1;D、x-12.x取何值时,下列各式在实数范围内有意义。
1)√(2x-1);(2)√(x+4)/(2x+1);(3)1/(x+1);(4)√(3-x)+1;(5)3-x+√(1/x);(6)2x-1.7)若x(x-1)=1,则x的取值范围是()。
8)若(x+3)/(x-3)=(x+3)/(x+3),则x的取值范围是。
3.若3m-1有意义,则m能取的最小整数值是;若20m是一个正整数,则正整数m的最小值是________。
八年级数学(下册)知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.二次根式有意义的条件: 大于或等于0。
3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。
6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a ≥0,b ≥0);=(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(x例3、 在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b < 例1、比较35与53的大小。