三、线性变换的乘积
- 格式:ppt
- 大小:2.45 MB
- 文档页数:15
8.2 线性变换的运算V 是数域F 上的向量空间,用()L V 表示数域F 上向量空间V 的一切线性变换所成的集合.我们将在()L V 中引进加法、数乘和乘法.如何研究线性变换:注10第一个手段是对某空间V 的全体线性变换的集合()L V 引进运算:加法、数乘和乘法。
这样()L V 构成F 上的向量空间。
我们可以利用这些运算来研究线性变换。
20第二个手段。
在空间给定一个基,在该基下引入线性变换的矩阵,从而把空间的几何对象“线性变换”与数量对象“矩阵”进行了对应。
在解析几何中,点与坐标的对应称为“形”“数”转换,现在的线性变换与矩阵的对应是更广义的“形”“数”转换。
这种转换有两方面的好处:一方面可把向量空间与线性变换的一些问题转换为数字计算的问题;另一方面可把一些数量关系的问题联系上空间的性质(如线性变换的性质)而得到解决。
一、加法及其算律定义8.2.1 设()L V στ∈,,对于V 的每一向量ξ,令()()+στξξ与之对应,这样得到V 的一个变换,叫做σ与τ的和,记作+στ,即+στ:()()+στξξξ或()()()()+=+στστξξξ.求σ与τ的和的运算叫做σ与τ的加法.注10先定义和,再定义加法,()()+στξξ是V 中的向量。
+στ应看做一个整体,代表V 的一个新变换。
例8.2.1 设向量空间3F 的两个线性变换,对任意的()3123=x x x F ∈,,ξ,规定: ()()1231212=+x x x x x x x σ,,,,,()()123123312=+0x x x x x x x x x τ---,,,,,则()()()12312323=2x x x x x x x x στ+-,,+,,.命题1 V 的线性变换σ,τ的和+στ也是V 的一个线性变换.即()L V στ∀∈,,()+L V στ∈。
事实上,对任意的a b F ∈,,V ∈,ξη,()()()()()()()()()()()()()()()()()()()()+=.a b a b a b a b a b a b a b a b στστσσττστστστστστστ+=+=+⎡⎤⎡⎤⎣⎦⎣⎦=+⎡⎤⎡⎤⎣⎦⎣⎦=+⎡⎤⎡⎤⎣⎦⎣⎦+++++++++++ξηξηξηξηξηξξηηξξηηξη所以+στ是V 的一个线性变换.容易证明,线性变换的加法满足交换律和结合律.对任意的()L V ρστ∈,,,(1)+=+σττσ;(2)()()++=++ρστρστ;(3)令θ表示V 的零变换,对任意的()L V σ∈,有+=θσσ;(4)设()L V σ∈,σ的负变换σ-是指V 到自身的映射()σσ--:ξξ.σ-也是V 的线性变换,并且()+σσθ-=.命题2 σ-也是V 的线性变换。
奇异值分解的几何解释
奇异值分解(Singular Value Decomposition,SVD)是一种矩阵分解的方法,可以将一个矩阵分解成三个矩阵的乘积。
在几何上,SVD可以用于对数据集进行降维,以及在数据集上进行主成分分析。
在几何上,矩阵可以被视为表示线性变换的操作。
奇异值分解将矩阵分解成三个基本的线性变换的乘积:旋转、缩放和旋转的逆操作。
这三个变换可以用来描述原始矩阵的几何性质。
具体来说,给定一个矩阵A,SVD将其分解为以下形式:
A = UΣV^T
其中,U和V是正交矩阵,Σ是一个对角矩阵,对角线上的元素称为奇异值。
在几何上,矩阵A的列空间由矩阵U的列向量确定,而A的行空间由矩阵V的列向量确定。
奇异值则表示了变换过程中的缩放因子,可以用来量化数据的重要程度。
SVD的几何解释可以理解为对原始数据进行一系列变换,从而找到对数据进行紧凑表示的最佳方式。
这种变换可以帮助我们找到数据中的主要模式和特征,从而进行数据压缩、降噪、特征提取等任务。
第七章线性变换总结篇(高等代数)第 7章线性变换7.1知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。
注:V 的线性变换就是其保持向量的加法与数量乘法的变换。
2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈ 。
性质1. ()()00,σσαα==-;性质2. 若12s ,,,ααα 线性相关,那么()()()12s ,,,σασασα 也线性相关。
性质3. 设线性变换σ为单射,如果12s ,,,ααα 线性无关,那么()()()12s ,,,σασασα也线性无关。
注:设V 是数域P 上的线性空间,12,,,m βββ ,12,,,s γγγ 是V 中的两个向量组,如果:11111221221122221122s ss sm m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ??= ?于是,若()d i m V n =,12,,,n ααα 是V 的一组基,σ是V 的线性变换,12,,,m βββ 是V 中任意一组向量,如果:()()()11111221221122221122n n n nm m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n nn mn b b c b b c b b c σβββααα??= ?设112111222212m m nn mn b b c b b c B b b c ??= ?,12,,,m ηηη 是矩阵B 的列向量组,如果12,,,r i i i ηηη 是12,,,m ηηη 的一个极大线性无关组,那么()()()2,ri i i σβσβσβ 就是()()()12,m σβσβσβ 的一个极大线性无关组,因此向量组()()()12,m σβσβσβ 的秩等于秩()B 。
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。
2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++ΛΛ3)设向量组n ααα,,,21Λ线性相关,则向量组)(),(),(21n T T T αααΛ也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσΛ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21Λ是V 的一个基,且n n a a a εεεεσ12211111)(+++=Λn n a a a εεεεα22221122)(+++=ΛΛΛΛΛn nn n n n a a a εεεεσΛ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσΛΛ=A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσΛΛΛ== 则称A 为线性变换σ在基n εεε,,,21Λ下的矩阵。
4. 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。