一元二次方程华师大版
- 格式:ppt
- 大小:972.50 KB
- 文档页数:10
第2讲 一元二次方程解法复习知识要点1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。
通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。
2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个时,可以根据 的意义,通过开平方法求出这个方程的解。
(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。
如果n <0,则原方程 。
(3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________(4)因式分解法:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个 的乘积;③令每个因式都等于 ,得到两个 方程;④解这两个方程,它们的解就是原方程的解。
3.一元二次方程的根的判别式 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 的实数根,即----------==2,1x x(2)ac b 42-=0⇔一元二次方程有两个 的实数根,即-----==21x x ,(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根。
4. 一元二次方程根与系数的关系(韦达定理)如果一元二次方程20ax bx c ++=(0)a ≠的两根为12,x x ,则12x x += ,12x x =提示:在应用一元二次方程根与系数的关系时,一定要保证元二次方程有实数根。
经典考题:例1、若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______变式1、已知关于x 的方程x 2-3x+2k=0的一个根是1,则k=变式2、一元二次方程230x mx ++=的一个根为1-,则另一个根为 .例2、一元二次方程x (x -2)=2-x 的根是( )A .-1B .2C .1和2D .-1和2变式1、一元二次方程x 2=16的解是 .变式2、方程240x -=的根是( )A .2x =B .2x =-C .1222x x ==-,D .4x = 例3、已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l =0有两个不相等的实数根,则a 的取值范围是( )A 、a <2B 、a >2C 、a <2且a≠lD 、a <﹣2变式1、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠例4、若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( )A .1B .5C .5-D .6变式1、已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( )A .8B .7-C .6D .5 变式2、若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ) A .3 B .-3C .13D .13- 例5、用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -=变式1、用配方法解方程23610x x -+=,则方程可变形为( )A .21(3)3x -=B .213(1)3x -=C .2(31)1x -=D .22(1)3x -= 变式2、用配方法解一元二次方程542=-x x 的过程中,配方正确的是( )A .(1)22=+xB .1)2(2=-xC .9)2(2=+xD .9)2(2=-x例6、解方程:(1)0)3(2)3(2=-+-x x x (2)2(3)4(3)0x x x -+-=.(3)2420x x ++=. (4) 2230x x --=(5)2310x x --=. (6)2220x x --=(7)x 2﹣2x ﹣1=0 (8)x 2﹣7=6x(9)(2x +1)2=(2﹣3x )2 (10)(x ﹣1)(x +2)=70.(11)(x ﹣1)2=4(x +1)2 (12) 3x (x ﹣2)=2(2﹣x )(13)x (x +4)=621 (14)(x ﹣5)2﹣32=0课堂练习题一.选择题(共10小题)1.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a<2且a≠12.若一个三角形两边的长分别是3和7,且第三边的长恰好是方程x2﹣8x+12=0的一个实根,则这个三角形的周长为()A.12 B.15 C.16 D.12或153.若关于y的一元二次方程ky2﹣4y﹣3=3y+4有实根,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0 C.k≤﹣D.k>﹣且k≠04.已知x1、x2是方程x2﹣(k﹣2)x+k2+3k+5=0的两个实数根,则x12+x22的最大值是()A.19 B.18 C.15 D.135.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣C.4 D.﹣16.若关于x的一元二次方程x2+2x+k=0没有实数根,则一次函数y=(k﹣1)x+3的图象经过()A.第二、三、四象限 B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限7.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A.若x2=4,则x=2 B.若x2+2x+k=0有一根为2,则k=﹣8C.方程x(2x﹣1)=2x﹣1的解为x=1 D.若分式的值为零,则x=1,28.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一9.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=110.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或10二.填空题(共8小题)11.如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是.12.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是.13.已知x=1是关于x的一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.14.关于x的方程(1﹣2k)x2﹣2x﹣1=0有两不等实根,则k的取值范围是.15.设m、n是一元二次方程x2+3x﹣7=0的两个根,则m2+4m+n=.16.设m、n是一元二次方程x2+3x﹣7=0的两个根,则m+n=,m2+5m+2n=.17.如果把一元二次方程x2﹣3x﹣1=0的两根各加上1作为一个新一元二次方程的两根,那么这个新一元二次方程是.18.若m是方程x2+x﹣4=0的根,则代数式m3+5m2﹣5的值是.三.解答题(共10小题)19.已知关于x的方程x2+2(a﹣1)x+a2﹣7a﹣4=0.(1)若方程有两个不相等的实数根,求a的取值范围;(2)若方程的两个实数根为x1、x2,且满足x12+x22=32,求a的值.20.已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.21.已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两实根x1、x2满足x1+2x2=9,求m的值.22.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.23.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0(1)求证:方程总有两个不相等的实数根;(2)设方程的两根分别为x1、x2,求x+x的最小值.24.已知关于x的一元二次方程x2﹣2kx+k2+2=2(1﹣x)有两个实数根x1、x2.(1)求实数k的取值范围;(2)若方程的两实数根x1、x2满足|x1+x2|=x1x2﹣1,求k的值.25.关于x的方程x2﹣2mx+m2﹣1=0的两根x1、x2满足(2x1+x2)(x1+2x2)=6,求m的值.26.已知x1、x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请说明理由.27.已知二次方程x2+(2m+1)x+m2﹣2m+=0的两个实数根为α和β,(1)求m的取值范围;(2)若|α|+|β|=2,求m的值.28.已知关于x的一元二次方程(x﹣k)2﹣2x+2k=0有两个实数根x1、x2.(1)求实数k的取值范围;(2)当实数k为何值时,代数式x12+x22﹣x1•x2+1取得最小值,并求出该最小值.。
华东师大版九年级数学上册《一元二次方程》评课稿1. 引言《一元二次方程》是华东师大版九年级数学上册的一章内容。
本评课稿旨在对该章进行全面的评价,从课程设计、教学方法、教材内容、师生互动等多个方面进行细致分析,以期为改进教学提供参考。
2. 课程设计《一元二次方程》的课程设计合理、紧凑。
它以引入、理论讲解、例题演练和习题训练四个环节组成。
整个课程设计贯穿了数学的思维逻辑,帮助学生建立起从问题出发,提出假设,利用数学方法解决问题的思维方式。
2.1 引入环节课程以生动的小故事作为引子,引发学生对一元二次方程的兴趣与思考,激发了学生的学习动力。
同时,引入环节还通过提问和讨论的方式,让学生主动参与,积极思考。
2.2 理论讲解在理论讲解环节,教师系统地介绍了一元二次方程的定义、表达形式以及解的求法。
教师通过板书和举例等形式,使得抽象的数学概念变得具象可感。
同时,教师还提供了较多的实际应用案例,帮助学生将数学知识与实际问题联系起来。
2.3 例题演练通过例题演练环节,学生可以通过跟随教师一起解题,理解和掌握解题方法。
教师在解题过程中重点讲解解题思路和常见解题技巧,使学生能够快速掌握解题方法,并能独立解决类似问题。
2.4 习题训练习题训练环节是学生巩固知识、提高技能的关键环节。
习题训练环节提供了大量的练习题目,这些题目既包括基础训练题,又包括应用题。
习题的难度逐渐增加,有助于学生逐步提高解题能力和应用能力。
3. 教学方法针对《一元二次方程》这一知识点的教学方法使用了多种多样的形式,全面提高学生的参与度和主动性。
3.1 教师讲解与学生互动教师在理论讲解环节进行系统的教学,同时也积极鼓励学生提问,以检查他们的理解情况。
教师与学生的互动,使得教学过程充满活力。
3.2 小组合作学习在例题演练环节,教师将学生分组,让学生互相协作,共同解决问题。
这样的小组合作学习有助于学生间相互帮助、互相借鉴和共同进步。
3.3 互动探究式学习为培养学生的自主学习能力和解决问题的能力,课程设计中融入了互动探究式学习环节。
第二十二章一元二次方程一、知识结构二、学习一元二次方程这章内容作用.一元二次方程是中学数学的主要内容,在初中代数中占有重要的地位,在学习一元二次方程及有关的知识之前,我们已经掌握了实数与代数式的运算、一元一次方程、分式方程和一次方程组,掌握了这些内容,为学习一元二次方程奠定了基础,而且通过一元二次方程的学习,又对以前学过的数学知识加以巩固,同时一元二次方程也为今后学习指数方程、对数方程、函数等等打下基础,掌握了一元二次方程之后,对学习其它学科知识也有重要的意义.三、知识要点:1.关于一元二次方程:①元的个数是一个,方程是整式方程;②含有未知数的最高次项的次数是二次;③若方程有实数根,则解的个数一定是两个.2.关于配方法解一元二次方程:①首先将二次项系数变为1;②方程两边各加上一次项系数一半的平方,这是配方法的关键的一步,方程左边配成完全平方式,当右边是非负实数时,用开平方法即可求得方程的解.3.一元二次方程ax2+bx+c=0(a≠0)的求根公式:x=(b2-4ac0)4.一元二次方程ax2+bx+c=0(a≠0)根的判别式:Δ=b2-4ac,其作用如下:(1)=b2-4ac>0方程有两个不相等的实数根(2)=b2-4ac=0方程有两个相等的实数根(3)=b2-4ac<0方程没有实数根5.列方程解应用题:(列举几种类型仅供参考)①有关数字问题;②有关增长率问题;③有关几何图形面积问题;④有关溶液、浓度、求容器体积问题;⑤有关行程问题、工作量问题.四、实践与探索:设x1,x2是方程ax2+bx+c=0(a0)的两个根,x1+x2=-,x1 x2=,其作用如下:①能运用它由已知方程的一个根,求出另一个根及未知数的系数;②可以利用它求出两根的平方和、立方和、两根倒数和的平方等等;③利用x1+x2和x1·x2的关系可以解特殊的二元二次方程组;④利用根与系数关系判定两根的符号及方程各项系数的符号;⑤利用根与系数的关系,可以造出新的一元二次方程ax2+bx+c=a(x-x1)(x-x2)五、本章主要数学思想、方法.在数学中,使一种研究对象在一定条件下转化为另一种研究对象的思想称为转化的思想,有未知向已知的转化,复杂问题向简单问题的转化,实际问题向数学问题的转化,数与形的转化,一般与特殊的转化,不同的数学问题之间的转化等等.解决一些数学问题实质就是一个不断转化的过程.这样一些数学思想与数学方法与解题技巧在本章教学中有较多的体现.为了实现这些转化引入了许多数学方法.如本章中的降次法、换元法、配方法等.这里特别要指出的是,怎样转换?转换的结果如何?从而概括总结出一般规律,在学习这些重要方法时可以充分领略数学思想的风采,突出数学思想,提高数学素质,提高数学能力。
华师大版数学九年级上册第22章《一元二次方程》教学设计一. 教材分析《一元二次方程》是华师大版数学九年级上册第22章的内容,本章主要让学生掌握一元二次方程的解法、性质和应用。
一元二次方程是初中数学的重要内容,也是高中数学的基础。
通过本章的学习,学生能理解一元二次方程的概念,掌握一元二次方程的解法,并能运用一元二次方程解决实际问题。
二. 学情分析九年级的学生已经具备了一定的代数基础,对于方程的概念和解法有一定的了解。
但是,对于一元二次方程的性质和应用,学生可能还存在一定的困难。
因此,在教学过程中,需要引导学生从实际问题中抽象出一元二次方程,并通过例子让学生感受一元二次方程的应用。
三. 教学目标1.了解一元二次方程的概念,掌握一元二次方程的解法。
2.理解一元二次方程的性质,能运用一元二次方程解决实际问题。
3.培养学生的抽象思维能力,提高学生运用数学解决实际问题的能力。
四. 教学重难点1.一元二次方程的概念和性质。
2.一元二次方程的解法。
3.一元二次方程在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生从实际问题中抽象出一元二次方程。
2.利用数形结合法,帮助学生理解一元二次方程的性质。
3.运用实例讲解法,让学生感受一元二次方程的应用。
4.采用小组合作学习法,培养学生的团队合作精神。
六. 教学准备1.准备相关的实际问题,用于引导学生学习一元二次方程。
2.准备一元二次方程的例题,用于讲解一元二次方程的解法。
3.准备一元二次方程的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过呈现一个实际问题,引导学生从实际问题中抽象出一元二次方程。
例如,某商品打8折后售价为120元,求原价。
2.呈现(10分钟)呈现一元二次方程的定义和性质,让学生了解一元二次方程的概念。
同时,通过例子讲解一元二次方程的解法,让学生掌握解一元二次方程的方法。
3.操练(15分钟)让学生独立完成一些一元二次方程的练习题,巩固所学知识。
第23章一元二次方程 (2)§23.1 一元二次方程 (3)§23.2 一元二次方程的解法 (4)阅读材料 (13)§23.3 实践与探索 (14)小结 (16)复习题 (17)第23章一元二次方程绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?设宽为x 米,可列出方程900)10(=+x x ,整理得0900102=-+x x .方程0900102=-+x x 中未知数x 的最高次数是2,它是一个一元二次方程.§23.1 一元二次方程问题1绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?分析我们已经知道可以运用方程解决实际问题.设长方形绿地的宽为x 米,不难列出方程x (x +10)=900,整理可得0900102=-+x x . (1)问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.分析设这两年的年平均增长率为x .已知去年年底的图书数是5万册,则今年年底的图书数是5(1+x )万册;同样,明年年底的图书数又是今年年底的(1+x )倍,即2)1(5)1)(1(5x x x +=++万册.可列得方程2.7)1(52=+x ,整理可得02.21052=-+x x . (2)思考这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?概括上述两个整式方程中都只含有一个未知数,并且未知数的最高次数都是2,这样的方程叫做一元二次方程(quadric equation with one unknown ).通常可化成如下的一般形式:02=++c bx ax (a 、b 、c 是已知数,a ≠0),其中a 、b 、c 分别叫做二次项系数、一次项系数和常数项.练习将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)232=-x x ;(2)2237x x =-;(3)0)2(3)12(=---x x x x ;(4)4)5(3)1(2-+=-x x x .习题23.11.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件?2.已知关于x 的一元二次方程043)2(22=-++-m x x m 有一个解是0,求m 的值.3.根据题意,列出方程(不必求解):(1)学校中心大草坪上准备建两个相等的圆形花坛,要使花坛的面积是余下草坪面积的一半.已知草坪是长和宽分别为80米和60米的矩形,求花坛的半径.(2)根据科学分析,舞台上的节目主持人应站在舞台前沿的黄金分割点(即该点将舞台前沿这一线段分为两条线段,使较短线段与较长线段之比等于较长线段与全线段之比),视觉和音响效果最好.已知学校礼堂舞台前沿宽20米,问举行文娱会演时主持人应站在何处? §23.2 一元二次方程的解法试一试解下列方程,并说明你所用的方法,与同伴交流.(1)42=x ;(2)012=-x . 概括对于方程(1),有这样的解法:方程 42=x ,意味着x 是4的平方根,所以4±=x ,即 x =±2.这种方法叫做直接开平方法.对于方程(2),有这样的解法:将方程左边用平方差公式分解因式,得(x -1)(x +1)=0,必有 x -1=0或x +1=0,分别解这两个一元一次方程,得1,121-==x x .这种方法叫做因式分解法.思考(1)方程42=x 能否用因式分解法来解?要用因式分解法解,首先应将它化成什么形式?(2)方程012=-x 能否用直接开平方法来解?要用直接开平方法解,首先应将它化成什么形式?做一做试用两种方法解方程09002=-x .例1 解下列方程:(1)022=-x ;(2)025162=-x .解 (1)移项,得22=x .直接开平方,得2±=x .即 2,221=-=x x .(2)移项,得25162=x . 方程两边都除以16,得16252=x直接开平方,得45±=x . 即 45,4521=-=x x .例2 解下列方程:(1)0232=+x x ;(2)x x 32=.解 (1)方程左边分解因式,得x (3x +2)=0.所以 x =0或3x +2=0.得 32,021-==x x .(2)移项,得032=-x x .方程左边分解因式,得x (x -3)=0.所以 x =0或x -3=0,得 3,021==x x .练习1.解下列方程:(1)1692=x ;(2)0452=-x ;(3)025122=-y ;(4)022=-x x ;(5)0)1)(2(=+-t t ;(6)05)1(=-+x x x .2.小明在解方程x x 32=时,将方程两边同除以x ,得到原方程的解x =3,这种做法对吗?为什么?例3 解下列方程:(1)04)1(2=-+x ;(2)09)2(122=--x .分析两个方程都可以转化为 a =2的形式,用直接开平方法求解.解(1)原方程可以变形为4)1(2=+x ,直接开平方,得x +1=±2.所以 3,121-==x x .(2)原方程可以变形为____________________,有 ____________________,得 ____________,21==x x .读一读小张和小林一起解方程x (3x +2)-6(3x +2)=0.小张将方程左边分解因式,得(3x +2)(x -6)=0,所以 3x +2=0或x -6=0.得 6,3221=-=x x . 小林的解法是这样的:移项,得 x (3x +2)=6(3x +2),方程两边都除以(3x +2),得x =6.小林说:“我的方法多简便!”可另一个根32-=x 哪里去了?小林的解法对吗?你能解开这个谜吗?练习解下列方程:(1)016)2(2=-+x ;(2)018)1(2=--x ;(3)1)31(2=-x ;(4)025)32(2=-+x .例4解下列方程: (1)522=+x x ;(2)0342=+-x x .思考能否经过适当变形,将它们转化为a =2的形式,用直接开平方法求解?解(1)原方程两边都加上1,得6122=++x x ,_______________________,_______________________,_______________________.(2)原方程化为43442+-=+-x x ,_______________________,_______________________,_______________________. 归 纳上面,我们把方程0342=+-x x 变形为1)2(2=-x ,它的左边是一个含有未知数的完全平方式,右边是一个非负常数,从而能直接开平方求解.这种解一元二次方程的方法叫做配方法.例5用配方法解下列方程:(1)0762=--x x ;(2)0132=++x x . 解(1)移项,得762=-x x .方程左边配方,得32237332+=+⋅⋅-x x ,即 16)3(2=-x .所以 x -3=±4.得 1,721-==x x .(2) 移项,得132-=+x x . 方程左边配方,得222)23(1)23(232+-=+⋅⋅+x x ,即45)23(2=+x . 所以2523±=+x . 得2523,252321--=+-=x x x .练习1.填空:(1)2x +6x+( )=(x+ )2;(2)2x -8x+( )=(x- )2;(3)x x 232++( )=(x+ )2;(4)42x -6x+( )=4(x- )2=(2x- )2.2.用配方法解下列方程:(1)2x +8x -2=0;(2)2x -5x -6=0.试一试用配方法解方程2x +px +q =0(q p 42-≥0).思考如何用配方法解下列方程?(1)42x -12x -1=0;(2) 32x +2x -3=0.讨论请你和同桌讨论一下: 当二次项系数不为1时,如何应用配方法?探索我们来解一般形式的一元二次方程a 2x +bx +c =0(a ≠0).因为a ≠0,方程两边都除以a ,得02=++ac x a b x . 移项,得ac x a b x -=+2. 配方,得a c a b a b a b x x -=+⋅⋅+222)2()2(22, 即22244)2(a ac b a b x -=+. 因为a ≠0,所以42a >0,当2b -4ac ≥0时,直接开平方,得 aac b a b x 2422-±=+. 所以aac b a b x 2422-±-=, 即aac b b x a ac b b x 24,242221---=-+-=. 由以上研究的结果,得到了一元二次方程a 2x +bx +c =0的求根公式: )04(2422≥--±-=ac b aac b b x . 利用这个公式,我们可以由一元二次方程中系数a 、b 、c 的值,直接求得方程的根.这种解方程的方法叫做公式法.例6 解下列方程:(1)22x +x -6=0;(2)2x +4x =2;(3)52x -4x -12=0;(4)42x +4x +10=1-8x . 解(1)这里a =2,b =1,c =-6,2b -4ac =21-4×2×(-6)=1+48=49, 所以47122491242±-=⨯±-=-±-=a ac b b x , 即23,221=-=x x . (2)将方程化为一般式,得2x +4x -2=0.因为2b -4ac =24, 所以622244±-=±-=x . 即62,6221--=+-=x x .(3) 因为2b -4ac =256, 所以5821016452256)4(±=±=⨯±--=x . 得2,5621=-=x x . (4) 整理,得42x +12x +9=0.因为2b -4ac =0, 所以8012±-=x , 即2321-==x x . 练习 用公式法解下列方程:(1)2x -6x +1=0;(2)22x -x =6;(3)42x -3x -1=x -2;(4)3x (x -3)=2(x -1)(x +1). 思考根据你学习的体会小结一下: 解一元二次方程有哪几种方法?通常你是如何选择的?和同学交流一下.应用现在我们来解决§23.1的问题1:x (x +10)=900,2x +10x -900=0,3755±-=x ,3755,375521+-=--=x x .它们都是所列方程的根,但负数根x1不符合题意,应舍去.取x =3755+-≈25.4,x +10≈35.4,符合题意,因此绿地的宽约为25.4米,长约为35.4米.例7学校生物小组有一块长32m ,宽20m 的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为5402m ,小道的宽应是多少?分析问题中没有明确小道在试验田中的位置,试作出图23.2.1,不难发现小道的占地面积与位置无关.设道路宽为xm ,则两条小道的面积分别为32x 2m 和20x 2m ,其中重叠部分小正方形的面积为2x 2m ,根据题意,得 32×20-32x -20x +2x =540.图23.2.1图23.2.2试一试如果设想把道路平移到两边,如图23.2.2所示,小道所占面积是否保持不变?在这样的设想下,列方程是否符合题目要求?是否方便些?在应用一元二次方程解实际问题时,也像以前学习一元一次方程一样,要注意分析题意,抓住主要的数量关系,列出方程,把实际问题转化为数学问题来解决.求得方程的根之后,要注意检验是否符合题意,然后得到原问题的解答.练习1.学生会准备举办一次摄影展览,在每张长和宽分别为18厘米和12厘米的长方形相片周围镶上一圈等宽的彩纸.经试验,彩纸面积为相片面积的32时较美观,求镶上彩纸条的宽.(精确到0.1厘米)2.竖直上抛物体的高度h 和时间t 符合关系式2021gt t v h -=.爆竹点燃后以初速度0v =20米/秒上升,经过多少时间爆竹离地15米?(重力加速度g ≈10米/秒2)例8某药品经过两次降价,每瓶零售价由56元降为31.5元.已知两次降价的百分率相同,求每次降价的百分率.分析 若一次降价百分率为x ,则一次降价后零售价为原来的(1-x )倍,即56(1-x )元;第二次降价百分率仍为x ,则第二次降价后的零售价为56(1-x )的(1-x )倍.解设平均降价百分率为x ,根据题意,得56(1-x )2=31.5.解这个方程,得75.1,25.021==x x .因为降价的百分率不可能大于1,所以75.12=x 不符合题意,符合本题要求的是x =0.25=25%.答: 每次降价百分率为25%.练习1.某工厂1月份的产值是50000元,3月份的产值达到60000元,这两个月的产值平均月增长的百分率是多少?(精确到0.1%)2.据某中学对毕业班同学三年来参加市级以上各项活动获奖情况的统计,初一阶段有48人次获奖,之后逐年增加,到初三毕业时共有183人次获奖.求这两年中获奖人次的平均年增长率.习题23.21.解下列方程: (1)22x -6=0; (2)27=42x ;(3)32x =4x ; (4)x (x -1)+3(x -1)=0; (5)2)1(+x =2;(6)32)5(-x =2(5-x ).2.解下列方程: (1)2)12(-x -1=0; (2)212)3(+x =2; (3)2x +2x -8=0;(4)32x =4x -1;(5)x (3x -2)-62x =0; (6)2)32(-x =2x . 3.求满足下列要求的x 的所有值: (1)32x -6的值等于21;(2)32x -6的值与x -2的值相等. 4.用适当的方法解下列方程: (1)32x -4x =2x ;(2)312)3(+x =1; (3)2x +(3+1)x =0;(4)x (x -6)=2(x -8);(5)(x +1)(x -1)=x 22;(6)x (x +8)=16; (7)(x +2)(x -5)=1;(8)2)12(+x =2(2x +1).5.已知A =22x +7x -1,B =6x +2,当x 为何值时A =B ?6.已知两个连续奇数的积是255,求这两个奇数.7.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.(精确到0.1米)(第7题)8.某商店2月份营业额为50万元,春节过后3月份下降了30%,4月份比3月份有所增长,5月份的增长率又比4月份的增长率增加了5个百分点(即5月份的增长率要比4月份的增长率多5%),营业额达到48.3万元.问4、5两月营业额增长的百分率各是多少? 9.学校准备在图书馆后面的场地边建一个面积为50平方米的长方形自行车棚.一边利用图书馆的后墙,并利用已有总长为25米的铁围栏.请你设计,如何搭建较合适?阅读材料一元二次方程根的判别式我们在一元二次方程的配方过程中得到22244)2(aac b a b x -=+.(1) 发现当且仅当2b -4ac ≥0时,右式2244a ac b -有平方根.直接开平方,得aacb a b x 2422-±=+. 也就是说,一元二次方程a 2x +bx +c =0(a ≠0)当且仅当系数a 、b 、c 满足条件2b -4ac ≥0时有实数根.观察(1)式我们不难发现一元二次方程的根有三种情况: ① 当2b -4ac >0时,方程有两个不相等的实数根; ② 当2b -4ac =0时,方程有两个相等的实数根ab x x 221-==; ③ 当2b -4ac <0时,方程没有实数根.这里的2b-4ac叫做一元二次方程的根的判别式,用它可以直接判断一个一元二次方程实数根的情况(是否有?如有,两实数根是相等还是不相等?),如对方程2x-x+1=0,可由2b-4ac=1-4<0直接判断它没有实数根;在用公式法解一元二次方程时,往往也是先求出判别式的值,直接代入求根公式.如第27页例6;还可以应用判别式来确定方程中的待定系数,例如:m取什么值时,关于x的方程++-mx-xm22=22()2有两个相等的实数根?求出这时方程的根.§23.3 实践与探索试研究下列问题,并与你的同伴交流、讨论.问题1小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如图23.3.1.图23.3.1(1)如果要求长方体的底面面积为81cm2,那么剪去的正方形边长为多少?(2)如果按下表列出的长方体底面面积的数据要求,那么剪去的正方形边长会发生什么在你观察到的变化中,你感到折合而成的长方体的侧面积会不会有最大的情况?先在上面的表格中记录下你得到的数据,再以剪去的正方形的边长为自变量,折合而成的长方体侧面积为函数,并在直角坐标系中画出相应的点.看看与你的感觉是否一致.问题2阳江市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.探索若调整计划,两年后的财政净收入值为原净收入值的1.5倍、1.2倍、……那么两年中的平均年增长率分别应调整为多少? 又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现两年后市财政净收入翻一番?练习1.某花生种植基地原有花生品种的每公顷产量为3000千克,出油率为55%.改用新品种之后,每公顷收获的花生可加工得到花生油2025千克.已知新品种花生的公顷产量和出油率都比原有品种有所增加,其中出油率增加是公顷产量增长率的一半,求两者的增长率(精确到1%).2.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则应进货多少个?定价为多少?(1)本题如何设未知数较适宜?需要列出哪些相关量的代数式? (2)列得方程的解是否都符合题意?如何解释?(3)请你为商店估算一下,若要获得最大利润,则应进货多少?定价是多少?3.某市人均居住面积14.6平方米,计划在两年后达到18平方米.在预计每年住房面积的增长率时,还应考虑人口的变化因素等.请你把问题补充完整,再予解答.问题3解下列方程,将得到的根填入下面的表格中,观察表格中两个根的和与积,它们和原来的方程的系数有什么联系? (1) 2x -2x =0; (2) 2x +3x -4=0; (3) 2x -5x +6=0.一般地,对于关于x 的一元二次方程2x +px +q =0(p 、q 为已知常数,2p -4q ≥0),试用求根公式求出它的两个根1x 、2x ,算一算21x x +、21x x ⋅的值,你能发现什么结论?与上面观察的结果是否一致?习题23.31.一块长30米、宽20米的长方形操场,现要将它的面积增加一倍,但不改变操场的形状,问长和宽各应增加多少米?(精确到0.1米)2.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)3.为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了2000棵.已知这些学生在初一时种了400棵,若平均成活率95%,求这个年级两年来植树数的平均年增长率.(精确到1%)4.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.服装厂向24名家庭贫困学生免费提供.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.问这批演出服共生产了多少套?5.如图,某建筑物地基是一个边长为30米的正六边形.要环绕地基开辟绿化带,使绿化带的面积和地基面积相等.请你给出设计方案.(画图并标注尺寸)(第5题)6.解下列问题,并和同学讨论一下,有哪些不同的解法:(1)已知关于x的方程2x-px+q=0的两个根是0和-3,求p和q的值;(2)已知关于x的方程2x-6x+2p-2p+5=0的一个根是2,求方程的另一个根和p 的值.小结一、知识结构二、概括1.要联系已有的方程知识,在学习中进一步认识“方程是反映现实世界数量关系的一个有效的数学模型”,在解决实际问题中增强学数学、用数学的自觉性.2.掌握一元二次方程的各种解法:直接开平方法、因式分解法、配方法与公式法.着重体会相互之间的关系及其“转化”的思想,并能应用这一思想方法进行自主探索和合作交流.3.在应用一元二次方程解实际问题时,要注重对数量关系的抽象和分析;得到方程的解之后,必须检验是否符合题意.复习题A组1.解下列方程:(1)32x=2x;(2)62x-40=0;(3)x(3x-1)=3-x;(4)y(y-2)=4-y;(5)4x(1-x)=1;(6)t(t-2)-32t=0.2.已知A=22x+7x-1,B=4x+1,分别求出满足下列条件的x的值:(1)A与B的值互为相反数;(2)A的值比B的值大3.3.已知关于x的方程(2x-m)(mx+1)=(3x+1)(mx-1)有一个根是0,求另一个根和m的值.4.已知三个连续奇数的平方和是371,求这三个奇数.5.要在某正方形广场靠墙的一边开辟一条宽4米的绿化带,使余下部分的面积为100平方米.求原正方形广场的边长.(精确到0.1米)6.村里准备修一条灌溉渠,其横截面是面积为1.6平方米的等腰梯形,它的上底比渠深多2米,下底比渠深多0.4米.求灌溉渠横截面上、下底边的长和灌溉渠的深度.7.求出本章习题23.1中第3题小题(2)所列方程解的近似值(精确到0.1米),并在学校举行大型活动时实地观察、比较一下效果.8.如图,某海关缉私艇在点O处发现在正北方向30海里的A处有一艘可疑船只,测得它正以60海里/时的速度向正东方航行,随即调整方向,以75海里/时的速度准备在B处迎头拦截.问经过多少时间能赶上?(第8题)B组9.解下列方程:(1)4(x -2)2-(3x -1)2=0; (2)(2x -1)2+3(2x -1)+2=0; (3)2x +5=x 52;(4)32x 32--x =0.10.解下列关于x 的方程(a 、b 是常数,且ab ≠0): (1)2x +ax -22a =0;(2)ab 2x -(2a -2b )x -ab =0.11.已知x =1是一元二次方程(a -2)2x +(2a -3)x -a +1=0的一个根,求a 的值. 12.已知关于x 的方程22x -4x +3q =0的一个根是1-2,求它的另一个根和q 的值. 13.已知代数式2x -5x +7,先用配方法说明,不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?14.学校原有一块面积为1500平方米的长方形场地,现结合整治环境,将场地的一边增加了5米,另一边减少了5米,结果使场地的面积增加了10%,求现在场地的长和宽.C 组15.试求出下列方程的解:(1)(2x -x )2-5(2x -x )+6=0;(2)112122=+-+x x xx . 16.证明: 不论m 取何值,关于x 的方程(x -1)(x -2)=2m 总有两个不相等的实数根.17.已知xy ≠0,且32x -2xy -82y =0,求yx的值. 18.已知关于x 的方程(m -1)2x -(m -2)x -2m =0.它总是二次方程吗?试求出它的解.19.某产品每件生产成本为50元,原定销售价65元.经市场预测,从现在开始的第一个季度销售价将下降10%,第二个季度又将回升4%.若要使半年以后的销售总利润不变,如果你作为决策者,将采取什么措施?请将本题补充完整并解答.。
华师大版数学九年级上册22.1《一元二次方程》教学设计一. 教材分析华师大版数学九年级上册22.1《一元二次方程》是整个初中数学的重要内容,也是学生首次接触二次方程。
本节课的内容包括一元二次方程的定义、解法、判别式等,为学生后续学习函数、不等式等数学知识打下基础。
教材通过丰富的例题和练习题,帮助学生掌握一元二次方程的解法,培养学生的数学思维能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,能够熟练运用一次方程和不等式解决问题。
但一元二次方程较为抽象,学生可能难以理解其本质。
同时,学生对于解方程的技巧和方法还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.知识与技能:理解一元二次方程的定义,掌握一元二次方程的解法,能够运用一元二次方程解决实际问题。
2.过程与方法:通过合作交流,学会用代数方法解决实际问题,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的联系,培养学生的团队合作意识。
四. 教学重难点1.重点:一元二次方程的定义,一元二次方程的解法。
2.难点:一元二次方程的解法,判别式的应用。
五. 教学方法1.情境教学法:通过生活实例引入一元二次方程,让学生感受数学与生活的联系。
2.合作学习法:引导学生分组讨论,共同探索一元二次方程的解法,培养学生的团队合作意识。
3.练习法:通过大量的练习题,巩固学生对一元二次方程的理解和掌握。
六. 教学准备1.教学PPT:制作精美的PPT,展示一元二次方程的定义、解法、判别式等知识点。
2.练习题:准备一定数量的一元二次方程练习题,用于课堂练习和课后作业。
3.教学视频:准备一元二次方程的解法教学视频,用于引导学生直观地理解解法过程。
七. 教学过程1.导入(5分钟)利用生活实例引入一元二次方程,激发学生的学习兴趣。
例如,讲解一个实际问题:一个二次函数的图像与x轴相交于A、B两点,已知A点坐标为(1,0),求B点的坐标。