【公开课教案】:平面向量的坐标运算
- 格式:doc
- 大小:122.50 KB
- 文档页数:7
平面向量的坐标运算教案一、教学目标1. 让学生理解平面向量的概念,掌握向量的表示方法。
2. 学生能够运用坐标进行向量的加法、减法、数乘和数量积运算。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
二、教学内容1. 向量的概念及表示方法2. 向量的加法和减法运算3. 向量的数乘运算4. 向量的数量积运算5. 向量的坐标表示及其运算规律三、教学重点与难点1. 教学重点:向量的加法、减法、数乘和数量积运算的坐标表示方法。
2. 教学难点:向量的坐标运算规律和实际应用。
四、教学方法1. 采用讲授法,讲解向量的概念、坐标表示和运算规律。
2. 利用多媒体课件,展示向量的图形,帮助学生直观理解。
3. 举实例进行分析,让学生在实际问题中掌握向量坐标运算的方法。
4. 练习题巩固所学知识,提高学生的应用能力。
五、教学过程1. 导入:回顾高中数学中关于向量的基本概念,引导学生进入新课。
2. 讲解向量的概念和表示方法,让学生理解向量的基本性质。
3. 讲解向量的加法和减法运算,引导学生掌握运算规律。
4. 讲解向量的数乘运算,让学生理解数乘对向量的影响。
5. 讲解向量的数量积运算,引导学生掌握数量积的计算方法。
6. 利用多媒体课件,展示向量的图形,让学生直观理解向量运算。
7. 举例分析,让学生在实际问题中运用向量坐标运算方法。
8. 布置练习题,巩固所学知识,提高学生的应用能力。
9. 总结本节课的主要内容,强调向量坐标运算的规律。
10. 布置课后作业,让学生进一步巩固向量坐标运算的知识。
六、教学评估1. 课堂提问:通过提问了解学生对向量坐标运算的理解程度。
2. 练习题:布置课堂练习题,评估学生对向量坐标运算的掌握情况。
3. 课后作业:收集学生作业,分析其对向量坐标运算的运用能力。
4. 小组讨论:组织学生进行小组讨论,评估学生在团队合作中的表现。
七、教学反思1. 针对学生的掌握情况,调整教学方法和节奏。
2. 针对学生的疑惑,进行解答和巩固。
平面向量的坐标运算(说课稿)北师大附中荣红莉一、【教材的地位和作用】本节内容在教材中有着承上启下的作用,它是在学生对平面向量的基本定理有了充分的认识和正确的应用后产生的,同时也为下一节定比分点坐标公式和中点坐标公式的推导奠定了基础;向量用坐标表示后,对立体几何教材的改革也有着深远的意义,可使空间结构系统地代数化,把空间形式的研究从“定性”推到“定量”的深度。
引入坐标运算之后使学生形成了完整的知识体系(向量的几何表示和向量的坐标表示),为用“数”的运算解决“形”的问题搭起了桥梁。
二、【学习目标】根据教学大纲的要求以及学生的实际知识水平,以期达到以下的目的:1.知识方面:理解平面向量的坐标表示的意义;能熟练地运用坐标形式进行运算。
2.能力方面:数形结合的思想和转化的思想三、【教学重点和难点】理解平面向量坐标化的意义是教学的难点;平面向量的坐标运算则是重点。
我主要是采用启发引导式,并辅助适量的题组练习来帮助学生突破难点,强化重点。
四、【教法和学法】本节课尝试一种全新的教学模式,以建构主义理论为指导,教师在本节课中起的根本作用就是“为学生的学习创造一种良好的学习环境”,结合本节课是新授课的特点,我主要从以下几个方面做准备:(1)提供新知识产生的铺垫知识(2)模拟新知识产生过程中的细节和状态,启发引导学生主动建构(3)创设新知识思维发展的前景(4)通过“学习论坛时间”组织学生的合作学习、讨论学习、交流学习(5)通过“老师信箱时间”指导解答学生的疑难问题(6)通过“深化拓展区”培养学生的创新意识和发现能力。
整个过程学生始终处于交互式的学习环境中,让学生用自己的活动对已有的数学知识建构起自己的理解;让学生有了亲身参与的可能并且这种主动参与就为学生的主动性、积极性的发挥创造了很好的条件,真正实现了“学生是学习的主体”这一理念。
五、【学习过程】1.提供新知识产生的理论基础课堂教学论认为:要使教学过程最优化,首先要把已学的材料与学生已有的信息联系起来,使学生在学习新的材料时有适当的知识冗余。
平面向量的坐标表示教学目标:1. 理解平面向量的概念。
2. 学习平面向量的坐标表示方法。
3. 掌握平面向量的线性运算与坐标表示。
教学重点:1. 平面向量的概念。
2. 坐标表示方法。
3. 线性运算与坐标表示。
教学难点:1. 理解平面向量的坐标表示方法。
2. 掌握平面向量的线性运算与坐标表示。
教学准备:1. 教学PPT。
2. 教学素材。
教学过程:一、导入(5分钟)1. 向量概念的复习。
2. 向量表示方法的学习。
二、平面向量的概念(10分钟)1. 引导学生了解平面向量的定义。
2. 通过实例让学生理解平面向量的概念。
三、坐标表示方法(15分钟)1. 讲解平面向量的坐标表示方法。
2. 让学生通过实例掌握坐标表示方法。
四、线性运算与坐标表示(20分钟)1. 讲解平面向量的线性运算。
2. 让学生通过实例掌握线性运算与坐标表示。
五、巩固练习(10分钟)1. 让学生完成一些有关平面向量的练习题。
2. 引导学生运用所学的知识解决实际问题。
教学反思:本节课通过讲解平面向量的概念、坐标表示方法以及线性运算与坐标表示,让学生掌握平面向量的基本知识。
在教学过程中,要注意引导学生通过实例理解概念和方法,提高学生的实际操作能力。
要加强练习,使学生巩固所学知识。
六、平面向量的几何解释(15分钟)1. 向量起点与终点的表示。
2. 通过图形让学生理解向量的几何解释。
七、向量加法与坐标表示(20分钟)1. 讲解平面向量的加法。
2. 让学生通过实例掌握向量加法与坐标表示。
八、向量减法与坐标表示(15分钟)1. 讲解平面向量的减法。
2. 让学生通过实例掌握向量减法与坐标表示。
九、数乘向量与坐标表示(15分钟)1. 讲解平面向量的数乘。
2. 让学生通过实例掌握数乘向量与坐标表示。
十、向量共线定理(20分钟)1. 讲解向量共线定理。
2. 让学生通过实例理解向量共线定理的应用。
十一、向量垂直与坐标表示(20分钟)1. 讲解平面向量垂直的条件。
2. 让学生通过实例掌握向量垂直与坐标表示。
平面向量的坐标表示教案【导语】平面向量是代数结构,是空间中两个点之间的线段的长度和方向的抽象。
平面向量有多种表示方法,本教案主要介绍平面向量的坐标表示。
一、教学目标:1.了解平面向量的概念和性质;2.掌握平面向量的坐标表示方法;3.能够根据坐标求解平面向量。
二、教学重点与难点:1.重点:平面向量的坐标表示方法。
2.难点:根据坐标求解平面向量。
三、教学准备:教学课件、平面向量的相关教学实例。
四、教学过程:Step 1 知识导入1.教师出示平面向量及其定义。
2.教师引导学生思考:平面向量有哪些表示方法?Step 2 知识讲解1.平面向量的坐标表示方法:平面向量可以用有序数对表示,这个有序数对叫做向量的坐标。
向量的坐标可以通过坐标系来确定。
以平面直角坐标系为例,向量的坐标表示为(向量的x坐标, 向量的y坐标),用箭头表示为a=(a, a)。
2.示例讲解:将平面向量A(2, 3)和B(-1, 4)画在平面直角坐标系上。
Step 3 问题解答1.学生踊跃发言,回答平面向量的坐标表示方法。
2.教师解答学生提出的问题。
Step 4 拓展延伸举一些生活中与平面向量相关的例子,让学生灵活运用平面向量的坐标表示方法。
五、课堂练习1.计算以下平面向量的大小:A(3, 4)、B(-2, 5)、C(0, -1)。
2.已知平面向量A(1, 2)和B(-3, 4),求AB的大小。
六、总结归纳1.学生总结坐标表示平面向量的方法。
2.教师进行总结归纳。
七、课堂小结1.复习本堂课的内容。
2.布置以平面向量的坐标表示为题材的作业。
【教学反思】通过本堂课的教学,学生了解了平面向量的坐标表示方法,掌握了如何根据坐标求解平面向量。
同时,教师通过引导学生思考、解答学生问题的方式提高了课堂的互动性。
融入生活中的实例让学生更好地理解和运用平面向量的坐标表示方法。
在课后作业中布置以平面向量的坐标表示为题材的作业,巩固学生的学习成果。
教案:平面向量的坐标运算第一章:向量的概念及坐标表示1.1 向量的定义解释向量的概念,即有大小和方向的量。
强调向量与标量的区别。
1.2 向量的表示方法介绍向量的表示方法,包括用箭头和粗体字母表示。
解释在坐标系中表示向量的方法。
1.3 向量的坐标运算介绍向量的加法、减法、数乘和点积等基本运算。
强调坐标运算的规则和性质。
第二章:向量的加法和减法2.1 向量加法解释向量加法的概念和几何意义。
给出向量加法的坐标表示公式。
2.2 向量减法解释向量减法的概念和几何意义。
给出向量减法的坐标表示公式。
2.3 相反向量和数乘解释相反向量的概念和性质。
解释数乘的概念和性质。
第三章:向量的数乘和点积3.1 数乘向量解释数乘向量的概念和几何意义。
给出数乘向量的坐标表示公式。
3.2 向量的点积解释向量点积的概念和几何意义。
给出向量点积的坐标表示公式。
3.3 点积的性质和应用介绍点积的性质,如交换律、分配律等。
解释点积在几何上的应用,如求夹角、判断垂直等。
第四章:向量的叉积和叉积的性质4.1 向量的叉积解释向量叉积的概念和几何意义。
给出向量叉积的坐标表示公式。
4.2 叉积的性质介绍叉积的性质,如交换律、分配律等。
解释叉积在几何上的应用,如求平行四边形的面积等。
4.3 叉积与向量垂直的判断解释叉积用于判断两个向量是否垂直。
给出叉积为零的条件。
第五章:向量的模和单位向量5.1 向量的模解释向量模的概念和几何意义。
给出向量模的坐标表示公式。
5.2 单位向量解释单位向量的概念和几何意义。
给出单位向量的坐标表示公式。
5.3 模和单位向量的应用解释模和单位向量在几何上的应用,如求向量的长度、求单位向量等。
第六章:向量的线性组合与基底6.1 向量的线性组合介绍向量的线性组合的概念。
给出向量的线性组合的坐标表示方法。
6.2 基底的概念解释基底的概念和作用。
给出确定一个向量空间的一组基底的方法。
6.3 向量在基底上的表示解释向量在基底上的表示方法。
诚西郊市崇武区沿街学校§平面向量的坐标运算〔一〕教学目的:1.理解平面向量的坐标概念; 2.会用坐标表示向量; 3.掌握平面向量的坐标运算.教学重点:会用坐标表示向量,会进展平面向量的坐标运算. 教学难点:理解平面向量的坐标表示. 教学过程 知识平台1.什么叫平面向量的坐标? 2.怎样用坐标表示向量?3.向量的坐标运算法那么怎样? 情景平台1.如图在平面直角坐标系中,i ,j 分别 为与两个坐标轴同向的单位向量,那么 以下说法正确的有. ①平面上任一向量a=xi+yj ; ②只有当a 的起点在原点是a=(,)x y ;③假设a=OA ,那么终点A 的坐标就是向量a 的坐标; ④假设a=AB ,11(,)A x y ,22(,)B x y ,那么a=2121(,)x x y y --. 2.假设a=11(,)x y ,b=22(,)x y ,λ为实数,那么①a+b=;②a -b=; ③λa=. 【小结】1°平面向量坐标概念;2°向量a=(,)x y 与a 相等的向量坐标都为(,)x y ; 3°向量相等的充要条件; 4°向量的坐标运算:a=11(,)x y ,b=22(,)x y ,那么a+b=1212(,)x x y y ++,a-b=1212(,)x x y y --,λa=11(,)x y λλ;5°假设AB 是表示向量a 的有向线段,点11(,)A x y ,22(,)B x y ,那么a=2121(,)x x y y --,即终点坐标减去相应起点坐标.才能平台 3.a=11(,)x y ,b=22(,)x y ,假设a∥b,那么a ,b 的坐标之间关系如何? 假设a=b ,那么a ,b 的坐标之间关系如何? 4.a=(3,2),b=(1,1)-,c=(2,8)--, 求证:a-2b 与c 一一共线且方向相反.5.平行四边形ABCD 的三个顶点A 、B 、D 的坐标分别为(2,1)-,(1,3)-,(2,2),求顶点C 的坐标.1°运用坐标运算法那么,灵敏解题;2°注意方程思想在向量知识中的应用;3°注意数形结合思想的应用,将几何问题转化为代数问题. 作业:教材P114习题T1,T2,T3A B后记:。
平面向量的坐标运算教学目标1.能准确表述向量的加法.减法.实数与向量积的的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力..2.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辩证思维能力.教学重难点教学重点: 平面向量的坐标运算.教学难点:对平面向量的坐标运算的理解.学情分析学生的知识经验较丰富,具备了教强的抽象思维能力和演绎推理能力。
学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。
学生层次参次不齐,个体差异比较明显。
教学过程一.问题提出1.平面向量的基本定理是什么?2.用坐标表示向量的基本原理是什么?\3.用坐标表示向量,使得向量具有代数特征,并且可以将向量的几何运算转化为坐标运算,为向量的运算拓展一条新的途径.我们需要研究的问题是,向量的和、差、数乘运算,如何转化为坐标运算.二.探究:平面向量的坐标运算思考1:设i、j是与x轴、y轴同向的两个单位向量,若a=(x1,y1),b=(x2,y2),则a=x1i+y1j,b=x2i+y2j,根据向量的线性运算性质,向量a+b,a-b,λa(λ∈R)如何分别用基底i、j表示?a+b=(x1+x2)i+(y1+y2)j,a-b=(x1-x2)i+(y1-y2)j,λa=λx1i+λy1j.思考2:根据向量的坐标表示,向量a+b,a-b,λa的坐标分别如何?a+b=(x1+x2,y1+y2); a-b=(x1-x2,y1-y2); λa=(λx1,λy1).思考3:如何用数学语言描述上述向量的坐标运算?两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.思考4:已知点A(x1,y1),B(x2,y2)那么向量AB 的坐标如何?一般地,一个任意向量的坐标如何计算?2121(,)AB x x y y =--u u u r任意一个向量的坐标等于表示该向量的有向线段的终点坐标减去始点坐标理论迁移例1 已知a=(2,1), b=(-3,4),求 a +b ,a -b ,3a +4b 的坐标.解:a +b =(-1,5),a -b =(5,-3),3a +4b =(-6,19).例2 已知如图平行四边形 ABCD 的三个顶点的坐标分别是A (-2,1)、B (-1,3)、C(3,4),试求顶点D 的坐标.解: 法一:设D 的坐标为(x ,y ),由AB =DC 可得。
1.7平面向量基本定理与坐标运算(优质课)教案教学目标:1.掌握平面向量的正交分解及其坐标表示;2.会用坐标表示平面向量的加、减与数乘运算.3.会用坐标表示平面向量共线的条件,进而解决一些相关问题.4.了解平面向量的基本定理及其意义.教学过程:一、平面向量基本定理:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个_____不共线_____不共线向量,那么对于这一平面内的__任一__向量a ,有且只有_一对实数λ1,λ2使a=λ11e +λ22e特别提醒:(1)我们把不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a 在给出基底1e 、2e 的条件下进行分解; (4)基底给定时,分解形式惟一 λ1,λ2是被a,1e ,2e 唯一确定的数量二、平面向量的坐标表示:如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个__单位向量_ i 、j 作为基底任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得a xi yj =+…………○1, 我们把),(y x 叫做向量a 的(直角)坐标,记作(,)a x y =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示 与.a 相等的向量的坐标也为..........),(y x特别地,(1,0)i =,(0,1)j =,0(0,0)=特别提醒:设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示三、平面向量的坐标运算:(1) 若11(,)a x y =,22(,)b x y =,则a b +=1212(,)x x y y ++,a b -= 1212(,)x x y y --两个向量和与差的坐标分别等于这两个向量相应坐标的和与差(2) 若),(11y x A ,),(22y x B ,则AB =()2121,x x y y --一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标(3)若(,)a x y =和实数λ,则a λ=(,)x y λλ实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标(4)向量平行的充要条件的坐标表示:设a=(x 1, y 1) ,b =(x 2, y 2) 其中b ≠aa ∥b (b≠0)的充要条件是12210x y x y -=类型一 平面向量基本定理的应用【例1】►(2012·南京质检)如图所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM→=λAB →+μAC →,则λ+μ=________.[审题视点] 由B ,H ,C 三点共线可用向量AB→,AC →来表示AH →.解析 由B ,H ,C 三点共线,可令AH→=xAB →+(1-x )AC →,又M 是AH 的中点,所以AM →=12AH →=12xAB →+12(1-x )AC→,又AM →=λAB →+μAC →.所以λ+μ=12x +12(1-x )=12. 答案 12应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.【训练1】 如图,两块斜边长相等的直角三角板拼在一起.若AD →=xAB →+yAC →,则x =________,y =________.BCAOM D解析以AB 所在直线为x 轴,以A 为原点建立平面直角坐标系如图,令AB =2,则AB→=(2,0),AC →=(0,2),过D 作DF ⊥AB 交AB 的延长线于F ,由已知得DF =BF =3,则AD→=(2+3, 3).∵AD→=xAB →+yAC →,∴(2+3,3)=(2x,2y ). 即有⎩⎨⎧2+3=2x ,3=2y ,解得⎩⎪⎨⎪⎧x =1+32,y =32.另解:AD →=AF →+FD →=⎝ ⎛⎭⎪⎫1+32AB →+32AC →, 所以x =1+32,y =32. 答案 1+32 32[例1] 在△OAB 中,OB OD OA OC21,41==,AD 与BC 交于点M ,设OA =a ,OB =b ,用a ,b 表示OM .[解题思路]:若21,e e是一个平面内的两个不共线向量,则根据平面向量的基本定理,平面内的任何向量都可用21,e e线性表示.本例中向量a ,b 可作基底,故可设=m a +n b ,为求实数m ,n ,需利用向量AM 与AD 共线,向量与CB 共线,建立关于m ,n 的两个方程.解析:设OM =m a +n b ,则(1)AM m a nb =-+,12AD a b =-+ ∵点A 、M 、D 共线,∴AM 与AD 共线,BACPNM∴5.011nm =--,∴m +2n =1. ① 而CM OM OC =-1()4m a nb =-+,14CB a b =-+∵C 、M 、B 共线,∴CM 与CB 共线,∴14141n m =--,∴4m +n =1. ② 联立①②解得:m =71,n =73,∴1377OM a b =+练习:1.若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是 ( )A .1e 与—2eB .31e 与22eC .1e +2e 与1e —2eD .1e 与21e 答案:D2.在△ABC 中,已知 AM ︰AB =1︰3, AN ︰AC =1︰4,BN 与CM 交于点P ,且, AC AB a b ==,试 用, a b 表示AP .解:∵ AM ︰AB =1︰3, AN ︰AC =1︰4,,∴ 1133AM AB a ==,1144AN AC b ==, ∵ M 、P 、C 三点共线,故可设 MP t MC =,t ∈R , 于是,1111()()33333tAP AM MP a tMC a t b a a tb =+=+=+-=-+…… ①同理可设设NP sNB =,s ∈R , 1()44sAP AN NP b sa =+=-+.…②由①②得 11()()b 03344t ss a t --+-+=,由此解得 112,113==t s ,∴ 321111AP a b =+.类型二 平面向量的坐标运算【例2】►(2011·合肥模拟)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,CN →=2CB→.求M ,N 的坐标和MN →. [审题视点] 求CA→,CB →的坐标,根据已知条件列方程组求M ,N .解 ∵A (-2,4),B (3,-1),C (-3,-4), ∴CA→=(1,8),CB →=(6,3). ∴CM→=3CA →=3(1,8)=(3,24),CN →=2CB →=2(6,3)=(12,6).设M (x ,y ),则CM→=(x +3,y +4).∴⎩⎨⎧ x +3=3,y +4=24,得⎩⎨⎧x =0,y =20.∴M (0,20). 同理可得N (9,2),∴MN→=(9-0,2-20)=(9,-18). 利用向量的坐标运算解题,主要就是根据相等的向量坐标相同这一原则,通过列方程(组)进行求解;在将向量用坐标表示时,要看准向量的起点和终点坐标,也就是要注意向量的方向,不要写错坐标.【训练2】 在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=( ). A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析 由题意得BD →=AD →-AB →=BC →-AB →=(AC →-AB →)-AB →=AC →-2AB →=(1,3)-2(2,4)=(-3,-5). 答案 B3. 若A(0, 1), B(1, 2), C(3, 4) 则AB -2BC = 答案:(-3,-3) 解:-2BC =(1,1)-2(2,2)=(-3,-3)4.若M(3, -2) N(-5, -1) 且 21=MN , 求P 点的坐标; 解:设P(x, y) 则(x-3, y+2)=21(-8, 1)=(-4, 21)⎪⎩⎪⎨⎧=+-=-21243y x ∴⎪⎩⎪⎨⎧-=-=231y x ∴P 点坐标为(-1, -23)类型三 平面向量共线的坐标运算【例3】►已知a =(1,2),b =(-3,2),是否存在实数k ,使得k a +b 与a -3b 共线,且方向相反?[审题视点] 根据共线条件求k ,然后判断方向.解 若存在实数k ,则k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4).若这两个向量共线,则必有 (k -3)×(-4)-(2k +2)×10=0.解得k =-13.这时k a +b =⎝ ⎛⎭⎪⎫-103,43,所以k a +b =-13(a -3b ). 即两个向量恰好方向相反, 故题设的实数k 存在.向量共线问题中,一般是根据其中的一些关系求解参数值,如果向量是用坐标表示的,就可以使用两个向量共线的充要条件的坐标表示列出方程,根据方程求解其中的参数值.【训练3】 (2011·西安质检)已知向量a =(1,2),b =(2,-3),若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ). A.⎝ ⎛⎭⎪⎫79,73 B.⎝ ⎛⎭⎪⎫-73,-79 C.⎝ ⎛⎭⎪⎫73,79D.⎝ ⎛⎭⎪⎫-79,-73 解析 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1).∵(c +a )∥b ,∴-3×(1+m )=2×(2+n ),又c ⊥(a +b ), ∴3m -n =0,解得m =-79,n =-73. 答案 D9.已知)2,3(),2,1(-==b a ,当实数k 取何值时,k a +2b 与2a —4b 平行?【解析】方法一: ∵ 2a —4b 0≠,∴ 存在唯一实数λ使k a +2b =λ(2a —4b ) 将a 、b 的坐标代入上式得(k —6,2k +4)=λ(14,—4) 得k —6=14λ且2k +4= —4λ,解得k = —1方法二:同法一有k a +2b =λ(2a —4b ),即(k —2λ)a +(2+4λ)b =0∵a 与b 不共线,∴ ⎩⎨⎧=+=-04202λλk ∴k = —1一、选择题1.设e 1、e 2是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是( ) A .e 1+e 2和e 1-e 2B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 1+e 2[答案] B[解析] ∵4e 2-6e 1=-2(3e 1-2e 2),∴3e 1-2e 2与4e 2-6e 1共线,不能作为基底. 2.下面给出了三个命题:①非零向量a 与b 共线,则a 与b 所在的直线平行;②向量a 与b 共线的条件是当且仅当存在实数λ1、λ2,使得λ1a =λ2b ; ③平面内的任一向量都可用其它两个向量的线性组合表示. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3[答案] B[解析] 命题①两共线向量a 与b 所在的直线有可能重合;命题③平面内的任一向量都可用其它两个不共线向量的线性组合表示.故①③都不正确.3.给出下列结论:①若a ≠b ,则|a +b |<|a |+|b |;②非零向量a 、b 共线,则|a +b |>0;③对任意向量a 、b ,|a -b |≥0;④若非零向量a 、b 共线且反向,则|a -b |>|a |.其中正确的有( )个.( )A .1B .2C .3D .4[答案] B[解析] ①中有一个为零向量时不成立;②中a ,b 若是相反向量则不成立;③、④正确,故选B.4.已知向量e 1、e 2不共线,实数x 、y 满足(x -y )e 1+(2x +y )e 2=6e 1+3e 2,则x -y 的值等于( ) A .3 B .-3 C .6 D .-6[答案] C[解析] ∵e 1、e 2不共线,∴由平面向量基本定理可得⎩⎪⎨⎪⎧ x -y =62x +y =3,解得⎩⎪⎨⎪⎧x =3y =-3. 5.设一直线上三点A ,B ,P 满足AP →=λPB →(λ≠±1),O 为平面内任意一点,则OP →用OA →、OB →表示为( )A .OP →=OA →+λOB → B .OP →=λOA →+(1+λ)OB →C .OP →=OA →+λOB →1+λD .OP →=1λOA →+11-λOB →[答案] C[解析] ∵OP →=OA →+λPB →=OA →+λ(OB →-OP →)=OA →+λOB →-λOP →,∴(1+λ)OP →=OA →+λOB →,∴OP →=OA →+λOB→1+λ.6.(2014·广东文,3)已知向量a =(1,2)、b =(3,1),则b -a =( ) A .(-2,1) B .(2,-1) C .(2,0) D .(4,3)[答案] B[解析] ∵a =(1,2)、b =(3,1),∴b -a =(3-1,1-2)=(2,-1). 7.若向量BA →=(2,3)、CA →=(4,7),则BC →=( ) A .(-2,-4) B .(2,4) C .(6,10) D .(-6,-10)[答案] A[解析] BC →=BA →+AC →=BA →-CA →=(2,3)-(4,7)=(-2,-4).8.(2014·北京文,3)已知向量a =(2,4)、b =(-1,1),则2a -b =( ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)[答案] A[解析] 2a -b =(4,8)-(-1,1)=(5,7)9.已知AB →=(5,-3)、C (-1,3)、CD →=2AB →,则点D 的坐标是( ) A .(11,9) B .(4,0) C .(9,3) D .(9,-3)[答案] D[解析] ∵AB →=(5,-3),∴CD →=2AB →=(10,-6), 设D (x ,y ),又C (-1,3), ∴CD →=(x +1,y -3),∴⎩⎪⎨⎪⎧ x +1=10y -3=-6,∴⎩⎪⎨⎪⎧x =9y =-3. 10.已知△ABC 中,点A (-2,3)、点B (-3,-5),重心M (1,-2),则点C 的坐标为( ) A .(-4,8) B .⎝⎛⎭⎫43,-43 C .(8,-4) D .(7,-2)[答案] C[解析] 设点C 的坐标为(x ,y ),由重心坐标公式,得⎩⎨⎧1=-2+(-3)+x3-2=3+(-5)+y3,解得⎩⎪⎨⎪⎧x =8y =-4.11.已知i 、j 分别是方向与x 轴正方向、y 轴正方向相同的单位向量,O 为原点,设OA →=(x 2+x +1)i -(x 2-x +1)j (其中x ∈R ),则点A 位于( )A .第一、二象限B .第二、三象限C .第三象限D .第四象限[答案] D[解析] ∵x 2+x +1>0,-(x 2-x +1)<0, ∴点A 位于第四象限. 二、填空题12.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________(用a 、b 表示).[答案] -14a +14b[解析] ∵AN →=3NC →,∴4AN →=3AC →=3(a +b ),AM →=a +12b ,∴MN →=34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . 13.已知向量a 与b 不共线,实数x 、y 满足等式3x a +(10-y )b =(4y +7)a +2x b ,则x =________,y =________.[答案]4711 1611[解析] ∵a 、b 不共线,∴⎩⎪⎨⎪⎧3x =4y +710-y =2x,解得⎩⎨⎧x =4711y =1611.14.若点O (0,0)、A (1,2)、B (-1,3),且OA ′→=2OA →,OB ′→=3OB →,则点A ′的坐标为________.点B ′的坐标为________,向量A ′B ′→的坐标为________.[答案] (2,4) (-3,9) (-5,5) [解析] ∵O (0,0),A (1,2),B (-1,3), ∴OA →=(1,2),OB →=(-1,3),OA ′→=2×(1,2)=(2,4),OB ′→=3×(-1,3)=(-3,9).∴A ′(2,4),B ′(-3,9),A ′B ′→=(-3-2,9-4)=(-5,5).15.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=________. [答案] (-3,-5)[解析] AD →=BC →=AC →-AB →=(-1,-1).∴BD →=AD →-AB →=(-3,-5). 三、解答题16.如图,已知△ABC 中,M 、N 、P 顺次是AB 的四等分点,CB →=e 1,CA →=e 2,试用e 1、e 2表示CM →、CN →、CP →.[解析] 利用中点的向量表达式得: CN →=12e 1+12e 2;CM →=14e 1+34e 2;CP →=34e 1+14e 2.17.(1)设向量a 、b 的坐标分别是(-1,2)、(3,-5),求a +b ,a -b,2a +3b 的坐标; (2)设向量a 、b 、c 的坐标分别为(1,-3)、(-2,4)、(0,5),求3a -b +c 的坐标. [解析] (1)a +b =(-1,2)+(3,-5)=(-1+3,2-5)=(2,-3);a -b =(-1,2)-(3,-5)=(-1-3,2+5)=(-4,7);2a +3b =2(-1,2)+3(3,-5)=(-2,4)+(9,-15)=(-2+9,4-15)=(7,-11).(2)3a -b +c =3(1,-3)-(-2,4)+(0,5) =(3,-9)-(-2,4)+(0,5) =(3+2+0,-9-4+5) =(5,-8)._________________________________________________________________________________ _________________________________________________________________________________基础巩固一、选择题1.已知a =(-1,3)、b =(x ,-1),且a ∥b ,则x 等于( ) A .-3B .-13C .13D .3[答案] C [解析] 由a ∥b ,得(-1)×(-1)-3x =0,解得x =13. 2.(2014·安徽宿州市朱仙庄煤矿中学高一月考)若A (3,-6)、B (-5,2)、C (6,y )三点共线,则y =( )A .13B .-13C .9D .-9 [答案] D[解析] ∵A 、B 、C 共线,∴AB →与AC →共线,∵AB →=(-8,8),AC →=(3,y +6),∴-8(y +6)=24,∴y =-9.3.向量a =(3,1)、b =(1,3)、c =(k,7),若(a -c )∥b ,则k 等于( )A .3B .-3C .5D .-5 [答案] C[解析] a -c =(3-k ,-6),b =(1,3),由题意得,9-3k =-6,∴k =5.4.设e 1、e 2是两个不共线的向量,向量a =e 1+λe 2(λ∈R )与向量b =-(e 2-2e 1)共线,则( )A .λ=0B .λ=-1C .λ=-2D .λ=-12 [答案] D[解析] 由共线向量定理,存在t ∈R ,使a =t b ,即e 1+λe 2=t (-e 2+2e 1),∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧2t =1λ=-t ,解得λ=-12. 5.已知向量a =(3,4)、b =(cos α,sin α),且a ∥b ,则tan α=( )A .34B .43C .-43D .-34[答案] B[解析] ∵a ∥b ,∴3sin α-4cos α=0,∴tan α=43. 6.(2014·山东济南商河弘德中学高一月考)若向量b 与向量a =(2,1)平行,且|b |=25,则b =( )A .(4,2)B .(-4,2)C .(6,-3)D .(4,2)或(-4,-2)[答案] D [解析] 设b =(x ,y ),由题意,得⎩⎪⎨⎪⎧x 2+y 2=20x =2y , 解得⎩⎪⎨⎪⎧ x =4y =2或⎩⎪⎨⎪⎧x =-4y =-2. 二、填空题7.设i 、j 分别为x 、y 轴方向的单位向量,已知OA →=2i ,OB →=4i +2j ,AB →=-2AC →,则点C 的坐标为________.[答案] (1,-1)[解析] 由已知OA →=(2,0),OB →=(4,2),∴AB →=(2,2),设C 点坐标为(x ,y ),则AC →=(x -2,y ),∵AB →=-2AC →,∴(2,2)=-2(x -2,y ),∴⎩⎪⎨⎪⎧ -2(x -2)=2-2y =2,解得⎩⎪⎨⎪⎧x =1y =-1. ∴点C 的坐标为(1,-1).8.设向量a =(4sin α,3)、b =(2,3sin α),且a ∥b ,则锐角α=________.[答案] π4[解析] 由已知,得12sin 2α=6,∴sin α=±22,∴α为锐角,∴α=π4. 三、解答题9.设向量OA →=(k,12)、OB →=(4,5)、OC →=(10,k ),当k 为何值时,A 、B 、C 三点共线.[解析] ∵OA →=(k,12)、OB →=(4,5)、OC →=(10,k ),∴AB →=OB →-OA →=(4,5)-(k,12)=(4-k ,-7),BC →=OC →-OB →=(10,k )-(4,5)=(6,k -5).∵A 、B 、C 三点共线,∴AB →与BC →共线,∴(4-k )(k -5)-6×(-7)=0,解得k =11或k =-2.能力提升一、选择题1.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与b 共线,则( )A .λ=0B .e 2=0C .e 1∥e 2D .e 1∥e 2或λ=0[答案] D[解析] ∵a 、b 共线,∴存在t ∈R ,使a =t b ,∴e 1+λe 2=2t e 1,∴(1-2t )e 1+λe 2=0 ①若e 1、e 2共线,则一定存在t 、λ.使①式成立;若e 1、e 2不共线,则⎩⎪⎨⎪⎧1-2t =0λ=0. 2.已知平面向量a =(1,2)、b =(-2,m ),且a ∥b ,则2a +3b =( )A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10) [答案] C[解析] ∵a ∥b ,∴1×m -2×(-2)=0,∴m =-4.∴2a +3b =(2,4)+(-6,-12)=(-4,-8).3.已知平面向量a =(x,1)、b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线 [答案] C[解析] ∵a =(x,1),b =(-x ,x 2),∴a +b =(0,x 2+1),∵1+x 2≠0,∴向量a +b 平行于y 轴.4.已知向量a =(1,0)、b =(0,1)、c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向 [答案] D[解析] ∵c ∥d ,∴c =λd ,即k a +b =λ(a -b ),又a 、b 不共线,∴⎩⎪⎨⎪⎧ k =λ1=-λ,∴⎩⎪⎨⎪⎧λ=-1k =-1. ∴c =-d ,∴c 与d 反向.二、填空题5.已知a =(-2,3),b ∥a ,b 的起点为A (1,2),终点B 在坐标轴上,则B 点坐标为________.[答案] ⎝⎛⎭⎫0,72或⎝⎛⎭⎫73,0 [解析] 由b ∥a ,可设b =λa =(-2λ,3λ).设B (x ,y ),则AB →=(x -1,y -2)=b .由⎩⎪⎨⎪⎧ -2λ=x -13λ=y -2⇒⎩⎪⎨⎪⎧x =1-2λy =3λ+2. 又B 点在坐标轴上,则1-2λ=0或3λ+2=0,所以B ⎝⎛⎭⎫0,72或⎝⎛⎭⎫73,0. 6.已知点A (3,1)、B (0,0)、C (3,0).设∠BAC 的平分线AE 与BC 相交于E ,那么有BC →=λCE →,其中λ等于________.[答案] -3[解析] ∵AE 为∠BAC 的平分线,∴|BE →||CE →|=|AB →||AC →|=21=2. ∴BE →=-2CE →.∴BC →=BE →-CE →=-2CE →-CE →=-3CE →.三、解答题7.平面内给定三个向量a =(3,2)、b =(-1,2)、c =(4,1),(1)求满足a =m b +n c 的实数m 、n ;(2)若(a +k c )∥(2b -a ),求实数k .[解析] (1)∵a =m b +n c ,∴(3,2)=m (-1,2)+n (4,1)=(-m +4n,2m +n ).∴⎩⎪⎨⎪⎧ -m +4n =32m +n =2,解得⎩⎨⎧ m =59n =89.(2)∵(a +k c )∥(2b -a ),又a +k c =(3+4k,2+k ),2b -a =(-5,2),∴2×(3+4k )-(-5)×(2+k )=0.∴k =-1613. 8.已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且AE →=13AC →,BF →=13BC →, 求证:EF →∥AB →.[解析] 设E (x 1,y 1)、F (x 2,y 2),依题意有:AC →=(2,2)、BC →=(-2,3)、AB →=(4,-1).因为AE →=13AC →,所以AE →=⎝⎛⎭⎫23,23. 因为BF →=13BC →,所以BF →=⎝⎛⎭⎫-23,1.因为(x 1+1,y 1)=⎝⎛⎭⎫23,23,所以E ⎝⎛⎭⎫-13,23. 因为(x 2-3,y 2+1)=⎝⎛⎭⎫-23,1,所以F ⎝⎛⎭⎫73,0. ∴EF →=⎝⎛⎭⎫83,-23. 又因为4×⎝⎛⎭⎫-23-83×(-1)=0,所以EF →∥AB →. 9.已知直角坐标平面上四点A (1,0)、B (4,3)、C (2,4)、D (0,2),求证:四边形ABCD 是等腰梯形.[解析] 由已知,AB →=(4,3)-(1,0)=(3,3),CD →=(0,2)-(2,4)=(-2,-2).∵3×(-2)-3×(-2)=0,∴AB →与CD →共线.又AD →=(0,2)-(1,0)=(-1,2),∴3×(-1)-3×2≠0,∴AB →与AD →不共线.∴AB ∥CD ,AB 与AD 不平行.又|AB →|=32,|CD →|=22,∴|AB →|≠|CD →|,即AB ≠CD .∴BC →=(2,4)-(4,3)=(-2,1),AD →=(-1,2),∴|BC →|=5=|AD →|.故四边形ABCD 是等腰梯形.。
高一数学课程教案平面向量的坐标与基本运算规则的应用高一数学课程教案:平面向量的坐标与基本运算规则的应用一、引言平面向量是数学中的重要概念,它在各个领域都有广泛的应用。
本节课将重点介绍平面向量的坐标表示和基本运算规则,并通过实际应用问题来帮助学生理解和掌握相关知识。
二、知识概述1. 平面向量的表示平面向量可以用有序数对表示,如向量AB表示为→AB = (x, y)。
其中x、y分别为向量AB在x轴和y轴上的投影长度。
2. 坐标与基本运算规则(1) 坐标表示法向量AB的坐标表示为→AB = (x2 - x1, y2 - y1),其中(x1, y1)为点A 的坐标,(x2, y2)为点B的坐标。
(2) 向量的加法与减法向量的加法与减法运算遵循平行四边形法则。
即两个向量相加(减)的结果是将它们的首尾相连后所得的新向量。
如→AB + →BC = →AC,→AB - →BC = →AC。
(3) 向量的数量乘法向量的数量乘法是指将向量的每个坐标与一个标量相乘得到的新向量。
即→k→AB = (kx, ky),其中k为实数。
3. 应用实例通过实际应用问题,让学生了解平面向量的坐标表示和基本运算规则的应用。
三、教学过程1. 导入与引入引入平面向量的概念,以直线上的两点表示向量为例,让学生观察和思考两点之间的关系。
2. 讲解与演示详细介绍平面向量的坐标表示和基本运算规则,给出具体的计算步骤并进行演示。
通过几个简单的例题巩固学生的理解。
3. 练习与讨论分组进行练习,让学生在实际操作中熟练掌握向量的坐标表示和基本运算规则。
引导学生思考如何将所学知识应用到解决问题中。
4. 拓展与应用设计一些应用实例,如力的合成、位移计算等,让学生将所学的平面向量知识应用到实际生活中。
鼓励学生自主思考和解决问题。
四、总结与归纳总结平面向量的知识要点,强调向量的坐标表示和基本运算规则的应用。
鼓励学生理解并记忆相关概念和运算规则。
五、课后作业布置一些习题和实际应用问题,让学生巩固和运用所学知识。
《平面向量的坐标运算》教学设计 本节内容包括“平面向量的正交分解及坐标表示、坐标运算、平面向量共线的坐标表示”,这些内容是上一节所讨论问题的深入,为平面向量的坐标表示奠定理论基础,因为只有确定了任意一个向量在两个不共线的基底上能进行唯一分解,建立坐标系才有了依据,同时,只有正确地构建向量的坐标才能有向量的坐标运算.(1)借助平面直角坐标系,掌握平面向量的正交分解及坐标表示;会用坐标表示平面向量的线性运算;能用坐标表示向量共线的条件.(2)体会平面向量的正交分解是向量分解中常用且重要的一种分解;引入向量的坐标表示可使向量运算代数化;不仅向量的线性运算可以通过坐标来实现,向量的位置关系也可以通过坐标研究.(3)建立数与形的联系,利用几何图形描述问题,借助几何直观理解问题;理解运算对象,掌握运算法则,探究运算思路,求得运算结果.【问题1】如图,光滑斜面上一个木块受到重力G 的作用,产生两个效果,一是木块受平行 于斜面的力1F 的作用,沿斜面下滑;一是木块产生垂直于斜面的压力2F .问重力G 与力1F 和2F 有什么关系?【设计意图】通过学生熟悉的力的分解问题,引出本节的主题,由此可以使学生感受到向量的正交分解与现实的联系.任意一个向量可以分解为两个不共线的向量,实际上是平面向量基本定理的一个应用.【师生活动】(1)学生:12G F F =+.(2)老师:由平面向量基本定理,对平面上的任意向量a 均可以分解为不共线的两个向量11a λ和22a λ,使1122a a a λλ=+.(3)老师:在不共线的向量中,垂直是一种重要的特殊情形.把一个向量分解为两个互相垂◆ 教学过程◆ 教学目标◆ 教材分析 G F 1 F 2直的向量,叫做向量正交分解.正交分解是向量分解中常见的一种情形.【问题2】在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角 坐标平面内的每一个向量,如何表示呢?【设计意图】通过类比平面直角坐标系中点用有序数对表示,提示学生思考在直角坐标系中 表示一个平面向量的方法.【师生活动】(1)老师:结合平面向量基本定理,如何在平面直角坐标系中选两个向量作为基底?(2)学生:分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.(3)教师:对于平面内的一个向量,由平面向量基本定理可知,有且只有一对实数,x y , 使得a xi y j =+.所以a 就由,x y 唯一确定.有序数对(,)x y 叫做向量的坐标,记作 (,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,(,)a x y =叫做向量的坐标表示.【问题3】设OA xi y j =+,则向量OA 的坐标与点A 的坐标有什么关系?【设计意图】使学生知道向量的的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.【师生活动】(1)老师:O(2)学生:向量OA 的坐标(,)x y 就是终点A 的坐标;反过来,终点A 的坐标(,)x y 也就是向量OA 的坐标.(3)老师:在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示. 例1.如图,分别用基底i 、j 表示向量a 、b 、c 、d ,并求出它们的坐标.【设计意图】平面向量正交分解的应用,要充分运用图形之间的几何关系,求向量的坐标.【问题4】已知1122(,),(,)a x y b x y ==,你能得出,,a b a b a λ+-的坐标吗?【设计意图】运用向量线性运算的交换律、结合律、分配律,推导两个向量的和、差、以及 数乘运算的坐标运算.(1)学生1:11221212()()()()a b x i y j x i y j x x i y y j +=+++=+++1212(,)a b x x y y ∴+=++.(2)学生2:11221212()()()()a b x i y j x i y j x x i y y j -=+-+=-+-1212(,)a b x x y y ∴-=--.(3)学生3:1111()a x i y j x i y j λλλλ=+=+11(,)a x y λλλ∴=.(4)教师:以上推导过程体现了向量的坐标形式与向量形式的相互转化.练习1:已知1122(,),(,)A x y B x y ,求AB 的坐标.(5)学生:22112121(,)(,)(,)AB OB OA x y x y x x y y =-=-=--.(6)教师:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.(7)教师:如何在平面直角坐标系中标出坐标为2121(,)x x y y --的点P ?有什么发现?(8)学生:向量AB 的坐标与以原点为起点、点P 为终点的向量的坐标是相同的.(9)教师:试求向量AB 的模长.(10)学生:222121()()AB OP x x y y ==-+-.例2. 如图,已知ABCD 的三个顶点,,A B C 的坐标分别是(2,1)(1,3)(3,4--、、),试求顶点D 的坐标.(1)学生:利用AB DC =,求出点D 的坐标.(2)学生:利用OD OB BD OB BA BC =+=++,求出点D 的坐标.(3)学生:利用11()()22OM OB OD OA OC =+=+,求出点D 的坐标. 【设计意图】让学生熟悉向量的坐标运算.解题过程中,关键是充分利用图形中各线段的位 置关系(主要是平行关系),数形结合,将顶点的坐标表示为已知点的坐标.【问题5】设1122(,),(,)a x y b x y ==,其中0b ≠.若a 与b 共线,这两个向量的坐标会有 什么关系?【设计意图】向量的线性运算可以通过坐标运算实现,引导学生思考向量的共线、垂直的坐 标表示.【师生活动】(1)学生:若a 与b 共线,则当且仅当存在实数λ,使得a b λ=,从而1122(,)(,)x y x y λ=,所以1212x x y y λλ=⎧⎨=⎩ 消去λ得到12210x y x y -=. 例3.已知(11)(13),(25A B C --,,,,),试判断A B C ,,三点的位置关系.【设计意图】引导学生三点共线的实质是从同一点出发的两个向量共线.(1)学生:口述解题思路,书写解题过程.(2)老师:引导学生总结思想方法.例4.设点P 是线段12P P 上的一点,12P P 、的坐标分别是1122(,)(,)x y x y 、. (1)当点P 是线段12P P 的中点时,求点P 的坐标;(2)当点P 是线段12P P 的一个三等分点时,求点P 的坐标.【设计意图】本例实际上是给出了线段的中点坐标公式,线段的三等分点坐标公式.引导学生推导线段的定比分点公式.利用向量共线的坐标表示求线段的定比分点坐标公式,只要通过简单的向量线性运算就可实现,这是向量的坐标运算带来的优越性.【师生活动】(1)学生:利用121()2OP OP OP =+,求得点P 的坐标. (2)学生:利用121233OP OP OP =+(或122133OP OP OP =+),求得点P 的坐标. (3)老师:三等分点有两种可能的位置,如果学生没有回答全面,要引导学生讨论补充.(4)老师:当12PP PP λ=时,点P 的坐标是什么? (5)学生:由学生类比求得中点坐标及三等分点坐标的过程,给出一般定比分点的坐标公式,进一步熟练向量的坐标运算,体会其中的数学思想方法.【问题6】你能够总结一下本节课我们学习的内容吗?【设计意图】课堂小结,由学生完成,概括本节课所学习的基本概念和运算法则,由教师提炼和总结本节课获得基本原理的数学研究方法.【习题检测】1.课中检测:(完成练习,拍照上传)练习1.已知点(0,0)O ,向量(2,3),(6,3),OA OB ==-点P 是线段AB 的三等分点,求点P 的坐标.练习2.已知(2,3),(4,3)A B -,点P 在线段AB 的延长线上,且32AP PB =,求点P 的坐 标.2.课后检测请完成课后练习,检测学习效果.。
平面向量的直角坐标运算(中职优秀教案)5篇第一篇:平面向量的直角坐标运算(中职优秀教案)8.3.1 平面向量的直角坐标及其运算【教学目标】知识目标:1.了解向量坐标的概念,了解向量加法,减法及数乘向量线性运算的坐标表示;2.理解向量的坐标表示法,掌握平面向量与一对有序实数一一对应关系;3.正确地用坐标表示向量,对起点不在原点的平面向量能利用向量相等的关系来用坐标表示。
4.理解向量坐标与其始点和终点坐标的关系。
能力目标:培养学生理解向量的坐标表示如何将“数”的运算处理“形”的问题,将向量线性运算的几何问题代数化;培养学生应用向量的坐标进行运算的能力。
【教学重点】向量线性运算的坐标表示及运算法则。
【教学难点】对平面向量的坐标表示的理解。
采用数形结合的方法进行教学是突破难点的关键。
【教学方法】类比,数形结合,启发式等【课型】新授课【教学过程】一、温故知新:+AC=+OB=1.向量加法:OAOA(结合图形)2.向量减法:OAOB(结合图形)-OB=-OA=3.数乘向量:若a与bb≠0平行,则由平行知,存,使a=导入:在平面直角坐标系中,每一个点都有一对有序实数(坐标)来表示;任意一个向量,它的始点和终点也可用坐标表示;那么向量能否用坐标表示?二、讲解新课: 1.平面向量的直角坐标()λ如图,在直角坐标系内,分别取与x轴、y轴正方向相同的两个单位..ρρρρ向量=3i+2j)..i、j则AB=AC+CB=3i+2j(EF如下图,平面直角坐标系xOy中的任意一个向量a,有且只有一对实ρρ数a1,a2使得a=a1i+aρ2ρρjρ则:(a1,a2)叫做向量a的坐标,记作a=(a1,a2)ρρ提问:i=(1,0)j=(0,1)0=(0,0)ρρ由定义可知:a=(a1,a2),b=(b1,b2)则:ρρa=b 等价于a1=b1且a2=b2提问:设a=(a1,a2),则所有与a相等的向量的坐标均为(a1,a2),与他们的位置有无关系?求EF=3i+2j=(3,2)验证。
平面向量共线的坐标表示教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课教具:多媒体、实物投影仪教学过程:一、复习引入:1.平面向量的坐标表示分别取与x 轴、y轴方向相同的两个单位向量、j作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yjxia把),(y x 叫做向量a 的(直角)坐标,记作),(y x a 其中x 叫做a 在x 轴上的坐标,y叫做a 在y轴上的坐标,特别地,)0,1(i,)1,0(j,)0,0(0.2.平面向量的坐标运算若),(11y x a ,),(22y x b ,则b a ),(2121y y x x ,ba),(2121y y x x ,),(y x a .若),(11y x A ,),(22y x B ,则1212,y y x x AB 二、讲解新课:a ∥b(b 0)的充要条件是x 1y 2-x 2y 1=0设a =(x 1, y 1) ,b =(x 2, y 2) 其中b a . 由a =λb 得, (x 1, y 1) =λ(x 2, y 2)2121y y x x 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0,∵b 0∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y ∵x 1, x 2有可能为0(3)从而向量共线的充要条件有两种形式:a ∥b(b 0)1221y x y x b a 三、讲解范例:例1已知a =(4,2),b =(6, y),且a ∥b ,求y.例2已知A(-1, -1),B(1,3),C(2,5),试判断A ,B ,C 三点之间的位置关系.例3设点P 是线段P 1P 2上的一点, P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2).(1)当点P 是线段P 1P 2的中点时,求点P 的坐标;(2) 当点P是线段P1P2的一个三等分点时,求点P的坐标.例4若向量a=(-1,x)与b=(-x, 2)共线且方向相同,求x解:∵a=(-1,x)与b=(-x, 2)共线∴(-1)×2- x?(-x)=0∴x=±2∵a与b方向相同∴x=2例5已知A(-1, -1),B(1,3),C(1,5) ,D(2,7) ,向量AB与CD 平行吗?直线AB与平行于直线CD吗?解:∵AB=(1-(-1), 3-(-1))=(2, 4) ,CD=(2-1,7-5)=(1,2) 又∵2×2-4×1=0 ∴AB∥CD又∵AC=(1-(-1),5-(-1))=(2,6),AB=(2, 4),2×4-2×60 ∴AC与AB不平行∴A,B,C不共线∴AB与CD不重合∴AB∥CD四、课堂练习:1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()A.6B.5C.7D.82.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()A.-3B.-1C.1D.33.若AB=i+2j,DC=(3-x)i+(4-y)j(其中i、j的方向分别与x、y 轴正方向相同且为单位向量). AB与DC共线,则x、y的值可能分别为()A.1,2B.2,2C.3,2D.2,44.已知a=(4,2),b=(6,y),且a∥b,则y=.5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.五、小结。
备课时间上课时间第周周月日班级节次课题 2.3.2平面向量的坐标运算总课时数第节教学目标1、正确地用坐标表示向量2、会用坐标表示平面向量的加、减与数乘运算;教学重难点会用坐标表示平面向量的加、减与数乘运算教学参考教材、教参、学案授课方法启发、讲授、探究教学辅助手段多媒体专用教室教学过程设计教学二次备课一、创设情景1、复习平面向量基本定理:1212a e eλλ=+其实质:同一平面内任一向量都可以表示为两个不共线向量的线性组合.2、复习向量a的正角分解二、建构数学1.平面向量的坐标表示.如图,在直角坐标系内,我们分别取与x轴、y轴正方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=x i+y j.我们把),(yx叫做向量a的(直角)坐标,记作a),(yx=其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标说明:作,aOA=OA的坐标就是终点A的坐标,反之,终点A的坐标就是OA的坐标。
思考:在平面直角坐标系中,每一个点都可用一对实数(,)x y表示,那么,每一个向量可否也用一对实数来表示?练习1、给出终点的坐标写出相应向量的坐标2、给出向量的坐标,在坐标系中画出相应向量教学过程设计教学二次备课2、平面向量的坐标运算已知),(),,(2211yxbyxa=和实数λ),(2121yyxxba++=+),(2121yyxxba--=-),(11yxaλλλ=3、向量的坐标计算公式:已知向量−→−AB,且点11(,)A x y,22(,)B x y,求−→−AB的坐标.),(1212yyxxAB--=三、数学应用例1如图,已知O是坐标原点,点A在第一象限,|OA→|=4 3 ,∠xOA=600.求向量OA→的坐标.例2已知)4,3(),1,4(),3,1(),3,1(DCBA--,求向量−→−OA,−→−OB,−→−AO,−→−CD的坐标.例3已知(2,1)a=,(3,4)b=-,求a b+,a b-,34a b+的坐标.例3 已知平行四边形ABCD的三个顶点,,A B C的坐标分别为(2,1)-,(1,3)-,(3,4),求顶点D的坐标.四、课堂小结1、师生共同推导:两个向量的和(差)的坐标分别等于这两个向量相应坐标的和(差)2、练习课外作业教学小结。
高二数学教案:平面向量的坐标运算课前预习学案一、预习目标:通过预习会初步的进行向量的加法、减法、实数与向量的积的坐标运算二、预习内容:1、知识回顾:平面向量坐标表示2.平面向量的坐标运算法则:若=(x1, y1) ,=(x2, y2)则+ =____________________,- =________________________, =_____________________.三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑内容课内探究学案一、学习目标:1.能准确表述向量的加法、减法、实数与向量的积的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力;2.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相联系,培养学生辨证思维能力.二、学习内容1. 平面向量的坐标运算法则:思考1:设i、j是与x轴、y轴同向的两个单位向量,若=(x1,y1) ,=(x2, y2),则=x1i+y1j,=x2i+y2j,根据向量的线性运算性质,向量+ ,- ,(R)如何分别用基底i、j表示? 思考2:根据向量的坐标表示,向量+ ,- ,的坐标分别如何?思考3:已知点A(x1, y1),B(x2, y2),那么向量的坐标如何? 平面向量的坐标运算法则:(1)两向量和的坐标等于_______________________;(2)两向量差的坐标等于_______________________;(3)实数与向量积的坐标等于__________________________; 思考4:一个向量平移后坐标不变,但起点坐标和终点坐标发生了变化,这是否矛盾呢?2.典型例题例1 :已知=(2,1), =(-3,4),求+ ,- ,3 +4 的坐标.例2:已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标。
课题:§5.4平面向量的坐标运算
(第一课时)
教材分析与教法设计
教学过程
板书设计方案一:
方案二:
教学环节流程安排
教案的设计说明:
1、设计初衷:
本节课内容难度不高,但知识点比较繁多,而且各知识点之间的衔接不够紧凑,对初学者来说容易产生杂乱无章的感觉.教师作为教学活动的设计者,在教学设计中应力求突出知识间的联系,指引学生理清众多的思绪,主动参与到思考、观察、猜想、验证、应用的教学活动中去,从而顺利地突破重、难点.
2、呈现方式:
根据教学大纲要求结合本节课具体的教学目标和学生的认知特点,我设计了“复习回顾——创设问题情境——合作探究和指导应用——归纳小结——布置作业”五个教学环节. 3、新课程观的体现:
本节课主要采用的是“引导发现、合作探究”的教学方法,以学生熟知的足球运动为情境引入新课,以问题为载体,以师生合作探究为主线,以思维训练为核心,以能力发展为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生经历知识的形成、发展和应用的过程,在和谐、愉悦的氛围中获取知识,掌握方法.整个教学中既突出了学生的主体地位,又发挥了教师的指导作用.
4、可能出现的问题:
探究式教学需要留给学生充足的时间和空间,为学生提供活动的机会,学生情况不同,反馈给教师的信息也不同,因而在时间和内容上都不是固定的,需要教师在设计时富有一定的弹性,在实施时设计方案跟着学生转变,具有一定的开放性和灵活性.。