第1章 信息光学数学基础
- 格式:ppt
- 大小:1.96 MB
- 文档页数:75
信息光学信息光学(傅立叶光学)是综合性大学、工科院校和高等师范院校近代光学、信息光学、激光、光电子等专业研究生和大学高年级的必修课,它是从事光学和光电子领域科学研究和产品开发人员必须的理论基础。
其主要内容一般包括傅立叶光学、标量衍射理论、透镜的性质、部分相干光理论、光学全息及光信息处理等。
限于本课程的课时限制,我们准备主要讲授傅立叶光学、透镜性质、标量衍射理论、部分相干光理论的内容本课程的主要内容讲授拟分八章。
第一章:数学预备知识;第二章:二维傅立叶分析;第三章:衍射理论基础;第四章:菲涅耳衍射、夫琅和费衍射;第五章:透镜的傅立叶变换特性与成象性质;第六章:成象光学系统的传递函数;第七章:部分相干光理论;主要参考书①黄婉云,傅立叶光学教程,北师大出版社,1984②羊国光,宋菲君,高等物理光学,中国科大出版社,1991③J. W. Goodman, 詹达三译,傅立叶光学导论,科学出版社,1976④朱自强等,现代光学教程,四川大学出版社,1990⑤卞松玲等,傅立叶光学,兵器工业出版社,⑥蒋秀明等,高等光学,上海交大出版社⑦M. 波恩,E. 沃耳夫,光学原理,科学出版社,1978⑧吕乃光等,傅立叶光学基本概念和习题⑨谢建平等,近代光学基础,中国科技大学出版社,1990第一章:数学预备知识为了方便后面的学习,我们复习一下有关的数学知识。
§1-1 几个常用函数一、 矩形函数(rectangle function )1、一维矩形函数表达式为:⎪⎪⎩⎪⎪⎨⎧>-≤-=-21||021||1)(rect 000a x x a x x a x x其函数图形为:当x 0=0,a =1时,矩形函数为:⎪⎪⎩⎪⎪⎨⎧>≤=21||021||1)(rect x x x [此时rect(x )=rect(-x )]其图形为2、二维矩形函数表达式为:⎪⎪⎩⎪⎪⎨⎧>->-≤-≤-=-⋅-21||,21||021||,21||1)()(000000b y y a x x b y y a x x b y y rect a x x rect其函数图形为:二维矩形函数可以用来描述屏上矩形孔的透过系数。
信息光学部分章节小结第一部分:数学基础一 几个常用函数(1)矩形函数:该二维矩形函数可用来描述无限大不透明屏上矩形孔的透过率。
(a>0,b>0)(2)sinc 函数:sin by b y a x a x b y c a x c b y a x /)/sin(/)/sin()(sin )(sin ),ππππ∙=∙= (a>0,b>0) (3)阶跃函数: (4)符号函数:(5)三角函数:二维三角函数可用来表示一个光瞳为矩形的非相干成像系统的光学传递函数 (6)高斯函数:(7)圆域函数:(8)δ函数: ⎪⎩⎪⎨⎧≤≤=∙=others b y a x by rect a x rect b y a x rect ,02,2,1)()(),(⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<=0102100)(a x a x a x a x step ⎪⎪⎪⎩⎪⎪⎪⎨⎧<-=>=010001)sgn(a x a x a x a x ⎪⎩⎪⎨⎧<--=ΛΛ=Λothers b y a x b y a x b y a x b y a x ,01,),1)(1()()(),(0,]})()[(exp{),(22>+-=b a b y a x b y a x Gauss πothers r y x r r y x circ r r circ 01{)()(0220220≤+==+= 1),( 20,),( 1000000⎪⎪⎭⎪⎪⎬⎫=--︒⎩⎨⎧==∞=--︒⎰⎰∞+∞-dxdy y y x x others y y x x y y x x δδ(9)comb 函数:∑--==nm ny y mx x y x y y comb x x comb y y x x comb ,00000000),()()(),(δ 二 几种重要的数学运算1 卷积:卷积的几个重要性质: (1) 线性性质:{),(),(),(),(),()},(),(y x g y x bh y x g y x af y x g y x bh y x af *+*=*+(2) 卷积符合交换律:),(),(),(),(y x f y x h y x h y x f *=*(3) 卷积符合结合律:[][]),(),(),(),(),(),(y x g y x h y x f y x g y x h y x f **=**(4) 卷积的坐标缩放:若),(),(),(y x g y x h y x f =*,则),(1),(),(by ax g ab by ax h by ax f =* (a,b 均不等于0) (5) 卷积位移不变性:若),(),(),(),(y x f y x h y x h y x f *=*,则),(),(),(),(),(000000y y x x g y y x x h y x f y x h y y x x f --=--*=*--(6) 函数),(y x f 与δ函数的卷积:),(),(),(0000y y x x f y y x x y x f --=--*δ2 相关互相关:自相关:3 傅立叶变换 傅立叶变换对:正变换 ⎰⎰+∞∞-+-=dxdy y f x f j y x f f f F y x y x )(2exp[),(),(π 逆变换 ⎰⎰+∞∞-+=y x y x y x df df y f x f j f f F y x f )(2exp[),(),(π频谱函数),(y x f f F 一般是复函数,因此:[]),(exp ),(),(y x y x y x f f i f f F f f F φ= 傅立叶变换的重要性质:(1)线性 a,b 为任意常数ηξηξηξd d y x h f y x h y x f y x g ),(),(),(),(),(--=*=⎰+∞∞-),(),(),(),(),(y x g y x f d d y x g f y x e fg ⊗=++=⎰⎰*ηξηξηξηξηξηξηξηξηξd d f y x f d d y x f f y x f y x f y x e ff ),(),(),(),(),(),(),(**⎰⎰⎰⎰--=++=⊗=),(),(y x bg y x af +⇔(,)(,)x y x y aF f f bG f f +(2)缩放定理 (3)位移定理 [])(2ex p ),(),(b f a f i f f F b y a x f y x y x +±⇔±±π),()](2exp[),(ηξηξπ y x f f F y x i y x f ⇔+±(4)卷积定理),(),(),(),(),(),(),(),(y x y x y x y x f f G f f F y x g y x f f f G f f F y x g y x f *⇔⇔* (5)互相关定理),(),(),(),(),(),(),(),(y x y x y x y x f f G f f F y x g y x f f f G f f F y x g y x f ⊗⇔⇔⊗***由互相关定理可以推导出自相关定理。