西安交通大学概率论实验报告
- 格式:pdf
- 大小:1.06 MB
- 文档页数:12
概率论上机实验报告班级:姓名:学号:一、实验目的1)熟悉Matlab中概率统计部分的常见命令与应用。
2)掌握运用Matlab解决概率问题的方法。
二、实验内容和步骤1.常见分布的概率密度及分布函数1)二项分布源码为:1.x=0:1:100;2.y1=binopdf(x,100,1/2); %求概率密度3.y2=binocdf(x,100,1/2); %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('二项分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('二项分布分布函数')所得图形为:2)几何分布源码为:1.x=0:1:100;2.y1=geopdf(x,; %求概率密度3.y2=geocdf(x,; %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('几何分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('几何分布分布函数')所得图形为:3)泊松分布源码为:1.x=0:1:100;2.y1=poisspdf(x,10); %求概率密度3.y2=poisscdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('泊松分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('泊松分布分布函数')所得图形为:4)均匀分布源码为:1.x=0:1:100;2.y1=unifpdf(x,0,100) %求概率密度3.y2=unifcdf(x,0,100); %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('均匀分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('均匀分布分布函数')所得图形为:5)指数分布源码为:1.x=0:1:100;2.y1=exppdf(x,10); %求概率密度3.y2=expcdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('指数分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('指数分布分布函数')所得图形为:6)正态分布源码为:1.x=-10::10;2.y1=normpdf(x,0,1); %求概率密度3.y2=normcdf(x,0,1); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('正态分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('正态分布分布函数')所得图形为:7)卡方分布源码为:1.x=0::100;2.y1=chi2pdf(x,10); %求概率密度3.y2=chi2cdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('卡方分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('卡方分布分布函数')所得图形为:8)对数正态分布源码为:1.x=0::100;2.y1=lognpdf(x,2,1); %求概率密度3.y2=logncdf(x,2,1); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('对数正态分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('对数正态分布分布函数')所得图形为:9)F分布源码为:1.x=0::10;2.y1=fpdf(x,10,10); %求概率密度3.y2=fcdf(x,10,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('F分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('F分布分布函数')所得图形为:10)t分布源码为:1.x=-10::10;2.y1=tpdf(x,10); %求概率密度3.y2=tcdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('T分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('T分布分布函数')所得图形为:2.掷均匀硬币n次,检验正面出现的频率逼近1/21)思路:编写一个程序,验证随着n的增大,正面出现的频率越来越接近1/2。
概率论与数理统计上机实验报告一、实验内容使用MATLAB 软件进行验证性实验,掌握用MATLAB 实现概率统计中的常见计算。
本次实验包括了对二维随机变量,各种分布函数及其图像以及频率直方图的考察。
1、列出常见分布的概率密度及分布函数的命令,并操作。
2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X ,(1) 试计算45=X 的概率和45≤X 的概率;(2) 绘制分布函数图形和概率分布律图形。
3、用Matlab 软件生成服从二项分布的随机数,并验证泊松定理。
4、设22221),(y x e y x f +-=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
5、来自某个总体的样本观察值如下,计算样本的样本均值、样本方差、画出频率直方图。
A=[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 2220 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 21 18 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 28 13 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 13 14 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 16 19 28 19 12 14 19 28 28 28 13 21 28 19 11 15 18 24 18 16 28 19 15 13 22 14 16 24 20 28 18 18 28 14 13 28 29 24 28 14 18 18 18 08 21 16 24 32 16 28 19 15 18 18 10 12 16 26 18 19 33 08 11 18 27 23 11 22 22 13 28 14 22 18 26 18 16 32 27 25 24 17 17 28 33 16 20 28 32 19 23 18 28 15 24 28 29 16 17 19 18] 6. 利用Matlab 软件模拟高尔顿板钉试验。
西安交通⼤学概率论上机实验[公司名称]Matlab 上机实验尾号为7(题号5、8、9、12、16)第五题题⽬通过⾎检对某地区的N 个⼈进⾏某种疾病普查。
有两套⽅案:⽅案⼀是逐⼀检查;⽅案⼆是分组检查。
那么哪⼀种⽅案好?若这种疾病在该地区的发病率为0.1;0.05;0.01,试分析评价结果。
分析⽅案⼀需要检验N 次。
⽅案⼆:假设检验结果阴性为“正常”、阳性为“患者”,把受检者分为k 个⼈⼀组,把这k 个⼈的⾎混合在⼀起进⾏检验,如果检验结果为阴性,这说明k 个⼈的⾎液全为阴性,因⽽这k 个⼈总共只要检验⼀次就够了;如果结果为阳性,要确定k 个⼈的⾎液哪些是阳性就需要逐⼀再检查,因⽽这k 个⼈总共需要检查k+1次。
因此⽅案⼆在实施时有两种可能性,要和⽅案⼀⽐较,就要求出它的平均值(即平均检验次数)。
假设这⼀地区患病率(即检查结果为阳性的概率)为p ,那么检验结果为阴性的概率为,这时k 个⼈⼀组的混合⾎液是阴性的概率为,是阳性的概率为,则每⼀组所需的检验次数是⼀个服从⼆点分布的⼀个随机变量,下⾯的问题是,怎样确定k 的值使得次数最少?由以上计算结果可以得出:当,即时,⽅案⼆就⽐⽅案⼀好,总得检验次数为Y=。
当p=0.1时,⽤matlab 画出上述函数的图像: for i=1:1:101q p =-k q 1k q -ξ()1(1)11k k kE q k q k kq ξ=?++?-=+-1kk kq k +-p 11,k k kq q k f f()1k Nk kq k +-?k(i)=i;y(i)=(1+k(i)-k(i)*0.9^k(i))/k(i); end plot(k,y)可以看出,当k=4的时候最⼩,故此时每组⼈数应该取为4。
y=(1+k-k*0.9^k)/k*10000得到平均为5939次;P=0.05,k=5时,平均为4262次; P=0.01,k=32时,平均为3063次。
综上,采⽤合适的分组数时分组可以显著减少检验次数。
西安交通大学实验报告课程:概率论与数理统计实验日期:2013/12/22报告日期:2013/12/24专业班级:姓名:学号:实验内容:用蒙特卡洛方法估计积分值要求:(1)针对要估计的积分选择适当的概率分布设计蒙特卡洛方法;(2)利用计算机产生所选分布的随机数以估计积分值;(3)进行重复试验,通过计算样本均值以评价估计的无偏性;通过计算均方误差(针对第1类题)或样本方差(针对第2类题)以评价估计结果的精度。
目的:(1)能通过 MATLAB 或其他数学软件了解随机变量的概率密度、分布函数及其期望、方差、协方差等;(2)熟练使用 MATLAB 对样本进行基本统计,从而获取数据的基本信息;(3)能用 MATLAB 熟练进行样本的一元回归分析。
1用蒙特卡洛方法估计积分2sinx xdxπ⎰,2xe dx+∞⎰和22221x yx ye dxdy++≤⎰⎰的值,并将估计值与真值进行比较。
1)2sinx xdxπ⎰用区间为0-π/2的均匀分布产生;代码如下N=10000;x=unifrnd(0,pi/2,N,1); mean(x.*sin(x)*pi/2)计算出10次的数值计算出精确值:syms x ;int(x.*sin(x),0,pi/2)精确值为1;计算出均值:1.00158计算出均方误差:0.0000637580结论:这是一个计算积分的很好的近似,误差很小。
接下来考虑计算第二个积分:2)考虑2xe dx +∞⎰由对称性可以考虑正态分布N(0,1),代码如下:N=10000;x=normrnd(0,1,N,1)0.5*mean((sqrt(2.*pi)).*exp(-x.^2./2))求出均值为0.88598取0.8860计算出均方误差为:0.000018204说明误差允许范围内,可以用其作为积分的近似。
若考虑用参数为1的指数分布E(1)代码为:N=10000;x=exprnd(1,N,1)mean(exp(-x.^2./2+x))精确值为:0.8862计算出平均值为:1.25164计算出均方误差为:0.13356381和正态分布比相去甚远,效果不如正态分布3)22221x yx ye dxdy++≤⎰⎰利用代码计算出积分:N=10000;x=unifrnd(0,1,N,1) //已经转换为极坐标,r在[0,1]取值,取[0,1]均匀分布2*pi*mean(x.*exp(-x.^2))计算出十个值为:计算出平均值为:1.98397计算出均方误差为:0.000059其值与精确值非常接近,可以作为一个很好的近似第二类题:4) dx e x ⎰102用如下代码计算:N=10000;x=unifrnd(0,1,N,1) //[0,1]上的均匀分布mean(exp(x.^2))计算出平均值为:1.4619计算出标准偏差为:0.003304 ,说明波动性较小计算出均方误差为:0.000010其值与精确值非常接近,可以作为一个很好的近似5)22x y x d y +≤⎰⎰ 用如下代码计算:N=10000; x=unifrnd(0,2,N,1) //转换为极坐标后取[0,2]的均匀分布4*pi*mean(x./sqrt(1+x.^2)) 计算出平均值为:7.76363计算出标准偏差为:0.015241,说明波动性较小计算出均方误差为:0.000217其值与精确值非常接近,可以作为一个很好的近似。
第1篇一、前言概率论是数学的一个重要分支,它研究随机现象及其规律。
随着我国教育事业的不断发展,概率论在教学中的地位日益重要。
为了提高教学质量,探索有效的教学策略,我们开展了一系列概率论教学实践活动。
现将本次实践活动的总结如下:二、实践目的1. 提高学生对概率论知识的掌握程度,培养学生的逻辑思维能力。
2. 探索适合我国学生特点的概率论教学方法,提高课堂教学效果。
3. 加强师生互动,培养学生的自主学习能力。
4. 丰富教师的教学经验,提高教师的专业素养。
三、实践内容1. 教学方法改革(1)启发式教学:教师在课堂上注重引导学生思考,通过提问、讨论等方式,激发学生的学习兴趣,提高学生的思维能力。
(2)案例教学:结合实际生活中的例子,让学生理解概率论知识在实际中的应用,提高学生的实践能力。
(3)小组合作学习:将学生分成若干小组,共同完成教学任务,培养学生的团队协作能力。
2. 教学手段创新(1)多媒体教学:利用PPT、视频等多媒体手段,使教学内容更加生动形象,提高学生的学习兴趣。
(2)网络教学:通过在线课程、论坛等网络平台,拓宽学生的学习渠道,提高学生的学习效果。
(3)实验教学:开展概率实验,让学生亲身体验概率现象,加深对概率论知识的理解。
3. 教学评价改革(1)过程性评价:关注学生在学习过程中的表现,如课堂发言、作业完成情况等。
(2)结果性评价:关注学生对知识掌握程度,如期中、期末考试等。
(3)多元评价:结合学生自评、互评、教师评价等多种方式,全面评价学生的学习成果。
四、实践效果1. 学生对概率论知识的掌握程度有了明显提高,课堂参与度显著提升。
2. 学生在解决实际问题时,能够运用概率论知识进行分析,提高了解决问题的能力。
3. 学生在团队协作、自主学习等方面取得了较好成绩,综合素质得到提高。
4. 教师的教学经验得到了丰富,教学水平得到提高。
五、存在问题及改进措施1. 存在问题(1)部分学生对概率论知识缺乏兴趣,学习积极性不高。
概率论试验报告实验一概率计算实验目的:掌握用MATLAB实现概率中的常见计算1、选择三种常见随机变量的分布,计算它们的期望与方差(参数自己设定)2、已知机床加工得到的某零件尺寸服从期望为20cm,标准差为1.5cm的正态分布。
(1)任意抽取一个零件,求它的尺寸在(19,22)区间的概率;(2)若规定尺寸不小于某一标准值的零件为合格品,要使合格品的概率为0.9,如何确定这个标准值?(3)独立的取25个组成一个样本,求样本均值在(19,22)区间的概率。
3、比较t(10)分布和标准正态分布的图像。
1.均匀分布:设定为服从在(0,1)上的均匀分布。
则代码为:2.参数为1的指数分布:3.标准正态分布:2.(1)。
概率为(2)。
求得的值为:(3)。
由题目可知样本均值服从(20,0.3)的正态分布,所以代码为:3.我们取区间[-3,3],间隔为0.1,画得的图为:上方的曲线为t分布,下面的为正态分布曲线。
实验二样本的统计与计算实验目的:学习利用MATLAB求来自总体的一个样本的样本均值、中位数、样本方差、样本分位数和其它数字特征,并能作出频率直方图和经验分布函数来自某总体的样本观察值如下,计算样本的样本均值、中位数、样本方差、画出频率直方图经验分布函数图。
A=[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 22 20 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 21 18 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 28 13 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 13 14 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 16 19 28 19 12 14 19 28 28 28 13 21 28 19 11 15 18 24 18 16 28 19 15 13 22 14 16 24 20 28 18 18 28 14 13 28 29 24 28 14 18 18 18 08 21 16 24 32 16 28 19 15 18 18 10 12 16 26 18 19 33 08 11 18 27 23 11 22 22 13 28 14 22 18 26 18 16 32 27 25 24 17 17 28 33 16 20 28 32 19 23 18 28 15 24 28 29 16 17 19 18]代码为:代码为:[a,b]=hist(A); bar(b,a/sum(a))画得的图为:实验三数理统计中的常用方法实验目的:能熟练用matlab做参数点估计、区间估计和假设检验。
概率论上机实验报告《概率论上机实验报告》在概率论的学习中,实验是非常重要的一部分。
通过实验,我们可以验证概率论的理论,加深对概率的理解,同时也可以提高我们的实验能力和数据处理能力。
本次实验报告将详细介绍一次概率论的上机实验,包括实验目的、实验方法、实验结果和实验分析。
实验目的:本次实验的目的是通过随机抽样的方法,验证概率论中的一些基本概念和定理,包括概率的计算、事件的独立性、事件的互斥性等。
通过实际操作,加深对这些概念的理解,同时也提高我们的实验技能和数据处理能力。
实验方法:本次实验采用计算机模拟的方法进行。
首先,我们选择了几个经典的概率问题作为实验对象,包括掷骰子、抽球问题等。
然后,通过编写程序,模拟进行大量的随机实验,得到实验数据。
最后,通过对实验数据的统计分析,验证概率论中的一些基本概念和定理。
实验结果:通过实验,我们得到了大量的实验数据。
通过对这些数据的统计分析,我们验证了概率的计算方法,验证了事件的独立性和互斥性等基本概念和定理。
实验结果表明,概率论中的一些基本概念和定理在实际中是成立的,这也进一步加深了我们对概率论的理解。
实验分析:通过本次实验,我们不仅验证了概率论中的一些基本概念和定理,同时也提高了我们的实验能力和数据处理能力。
通过实验,我们深刻理解了概率论的一些基本概念和定理,并且也掌握了一些实验技能和数据处理技能。
这对我们今后的学习和工作都将有很大的帮助。
总结:通过本次实验,我们深刻理解了概率论的一些基本概念和定理,同时也提高了我们的实验能力和数据处理能力。
这对我们今后的学习和工作都将有很大的帮助。
希望通过这次实验,我们能更加深入地理解概率论,并且提高我们的实验技能和数据处理技能。
概率论实验报告班级:电气211姓名:***学号:**********第一次实验实验一1、实验目的熟练掌握MATLAB软件关于概率分布作图的基本操作会进行常用的概率密度函数和分布函数的作图绘画出分布律图形2、实验要求掌握MATLAB的画图命令plot掌握常见分布的概率密度图像和分布函数图像的画法3、实验内容1、设X~b(20,0,25)(1)生成X的概率密度;(2)产生18个随机数(3行6列)(3)又已知分布函数F(x)=0.45,求x(4)画出X的分布律和分布函数图形4、实验方案了解到MATLAB在二项分布中有计算概率密度函数binopdf,产生随机数的函数binornd,计算确定分布函数值对应的自变量x的函数binoinv,可以直接生成X的概率密度和产生18个随机数(3行6列),求已知分布函数F(x)=0.45对应的x的值。
最后用binopdf函数、binocdf函数和plot函数画出X的分布律和分布函数图形5、实验过程(1)生成X的概率密度binopdf(0:20,20,0.25)ans =Columns 1 through 120.0032 0.0211 0.0669 0.1339 0.1897 0.2023 0.16860.1124 0.0609 0.0271 0.0099 0.0030Columns 13 through 210.0008 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000(2)产生18个随机数(3行6列)binornd(20,0.25,3,6)ans =6 4 1 2 6 44 3 6 2 6 24 5 6 6 5 6(3)已知分布函数F(x)的值,求xbinoinv(0.45,20,0.25)ans =5(4) 画出X的分布律和分布函数图形x=0:20;y=binopdf(x,20,0.25);subplot(1,2,1);plot(x,y,'*');x=0:0.01:20;y=binocdf(x,20,0.25);subplot(1,2,2);plot(x,y)6、 小结1.上机时对于matlab 的命令应该灵活使用,明白命令中每个参数的意义及输出内容的意义,对于matlab 命令的理解也应该联系概率论的理论基础2.学习matlab 的命令注意学会总结各个命令的用处与差异,不至于对相似的命令混淆。
概率论试验报告一、二项分布1.实验内容:(1)取p=0.2,绘出二项分布B(20,p)的概率分布与分布函数图,观察二项分布的概率分布与分布函数图形,理解k p 与()F x 的性质.由第一和第二幅图可以看出,(){}{}{}(),1,0,1,.k k k n x x k k k n x x F x P x P x P x C p p k n ξξξ-<=<====-=∑(2)固定p=0.2,分别取n=10,20,50,在同一坐标系内绘出二项分布B(n,p)的概率分布图。
观察二项分布的概率分布曲线随参数n 的变化。
观察最后一幅图,当n 增大时,二项分布的最大值在向右移动,同时向正态分布逼近。
二、泊松分布1.实验内容:该实验主要是为了研究泊松分布的一些性质,并且通过图形的对比更加形象的说明性质的特点;其中分别取λ=1,2,3,6,在同一坐标系下绘出泊松分布π(λ)的概率分布曲线,观察曲线特点。
你能得到什么结论?2.实验过程:利用mathematics 的图像处理功能,我们在同一坐标系下绘制出λ=1、2、3、6的泊松分布概率分布曲线,并得出以下结论。
源代码:DiscretePlot[Evaluate@Table[PDF[PoissonDistribution[],],{,{1,2,3,6}}],{,0,20},PlotRange →All,Joined →True]随着λ值的逐渐增大,图像向右偏移,且最大概率减小,图形变缓,分布加宽,整个图形更加对称;且由泊松分布概率公式:{}!kP k e k λλξ==也可看出λ增大是,当k=λ时取最大值,则{}!kP k e λλξλ==,随着λ增大,P减小,理论符合实际。
我们可以做拓展,λ=0.1,0.2,0.3,0.6的图像图像向左偏,而且呈现不规则样式。
说明,在λ有较大值时有较好的分布效果。
三、正态分布1.实验内容:分别单独改变平均值μ及方差σ的大小观察对图形的影响。
西安交大概率论与数理统计实验报告——蒙特卡洛算法计算积分姓名:学号:班级一、实验目的(1)能通过 MATLAB 或其他数学软件了解随机变量的概率密度、分布函数及其期望、方差、协方差等;(2)熟练使用 MATLAB 对样本进行基本统计,从而获取数据的基本信息;(3)能用 MATLAB 熟练进行样本的一元回归分析。
二、实验要求(1)针对要估计的积分选择适当的概率分布设计蒙特卡洛方法;(2)利用计算机产生所选分布的随机数以估计积分值;(3)进行重复试验,通过计算样本均值以评价估计的无偏性;通过计算均方误差(针对第1类题)或样本方差(针对第2类题)以评价估计结果的精度。
三、实验原理1. 蒙特卡洛法的思想简述当我们所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。
有一个例子我们可以比较直观地了解蒙特卡洛方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。
蒙特卡洛方法是如下计算的:假想有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。
当豆子越小,撒的越多的时候,结果就越精确。
在这里我们要假定豆子都在一个平面上,相互之间没有重叠。
2. 蒙特卡洛法与积分通常蒙特卡洛方法通过构造符合一定规则的随机数来解决数学上的各种问题。
对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题,蒙特卡洛方法是一种有效的求出数值解的方法。
一般蒙特卡洛方法在数学中最常见的应用就是蒙特卡洛积分。
非权重蒙特卡洛积分,也称确定性抽样,是对被积函数变量区间进行随机均匀抽样,然后对被抽样点的函数值求平均,从而可以得到函数积分的近似值。
此种方法的正确性是基于概率论的中心极限定理。
3. 本实验原理简述在本实验中,我们主要是计算积分值与误差比较。