易学通·重难点一本过高一数学 (人教版必修3):第三章 统计 Word版含解析
- 格式:doc
- 大小:655.50 KB
- 文档页数:15
人教版高一数学必修三知识点人教版高一数学必修三知识点(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X 轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
人教版高一数学必修三知识点一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法 (2)复合函数分析法(3)导数证明法 (4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法 (1)描点法 (2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
《统计》全章复习与巩固【学习目标】1. 理解随机抽样的必要性和重要性;会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法,会用简单随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本.2.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.3.理解样本数据标准差的意义和作用,会计算数据标准差;能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.6.会作两个有关联变量数据的散点图,会利用散点图认识变量间的相关关系;了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.【知识网络】【要点梳理】要点一:抽样方法从调查的对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标做出推断,这就是抽样调查.调查对象的全体称为总体,被抽取的一部分称为样本.1.简单的随机抽样简单随机抽样的概念:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.①用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时,任一个体被抽到的概率为1N ;在整个抽样过程中各个个体被抽到的概率为nN;②简单随机抽样的特点是:不放回抽样,逐个地进行抽取,各个个体被抽到的概率相等;③简单随机抽样方法体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.简单抽样常用方法:①抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.适用范围:总体的个体数不多.优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.②随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码.2.系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先制定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.系统抽样的步骤:①采用随机的方式将总体中的个体编号,为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号等等.②为将整个的编号分段 (即分成几个部分),要确定分段的间隔k .当Nn是整数时(N 为总体中的个体的个数,n 为样本容量),N k n =;当N n 不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数'N 能被n 整除,这时'N k n=. ③在第一段用简单随机抽样确定起始的个体编号l .④按照事先确定的规则抽取样本(通常是将l 加上间隔k ,得到第2个编号l k +,第3个编号2l k +,这样继续下去,直到获取整个样本).要点诠释:①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除再进行系统抽样.3.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层.5.不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.随机抽样、系统抽样、分层抽样都是不放回抽样. 要点二:用样本估计总体1. 统计图表包括条形图、折线图、饼图、茎叶图.2. 刻画一组数据集中趋势的统计量有平均数、中位数、众数.平均数:12...nx x x x n+++=刻画一组数据离散程度的统计量有极差、方差2s 、标准差s .方差:222212()()...()n x x x x x x s n-+-++-=.3.总体分布(1)总体:在数理统计中,通常把被研究的对象的全体叫做总体.(2)频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.(3)频率分布直方图中每个小矩形的宽度为i x ∆(分组的宽度),小矩形的面积为相应的频率i f ,高为i if x ∆.(4)频率分布折线图:在频率分布直方图中,按照分组原则,再在左、右两边各加一个区间,从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,所得到的折线称为频率折线图.(5)总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为n 的样本,就是进行了n 次试验,试验所出现的结果叫随机事件,所有这些事件的概率分布规律称为总体分布.(6)总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.要点诠释:①总体密度曲线反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息,总体在某一区间取值的百分比就是该区间与该曲线所成的曲边梯形的面积.②总体密度曲线一般的分布规律是中间高、两边低的“山峰”形分布,总体的数据大致呈对称分布,并且大部分数据都集中在靠近中间的区间内。
高中数学必修3知识点第一章算法初步i.i.i 算法的概念算法的特点:(i)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的^(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题^(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法^(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若1个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm 的株数n 是 ( )A .30B .60C .70D .803.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,84.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )A .华为的全年销量最大B .苹果第二季度的销量大于第三季度的销量C .华为销量最大的是第四季度D .三星销量最小的是第四季度5.某产品的广告费用与销售额的统计数据如下表:( ) 广告费用(万元) 销售客(万元)根据上表中的数据可以求得线性回归方程中的为,据此模型预报广告费用为万元时销售额为( ) A .万元B .万元C .万元D .万元6. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日 7.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则( ) A .B .C .D .8.如果在一次试验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是 ( ) A .y =x +1.9 B .y =1.04x +1.9C .y =1.9x +1.04D .y =1.05x -0.99.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变11.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 12.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .18二、填空题13.对两个变量y 和x 进行回归分析,得到一组样本数据()11,x y ,()22,x y ,…,(),n n x y ,则下列说法中正确的序号是______.①由样本数据得到的回归直线方程y bx a =+必过样本点的中心 ②残差平方和越小的模型,拟合的效果越好③用相关指数2R 来刻画回归效果,2R 越小说明拟合效果越好④若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间线性相关性强 14.已知一组样本数据1210,x x x ,且22212102020x x x +++=,平均数9=x ,则该组数据的标准差为__________.15.已知样本数据为40,42,40,a ,43,44,且这个样本的平均数为43,则该样本的标准差为_________.16.数据1x ,2x ,…,n x 的平均数是3,方差是1,则数据15x -,25x -,…,5n x -的平均数和方差之和是__________.17.某超市统计了一个月内每天光顾的顾客人数,得到如图所示的频率分布直方图,根据该图估计该组数据的中位数为__________.18.某种活性细胞的存活率y (%)与存放温度x (℃)之间具有线性相关关系,样本数据如下表所示 存放温度x (℃) 10 4 -2 -8 存活率y (%)20445680经计算得回归直线方程的斜率为-3.2,若存放温度为6℃,则这种细胞存活的预报值为_____%.19.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =),经过对这些数据的处理,得到如下数据信息:①441118,14ii i i xy ====∑∑;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程y bx a =+中的0.8b =. 那么广告费用为6千元时,则可预测销售额约为__________万元.20.某校高一年级10个班级参加国庆歌咏比赛的得分(单位:分)如茎叶图所示,若这10个班级的得分的平均数是90,则19a b+的最小值为__________.三、解答题21.某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号x 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9x(2)预测该地区2015年农村居民家庭人均纯收入. 附:77211134.4,140i ii i i x yx ====∑∑.回归直线的斜率和截距的最小二乘法估计公式分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-22.某地级市共有200000中学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元.经济学家调查发现,当地人均可支配年收入较上一年每增加%n ,一般困难的学生中有3%n 会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生有2%n 转为一般困难学生,特别困难的学生中有%n 转为很困难学生.现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份x 取13时代表2013年,x 取14时代表2014年,……依此类推,且x 与y (单位:万元)近似满足关系式y x βα=+.(2013年至2019年该市中学生人数大致保持不变)y521()ii yy =-∑51()()iii x x y y =--∑0.8 3.11(1)估计该市2018年人均可支配年收入为多少万元?(2)试问该市2018年的“专项教育基金”的财政预算大约为多少万元?附:对于一组具有线性相关关系的数据11(,)u υ,22(,)u υ,…,(,)n n u υ,其回归直线方程u υβα=+的斜率和截距的最小二乘估计分别为121()()()niii nii u u uu υυβ==--=-∑∑,u αυβ=-.23.某玻璃工艺品加工厂有2条生产线用于生产其款产品,每条生产线一天能生产200件该产品,该产品市场评级规定:评分在10分及以上的为A 等品,低于10分的为B 等品.厂家将A 等品售价定为2000元/件,B 等品售价定为1200元/件. 下面是检验员在现有生产线上随机抽取的16件产品的评分:经计算得16119.9716i i x x ===∑,()1616222211110.0451616i i i i s x x x x ===-=-=∑∑,其中i x 为抽取的第i 件产品的评分,1,2,,16i =⋅⋅⋅.该厂计划通过增加生产工序来改进生产工艺,已知对一条生产线增加生产工序每年需花费1500万元,改进后该条生产线产能不变,但生产出的每件产品评分均提高0.05.已知该厂现有一笔1500万元的资金.(1)若厂家用这1500万元改进一条生产线,根据随机抽取的16件产品的评分. (i )估计改进后该生产线生产的产品中A 等品所占的比例; (ii )估计改进后该厂生产的所有产品评分的平均数和方差.(2)某金融机构向该厂推销一款年收益率为8.2%的理财产品,请你利用所学知识分析,将这1500万元用于购买该款理财产品所获得的收益,与通过改进一条生产线使产品评分提高所增加的收益相对比,一年后哪种方案的收益更大? (一年按365天计算) 24.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.50 0.40 0.25 0.05 0.025 0.010 0k0.4550.7081.3213.8415.0246.63525.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式。
随机事件的概率一、选择题1.一个家庭中先后有两个小孩,则他(她)们的性别情况可能为( )A .男女、男男、女女B .男女、女男C .男男、男女、女男、女女D .男男、女女【解析】 用列举法知C 正确. 【答案】 C2.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12 3 4 5 6 7 8 9 10 取到的次数 101188610189119则取到号码为奇数的频率是( ) A .053 B .05 C .047D .037【解析】 取到号码为奇数的频率是10+8+6+18+11100=053 【答案】 A3.给出下列三种说法:①设有一大批产品,已知其次品率为01,则从中任取100件,必有10件是次品;②作7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是n m =37;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是( )A .0B .1C .2D .3【解析】 由频率与概率之间的联系与区别知①②③均不正确. 【答案】 A 二、填空题6.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A ,则事件A 出现的频数为________,事件A 出现的频率为________ 【28750049】【解析】 100次试验中有48次正面朝上,则52次反面朝上,则频率=频数试验次数=52100=052【答案】 52 0527.已知随机事件A 发生的频率是002,事件A 出现了10次,那么共进行了________次试验.【解析】 设进行了n 次试验,则有10n =002,得n =500,故进行了500次试验.【答案】 5008.从100个同类产品中(其中有2个次品)任取3个.①三个正品;②两个正品,一个次品;③一个正品,两个次品;④三个次品;⑤至少一个次品;⑥至少一个正品.其中必然事件是________,不可能事件是________,随机事件是________.【解析】从100个产品(其中2个次品)中取3个可能结果是:“三个全是正品”,“两个正品,一个次品”,“一个正品,两个次品”.【答案】⑥④①②③⑤三、解答题9.(1)从甲、乙、丙、丁四名同学中选2名代表学校参加一项活动,可能的选法有哪些?(2)试写出从集合A={a,b,c,d}中任取3个元素构成集合.【解】(1)可能的选法为:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁).(2)可能的集合为{a,b,c},{a,b,d},{a,c,d},{b,c,d}.10.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:(1)计算男婴出生的频率;(保留4位小数)(2)这一地区男婴出生的频率是否稳定在一个常数上?【解】(1)男婴出生的频率依次是:0520 0,0517 3,0517 3,0517 3(2)各个频率均稳定在常数0517 3上.[能力提升]1.掷一枚硬币,反面向上的概率是12,若连续抛掷同一枚硬币10次,则有( )A .一定有5次反面向上B .一定有6次反面向上C .一定有4次反面向上D .可能有5次反面向上【解析】 掷一枚硬币,“正面向上”和“反面向上”的概率为12,连掷10次,并不一定有5次反面向上,可能有5次反面向上.【答案】 D2.总数为10万张的彩票,中奖率是11 000,对于下列说法正确的是( )A .买1张一定不中奖B .买1 000张一定中奖C .买2 000张不一定中奖D .买20 000张不中奖【解析】 由题意,彩票中奖属于随机事件, ∴买一张也可能中奖,买2 000张也不一定中奖. 【答案】 C3.一袋中装有10个红球,8个白球,7个黑球,现在把球随机地一个一个摸出来,为了保证在第k 次或第k 次之前能首次摸出红球,则k 的最小值为________.【解析】 至少需摸完黑球和白球共15个. 【答案】 164.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10个智力题,每个题10分.然后作了统计,下表是统计结果.贫困地区:发达地区:(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率;(2)求两个地区参加测试的儿童得60分以上的概率;(3)分析贫富差距为什么会带来人的智力的差别?【解】(1)贫困地区依次填:0533,0540,0520,0.520,0512,0503发达地区依次填:0567,0580,0560,0555,0552,0550(2)贫困地区和发达地区参加测试的儿童得60分以上的频率逐渐趋于05和055,故概率分别为05和055(3)经济上的贫困导致贫困地区生活水平落后,儿童的健康和发育会受到一定的影响;另外经济落后也会使教育事业发展落后,导致智力出现差别.。
高一数学必修三之统计(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修三之统计(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修三之统计(word版可编辑修改)的全部内容。
高一数学必修三之统计一:选择题:1.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a , 中位数为b ,众数为c ,则有( )A . c b a >>B .a c b >>C .b a c >>D .a b c >>2.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( ) A .3.5 B .3- C .3 D .5.0- 3.要从已编号(160)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,48 4组号 1 2 3 4 5 6 7 8 频数 10 13 x 14 15 13 12 9A .14和0.14B .0.14和14C .141和0.14 D . 31和1415.一个容量为40的样本数据分组后组数与频数如下:[25,25。
3),6;[25。
3,25。
6),4;[25.6, 25。
9),10;[25.9,26.2),8;[26.2,26.5),8;[26。
备课资料统计小议我们在一生之中,不是很喜欢询问吗:这是什么东西?对我有什么用呢?我们现在也不妨来问一问,统计是什么东西,能帮助我们什么呢?统计可以说是数学的一支,用来研究数据现象的.我们在这里可能面对两个问题,第一个问题是这堆数据从哪里来的,就是说,这个现象是真的现象吗?怎样找出“数据”呢?第二个问题是这堆数据在说什么?它对我们的生活有什么特别意义呢?这些无疑都是统计的问题,研究数据也是为了解决这类问题,所以,我们学统计的时候,难免要同时照顾两方面的困难:一方面是本质问题,统计能告诉我们那是什么社会现象;另一方面是技巧问题,怎样才能把社会现象的本质弄清楚,整理好,使人明白.要解决这两个困难,于是建立了统计学,学习统计学的主要目标也在研究这两种困难.我们这篇文字的论点更在尝试,从这两个困难的解决过程中,了解统计的结构关系.或者可以说,统计的整个结构就在考虑这两种困难的解答途径中建立的.也许在进一步提出观点时,我们不妨先指出高深的统计,虽然是从这种困难的研究中出发,但高等统计还有别的难题,例如作统计推论、下判断和预测的时候,我们还牵涉到应用一些信仰,一些原则,甚至一些经济理论等问题,这里姑且不先说明,机会到了我们再提出来检讨和分辨清楚.我们回到最原始的开始,假如我们要明白一个社会现况,或者是社会存在着一种迫人的现象,一定得要了解它的含义,那么该怎么办呢?前者例如想知道目前社会的财富分配的情形如何?后者如世界连年干旱,粮食欠收的现象所惹起的饥荒情形.这些切身而重要的问题,应用统计技巧无疑是一个很好的途径.我们提出一个“统计测度”的观念.一方面希望用它来答复上面的两个困难,另一方面也可以用来作整个统计结构的支柱.因此,所谓“统计测度”,就在面对着一堆原始累积的资料、数据、现象……我们要用一两个简单的统计量表达它的本质特性,这些统计量便是统计测度.统计学要做的事,便是把这些测度找出来,用它解释原来母体的现象的意义.不过,我们也得知道,这些测度也有它的极限,它并不能表达多过它本身所含的统计意义,尤其得注意它的样本里面的代表性和随机性的困难条件.在近代人乱用、妄用、误用和滥用的方式下,统计测度大部分时间都是被人利用,来读出不真实的结果,这是应极为小心注意的.(设计者:张大明)。
人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。
计数,概率,统计与分布列知识梳理10.1分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,……,在第n类办法中有m n种方法.那么,完成这件事共有_____________种方法.(也称加法原理)2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,……,做第n步有m n种方法.那么,完成这件事共有__________________种方法.(也称乘法原理) 3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.[方法与技巧]1.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.分类标准要明确,做到不重复不遗漏.3.混合问题一般是先分类再分步.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.[失误与防范]1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.10.2排列与组合1.排列与组合的概念2.(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的_________的个数叫作从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的_________的个数,叫作从n个不同元素中取出m个元素的组合数,用C m n表示.3.排列数、组合数的公式及性质1.对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不符合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧:(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.[失误与防范]求解排列与组合问题的三个注意点:(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理做最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)或间接法(排除法)来解决,分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意等价答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.10.3二项式定理1.二项式定理(1)0≤r≤n时,C r n与C n-r的关系是______n(2)二项式系数先增后减________最大当n为偶数时,第_____项的二项式系数最大,最大值为__;当n为奇数时,第____项和_______项的二项式系数最大,最大值为______和_____(3)各二项式系数和:C0n+C1n+C2n+…+C n n=____,C0n+C2n+C4n+…=C1n+C3n+C5n+…=____【知识拓展】二项展开式形式上的特点(1)项数为______(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按_____排列,从第一项开始,次数由n逐项减1直到零;字母b按_____排列,从第一项起,次数由零逐项增1直到n.,___(4)二项式的系数从____,C1n,一直到C n-1n[方法与技巧]1.通项T r+1=C r n a n-r b r是(a+b)n的展开式的第r+1项,而不是第r项,这里r=0,1,…,n.2.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.3.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.4.运用通项求展开式的一些特殊项,通常都是由题意列方程求出r,再求所需的某项;有时需先求n,计算时要注意n和r的取值范围及它们之间的大小关系.[失误与防范]1.项的系数与a、b有关,二项式系数只与n有关,大于0.2.求二项式所有系数的和,可采用“赋值法”.3.关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法.4.展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.11.1随机抽样1.抽样调查(1)抽样调查通常情况下,从调查对象中按照一定的方法抽取一部分,进行_________,获取数据,并以此对调查对象的某项指标作出_______,这就是抽样调查.(2)总体和样本调查对象的______称为总体,被抽取的_______称为样本.(3)抽样调查与普查相比有很多优点,最突出的有两点:①______________;②节约人力、物力和财力.2.简单随机抽样(1)简单随机抽样时,要保证每个个体被抽到的概率______(2)通常采用的简单随机抽样的方法:__________________3.分层抽样(1)定义:将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.4.系统抽样系统抽样是将总体中的个体进行编号,_______分组,在第一组中按照___________抽取第一个样本,然后按____________ (称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械抽样.[方法与技巧]1.简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽取的个体带有随机性;个体间无固定间距.2.系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.3.分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.[失误与防范]进行分层抽样时应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.\11.2统计图表,用样本估计总体1.统计图表统计图表是_____和_____数据的重要工具,常用的统计图表有____________,______________,______________,______________等.2.数据的数字特征(1)众数、中位数、平均数众数:在一组数据中,出现次数_____的数据叫作这组数据的众数.中位数:将一组数据按大小依次排列,把处在_______位置的一个数据(或最中间两个数据的平均数)叫作这组数据的中位数.平均数:样本数据的算术平均数,即x=________________在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(2)样本方差、标准差标准差s=______________________________其中x n是样本数据的第n项,n是___________,x是________标准差是刻画数据的离散程度的特征数,样本方差是标准差的____.通常用样本方差估计总体方差,当____________________时,样本方差很接近总体方差.3.用样本估计总体(1)通常我们对总体作出的估计一般分成两种,一种是用_____________________________,另一种是用____________________________(2)在频率分布直方图中,纵轴表示______,数据落在各小组内的频率用______________表示,各小长方形的面积总和等于____.(3)在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的_____开始,用线段依次连接各个矩形的__________,直至右边所加区间的中点,就可以得到一条折线,称之为频率折线图.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它没有信息的缺失,而且___________,方便表示与比较.[方法与技巧]1.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.2.茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作.3.若取值x1,x2,…,x n的频率分别为p1,p2,…,p n,则其平均值为x1p1+x2p2+…+x n p n;若x1,x2,…,x n的平均数为x,方差为s2,则ax1+b,ax2+b,…,ax n+b的平均数为a x +b,方差为a2s2.[失误与防范]频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.11.3变量间的相关关系,统计案例1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的_______(2)从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为_______(3)在两个变量x和y的散点图中,若所有点看上去都在一条直线附近波动,则称变量间是__________的,若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是___________的.如果所有的点在散点图中没有显示任何关系,则称变量间是__________ 2.线性回归方程(1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是所要求的直线,这种方法称为最小二乘法.(2)线性回归方程方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧ b =∑n i =1 (x i -x )(y i -y )∑n i =1 (x i -x )2=∑n i =1x i y i -n x y ∑n i =1x 2i -n x 2,a =y -b x .3.回归分析(1)定义:对具有________的两个变量进行统计分析的一种常用方法.(2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中,________称为样本点的中心.(3)相关系数①r =∑ni =1 (x i -x )(y i -y )∑n i =1 (x i -x )2∑n i =1(y i -y )2=∑ni =1x i y i -n x y(∑n i =1x 2i -n x 2)(∑n i =1y 2i -n y 2);②当r >0时,表明两个变量_______;当r <0时,表明两个变量_________当r =0时,表明两个变量_________.r 的绝对值越接近于1,表明两个变量之间的线性相关程度_______.r 的绝对值越接近于0,表明两个变量之间的线性相关程度越低.4.独立性检验设A ,B 为两个变量,每一个变量都可以取两个值,变量A :A 1,A 2=A 1;变量B :B 1,B 2=B 1;2×2列联表:构造一个随机变量χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).利用随机变量χ2来判断“两个分类变量有关系”的方法称为独立性检验.当χ2≤2.706时,没有充分的证据判定变量A,B有关联,可以认为变量A,B没有关联的;当χ2>2.706时,有90%的把握判定变量A,B有关联;当χ2>3.841时,有95%的把握判定变量A,B有关联;当χ2>6.635时,有99%的把握判定变量A,B有关联.[方法与技巧]1.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程.2.根据χ2的值可以判断两个分类变量有关的可信程度.[失误与防范]1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.2.独立性检验中统计量χ2的值的计算公式很复杂,在解题中易混淆一些数据的意义,代入公式时出错,而导致整个计算结果出错.12.1随机事件的概率1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的_____________(2)在条件S下,一定不会发生的事件,叫作相对于条件S_____________(3)___________________________统称为相对于条件S的确定事件.(4)______________________________的事件,叫作相对于条件S的随机事件.(5)___________和____________统称为事件,一般用大写字母A,B,C…表示.2.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有_______.这时,我们把_______叫作随机事件A的概率,记作P(A).3.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B______________________对立事件:不会______发生,并且___________发生的事件是相互对立事件.4.概率的几个基本性质(1)概率的取值范围:________________(2)必然事件的概率P(E)=____(3)不可能事件的概率P(F)=____(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A+B)=________________②若事件A与事件A互为对立事件,则P(A)=______________.[知识拓展]互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.[方法与技巧]1.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于_________, 因此可以用频率f n(A)来估计概率P(A).2.从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为______,事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的_______.[失误与防范]1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的__________条件.2.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.12.2古典概型1.基本事件的特点(1)任何两个基本事件是_______的;(2)任何事件(除不可能事件)都可以表示成_____________的和.2.古典概型具有以下两个特点的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果_____________,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性__________3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 1n;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )= ________ .4.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数. [方法与技巧]1.古典概型计算三步曲第一,本试验是不是等可能的;第二,本试验的基本事件有多少个;第三,事件A 是什么,它包含的基本事件有多少个.2.确定基本事件的方法(1)当基本事件总数较少时,可列举计算;(2)列表法、树状图法.3.较复杂事件的概率可灵活运用互斥事件、对立事件、相互独立事件的概率公式简化运算.[失误与防范]1.古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的.2.概率的一般加法公式:P (A +B )=___________________.公式使用中要注意:(1)公式的作用是求A +B 的概率,当AB =∅时,A 、B 互斥,此时P (AB )=0,所以P (A +B )=P (A )+P (B );(2)要计算P (A +B ),需要求P (A )、P (B ),更重要的是把握事件AB,并求其概率;(3)该公式可以看作一个方程,知三可求一.12.3几何概型1.几何概型向平面上有限区域(集合)G内随机地投掷点M,若点M落在子区域G1G的概率与G1的面积成正比,而与G的形状、位置无关,即P(点M落在G1)=___________,则称这种模型为几何概型.2.几何概型中的G也可以是空间中或直线上的有限区域,相应的概率是_______之比或_________之比.3.借助_________可以估计随机事件发生的概率.[方法与技巧]1.区分古典概型和几何概型最重要的是看__________的个数是有限个还是无限个.2.转化思想的应用对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式.(1)一般地,一个连续变量可建立与_____有关的几何概型,只需把这个变量放在坐标轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与______有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与_______有关的几何概型.[失误与防范]1.准确把握几何概型的“测度”是解题关键;2.几何概型中,线段的端点、图形的边框是否包含在事件之内_________所求结果.12.4离散型随机变量及其分布列1.离散型随机变量的分布列(1)将随机现象中试验(或观测)的每一个可能的结果都对应于________,这种_______称为一个随机变量.(2)离散型随机变量:随机变量的取值能够______________,这样的随机变量称为离散型随机变量.(3)设离散型随机变量X的取值为a1,a2,…随机变量X取a i的概率为p i(i=1,2,…),记作:_____________ (i=1,2,…),或把上式列表:称为离散型随机变量X(4)性质:①p i___0,i=1,2,…;②p1+p2+…=___.2.超几何分布一般地,设有N件产品,其中有M(M≤N)件次品.从中任取n(n≤N)件产品,用X表示取出的n件产品中次品的件数,那么P(X=k)=______________ (其中k为非负整数).如果一个随机变量的分布列由上式确定,则称X服从参数为N,M,n的超几何分布.[方法与技巧]1.对于随机变量X的研究,需要了解随机变量能取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X的______以及取这些值的______.2.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.[失误与防范]掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据分布列的两个性质来检验求得的分布列的正误.12.5二项分布及其应用1.条件概率在已知B发生的条件下,事件A发生的概率叫作B发生时A发生的___________,用符号P(A|B)来表示,其公式为P(A|B)=__________ (P(B)>0).2.相互独立事件(1)一般地,对两个事件A,B,如果有________________,则称A、B相互独立.(2)如果A、B相互独立,则_________________________________也相互独立.(3)如果A1,A2,…,A n相互独立,则有:P(A1A2…A n)=_________________________.3.二项分布进行n次试验,如果满足以下条件:(1)每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”;(2)每次试验“成功”的概率均为p,“失败”的概率均为1-p;(3)各次试验是___________.用X表示这n次试验中成功的次数,则P(X=k)=_____________ (k=0,1,2,…,n)若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).[方法与技巧]1.古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)=____=_____,其中,在实际应用中P(B|A)=n(AB)n(A)是一种重要的求条件概率的方法.2.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算式为____________.互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为_______________.3.n次独立重复试验中,事件A恰好发生k次可看作是____个互斥事件的和,其中每一个事件都可看作是__个A事件与____个A事件同时发生,只是发生的次序不同,其发生的概率都是_________.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k. [失误与防范]1.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A、B相互独立时,公式才成立.2.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意“恰好”与“至多(少)”的关系,灵活运用对立事件.12.6离散型随机变量的均值与方差,正态分布1.离散型随机变量的均值与方差若离散型随机变量X的分布列为P(X=a i)=p i(i=1,2,…r).(1)均值EX=________________________,EX刻画的是_____________________(2)方差DX=_______________为随机变量X的方差,它刻画了随机变量X与其均值EX的____________________2.二项分布的均值、方差若X~B(n,p),则EX=_____________,DX=______________3.正态分布(1)X~N(μ,σ2),表示X服从参数为__________的正态分布.(2)正态分布密度函数的性质:①函数图像关于___________对称;②_________________决定函数图像的“胖”“瘦”;③P(μ-σ<X<μ+σ)=__________;P(μ-2σ<X<μ+2σ)=__________;P(μ-3σ<X<μ+3σ)=__________[方法与技巧]1.均值与方差的性质(1)E(aX+b)=__________,D(aX+b)=_______(a,b为常数).(2)若X服从两点分布,则EX=___,DX=_______.(3)若X服从二项分布,即X~B(n,p),则EX=_____,DX=________.2.求离散型随机变量的均值与方差的基本方法(1)已知随机变量的分布列求它的均值、方差,按定义求解.(2)已知随机变量X的均值、方差,求X的线性函数Y=aX+b的均值、方差,可直接用X 的均值、方差的性质求解.(3)如果所给随机变量是服从常用的分布(如两点分布、二项分布等),利用它们的均值、方差公式求解.3.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线的对称性和曲线与x轴之间的面积为____.[失误与防范]1.在没有准确判断分布列模型之前不能随便套用公式.2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.计数,概率,统计与分布列知识梳理答案10.1分类加法计数原理与分步乘法计数原理1. N=m1+m2+…+m n 2 .N=m1×m2×…×m n10.2排列与组合1. 一定的顺序2.(1) 所有排列(2) 所有组合3. (1) n(n-1)(n-2)…(n-m+1) ,n!(n-m)!(2) A m nA m m,n(n-1)(n-2)…(n-m+1)m!,n!m!(n-m)!(3) 1 , n!(4) C n-mn , C m n+C m-1n10.3二项式定理1.C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n, r+12. (1) C r n=C n-rn .(2)中间项,n2+1 ,2Cnn,n+12, n+32,12Cnn-,12Cnn+.(3)2n 2n-1.【知识拓展】(1) n+1. (3) 降幂, 升幂(4) C0n, C n n.11.1随机抽样1.(1) 调查或观测, 推断(2) 全体, 一部分(3)①迅速、及时;2.(1) 相同.(2) 抽签法和随机数法.4. 等距,简单随机抽样, 分组的间隔11.2统计图表,用样本估计总体1.表达, 分析, 条形统计图、扇形统计图、折线统计图、茎叶图2.(1) 最多, 最中间, 1n(x1+x2+…+x n).(2)1n[(x1-x)2+(x2-x)2+…+(x n-x)2],, 样本容量, 平均数, 平方, 样本容量接近总体容量3.(1) 样本的频率分布估计总体的频率分布, 样本的数字特征估计总体的数字特征.(2) 频率组距, 各小长方形的面积, 1 (3)中点, 顶端中点(4) 可以随时记录11.3变量间的相关关系,统计案例1.(1)散点图.(2)曲线拟合.(3)线性相关, 非线性相关, 不相关的.3.(1) 相关关系(2) (x,y) (3)②正相关, 负相关, 线性不相关, 越高12.1随机事件的概率1.(1)必然事件(2)不可能事件(3)必然事件与不可能事件(4)在条件S下可能发生也可能不发生(5)确定事件和随机事件2.稳定性, 这个常数3.不能同时, 至少有一个发生,同时, 一定有一个4.(1)0≤P(A)≤1. (2)1. (3)0. (4)①P(A)+P(B).②1-P(A).[方法与技巧]1. 概率P(A)2. 空集, 补集[失误与防范]1.必要不充分12.2古典概型1.(1)互斥(2)基本事件2.(1)只有有限个,(2)相同3.m n.[失误与防范]2.P(A)+P(B)-P(AB) 12.3几何概型1.G1的面积G的面积2.体积,长度3.模拟方法[方法与技巧]。
第五章概率重点列表:重点详解:1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫做相对于条件S的____________.(2)在条件S下,一定不会发生的事件,叫做相对于条件S的____________.必然事件与不可能事件统称为相对于一定条件的确定事件.(3)在一定条件下可能发生也可能不发生的事件,叫做相对于条件S的__________.(4)____________和____________统称为事件,一般用大写字母A,B,C,…表示.2.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的________,称事件A出现的比例f n(A)=________为事件A出现的频率.(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的____________f n(A)稳定在某个常数上,把这个____________记作P(A),称为事件A的____________.(3)在一次试验中几乎不可能发生的事件称为____________.3.事件的关系与运算(类比集合的关系与运算)种情况:①若事件A发生,则事件B就不发生;②若事件B发生,则事件A就不发生;③事件A,B都不发生.两个事件A与B是对立事件,仅有前两种情况.因此,互斥未必对立,但对立一定互斥.4.概率的几个基本性质(1)概率的取值范围:____________.(2)必然事件的概率P(E)=____________.(3)不可能事件的概率P(F)=____________.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A∪B)=___________.推广:如果事件A1,A2,…,A n两两互斥(彼此互斥),那么事件A1+A2+…+A n发生的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+A n)=___________.②若事件B与事件A互为对立事件,则P(A)=____________________.【答案】1.(1)必然事件(2)不可能事件(3)随机事件(4)确定事件随机事件2.(1)频数n An(2)频率常数概率(3)小概率事件3.包含B A A=B或且A∩BØA∩B A∪BØ 14.(1)0≤P(A)≤1(2)1 (3)0(4)①P(A)+P(B) P(A1)+P(A2)+…+P(A n)②1-P(B)重点1:随机事件的概念【要点解读】概率与频率的关系(1)频率是一个随机数,在试验前是不能确定的.(2)概率是一个确定数,是客观存在的,与试验次数无关.(3)频率是概率的近似值,随着试验次数的增加,频率一般会越来越接近概率,因而概率是频率的稳定值.【考向1】随机事件的判断【例题】同时掷两颗骰子一次,(1)“点数之和是13”是什么事件?其概率是多少?(2)“点数之和在2~13之间”是什么事件?其概率是多少?(3)“点数之和是7”是什么事件?其概率是多少?【评析】明确必然事件、不可能事件、随机事件的意义及相互联系.判断一个事件是哪类事件要看两点:一是看条件,二是看结果发生与否,在条件S下事件发生与否是对应于条件S 而言的.【考向2】不可能事件与必然事件【例题】一个口袋内装有5个白球和3个黑球,从中任意取出一个球,(1)“取出的球是红球”是什么事件?它的概率是多少?(2)“取出的球是黑球”是什么事件?它的概率是多少?(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?解:(1)由于口袋内装有黑、白两种颜色的球,故“取出的球是红球”是不可能事件,其概率为0.(2)由已知,从口袋内取出一个球,可能是白球,也可能是黑球,故“取出的球是黑球”是随机事件,它的概率是38. (3)由于口袋内装的是黑、白两种颜色的球,故取出一个球不是黑球,就是白球,因此,“取出的球是白球或黑球”是必然事件,它的概率为1.重点2:对立与互斥的概念及应用【要点解读】互斥事件、对立事件的判定方法(1)利用基本概念①互斥事件不可能同时发生;②对立事件首先是互斥事件,且必有一个发生.(2)利用集合的观点来判断设事件A 与B 所含的结果组成的集合分别是A ,B ,①事件A 与B 互斥,即集合A ∩B =Ø;②事件A 与B 对立,即集合A ∩B =Ø,且A ∪B =I (全集),也即A =∁I B 或B =∁I A ;③对互斥事件A 与B 的和A +B ,可理解为集合A ∪B .3.只有事件A ,B 互斥时,才有公式P (A +B )=P (A )+P (B )成立,否则公式不成立.4.求复杂的互斥事件的概率一般有两种方法:一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式P (A )=1-P (A ),即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.【考向1】对立与互斥的概念【例题】判断下列各组事件是否是互斥事件,并说明道理.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中(1)恰有1名男生和恰有2名男生;(2)至少有一名男生和至少有一名女生;(3)至少有一名男生和全是男生;(4)至少有1名男生和全是女生.(3)不是互斥事件.道理是:“至少有一名男生”包括“一名男生、一名女生”和“两名都是男生”,这与“全是男生”可同时发生.(4)是互斥事件.道理是:“至少有1名男生”包括“1名男生、1名女生”和“两名都是男生”两种结果,它和“全是女生”不可能同时发生.【评析】判断两个事件是否为互斥事件,就是考查它们能否同时发生,如果不能同时发生,则是互斥事件,否则,就不是互斥事件.判断对立与互斥除了用定义外,也可以利用集合的观点来判断.注意:①事件的包含、相等、互斥、对立等,其发生的前提条件应是一样的;②对立是针对两个事件来说的,而互斥可以是多个事件的关系.【考向2】对立与互斥的应用【例题】经统计,在某展览馆处排队等候验证的人数及其概率如下表:(1)求至多2(2)求至少1人排队的概率.【评析】求事件的概率常需求互斥事件的概率和,要学会把一个事件分拆为几个互斥事件.当直接计算事件的概率比较复杂(或不能直接计算)时,通常是正难则反转而求其对立事件的概率.难点列表:难点详解:古典概型1.基本事件和基本事件空间的概念(1)在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为____________.(2)所有基本事件构成的集合称为______________,常用大写希腊字母________表示.2.基本事件的特点(1)任何两个基本事件是____________的.(2)任何事件(除不可能事件)都可以表示成____________的和.3.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型:(1)试验中所有可能出现的基本事件只有__________个.(2)每个基本事件出现的可能性____________.4.古典概型的概率公式在古典概型中,一次试验可能出现的结果有n 个,如果某个事件A 包含的结果有m 个,那么事件A 的概率为P (A )=________.【答案】1.(1)基本事件 (2)基本事件空间 Ω2.(1)互斥 (2)基本事件3.(1)有限 (2)相等4. m n几何概型1.随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个满足条件的数的机会是____________.利用计算器,Excel ,Scilab 等都可以产生随机数.2.几何概型的定义如果每个事件发生的概率只与构成该事件区域的____________(____________或____________)成比例,则称这样的概率模型为________________,简称____________.3.概率计算公式在几何区域D 中随机地取一点,记事件“该点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率P (A )= .求试验中几何概型的概率,关键是求得事件所占区域d 和整个区域D 的几何度量,然后代入公式即可求解.【答案】1.均等的2.长度 面积 体积 几何概率模型几何概型3.构成事件A 的区域的长度(面积或体积)试验的全部结果构成的区域的长度(面积或体积)难点1:古典概型【要点解读】1.古典概型(有些书籍也称等可能概型)是概率论中最简单且直观的模型,在概率论的发展初期曾是主要研究对象,许多概率的运算法则都是在古典概型中得到证明的(遂谓之“古典”).要判断一个试验是否为古典概型,只需要判断这个试验是否具有古典概型的两个特征——有限性和等可能性.2.(1)如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式P (A )=m n 求出事件A 的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重复,不遗漏.(2)如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m ,n ,再运用公式P (A )=m n求概率.3.对于事件A 的概率的计算,关键是要分清基本事件总数n 与事件A 包含的基本事件数m .因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A 是什么,它包含的基本事件有多少个.4.较为简单的问题可以直接使用古典概型概率公式计算,较为复杂的概率问题的处理方法有:(1)转化为几个互斥事件的和,利用互斥事件的加法公式求解;(2)采用间接法,先求事件A 的对立事件A 的概率,再由P (A )=1-P (A )求事件A 的概率.【考向1】基本事件与基本事件空间的概念【例题】将一枚均匀硬币抛掷三次.(1)试用列举法写出该试验所包含的基本事件;(2)事件A :“恰有两次出现正面向上”包含几个基本事件;(3)事件B :“三次都出现正面向上”包含几个基本事件.解:(1)试验“将一枚均匀硬币抛掷三次”所出现的所有基本事件有:(正,正,反),(正,反,正),(正,反,反),(正,正,正),(反,反,反),(反,反,正),(反,正,反),(反,正,正),共8种等可能结果.(2)事件A包含的基本事件有三个:(正,正,反),(正,反,正),(反,正,正).(3)事件B包含的基本事件只有一个:(正,正,正).【评析】基本事件是试验中不能再分解的事件,是“最小”的“事件单位”.任何基本事件都是互斥的,任何复杂事件都可以分解为基本事件,所有基本事件的全体组成基本事件空间.【考向2】列举基本事件求概率【例题】小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.(1)写出数量积X的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率.难点2:几何概型【要点解读】1.几何概型与古典概型的关系几何概型是古典概型的补充和推广,它要求随机试验的基本事件空间包含无穷多个元素,每个基本事件由在几何空间(一维、二维、三维)中的某一区域G 内随机而取的点的位置来确定;而“基本事件发生或出现是等可能的”这一要求,两种概率模型是高度统一的.2.解决几何概型问题,注意把握好以下几点:(1)能正确区分古典概型与几何概型.例1:在区间0,10]上任意取一个整数x ,则x 不大于3的概率为________.例2:在区间0,10]上任意取一个实数x ,则x 不大于3的概率为________.例1的基本事件总数为有限个11,不大于3的基本事件有4个,此为古典概型,故所求概率为411.例2的基本事件总数为无限个,属于几何概型,故所求概率为310. (2)准确分清几何概型中的测度.例3:在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,求∠CAM <30°的概率. 例4:在等腰Rt △ABC 中,∠C =90°,在∠CAB 内作射线交线段BC 于点M ,求∠CAM <30°的概率.例3中的测度定性为线段长度,当∠CAM 0=30°,CM 0=33AC =33CB .满足条件的点M 等可能的分布在线段CM 0上,故所求概率等于CM 0CB =33.例4中的测度定性为角度,过点A 作射线与线段CB 相交,这样的射线有无数条,均匀分布在∠CAB 内,∠CAB =45°.所以所求概率等于∠CAM 0∠CAB =30°45°=23. (3)科学设计变量,数形结合解决问题.例5:某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待时间不多于10分钟的概率.例6:某人午觉醒来,发现表停了,求表停的分钟数与实际分钟数差异不超过5分钟的概率.例5是《必修3》的例题,此题中的变量(单变量)可看作是时间的长度,故所求概率为1060=16.例6容易犯解例5形成的定势思维的错误,得到错误答案560=112.原因在于没有认清题中的变量,本题的变量有两个:手表停的分钟数和实际分钟数,都可取0,60]内的任意时刻,故所求概率需用到面积型几何概型,由|x -y |≤5结合线性规划知识可解,故所求概率为602-55260=23144.通过这两道例题我们也可以看出,单变量多用线型测度,多变量需用面积(或体积)型测度.在画好几何图形后,利用数形结合思想解题.3.几何概型并不限于向平面(或直线、空间)投点的试验,如果一个随机试验有无限多个等可能的基本结果,每个基本结果可以用平面(或直线、空间)中的一点来表示,而所有基本结果对应于一个区域Ω,这时,与试验有关的问题即可利用几何概型来解决.【考向1】以长度为度量的几何概型【例题】在半径为1的圆内的一条直径上任取一点,过这个点作垂直于该直径的弦,则弦长超过圆内接等边三角形边长的概率是________.解:记事件A 为“弦长超过圆内接等边三角形的边长”.如图,不妨在过等边三角形BCD 的顶点B 的直径BE 上任取一点F 作垂直于直径的弦,当弦为FD 时,就是等边三角形的边长,弦长大于CD 的充要条件是圆心O 到弦的距离小于12,由几何概型公式得:P (A )=12×22=12.故填12. 【评析】①以线段长度为度量的几何概型概率计算公式:P (A )=事件A 对应的线段长试验的全部结果对应的线段长.※②本题实际是著名的贝特朗悖论的解答之一,该“悖论”是说:在一半径为1的圆C 内任意作一弦,此弦长度大于该圆内接正三角形边长(3)的概率是多少?由于题中“任意作一弦”的提法不明确,与之对应的随机试验及基本事件也不同,从而产生不同的概率问题.除了本例给出的解答外,还有两种常见解答,而这三种解答结果各不相同,从而形成所谓的“悖论”.另外两种如下:(Ⅰ)以12为半径作圆C 的同心圆C 1(图1),易证弦的中点M 落在圆C 1内的充要条件为弦长l >3,故所求概率等于二圆面积之比14;(Ⅱ)设弦AB 的一端固定于圆上,于是弦的另一端B 是“任意”的,考虑正三角形ADE (图2),弦长l >3的充要条件为B 落在劣弧DE ︵上,故所求概率为劣弧DE ︵的弧长与圆周长之比13.有兴趣的同学可以翻阅相关资料,并不妨探究一下:这三种解答采用的都是何种等可能性的假定?【考向2】以面积为度量的几何概型【例题】(1)如图所示,在边长为1的正方形OABC 内任取一点P (x ,y ).①求△APB 的面积大于14的概率;②求点P 到原点的距离小于1的概率.解:①如图,取线段BC ,AO 的中点E ,F ,连接EF ,则当点P 在线段EF 上时,S △APB =14,故满足条件的点P 所在的区域为矩形OFEC (阴影部分).故所求概率为S 矩形OFEC S 正方形OABC =12.②所有的点P 构成正方形区域D ,若点P 到原点距离小于1,则⎩⎪⎨⎪⎧0<x <1,0<y <1,x 2+y 2<1,所以符合条件的点P 构成的区域是圆x 2+y 2=1在第一象限所围的平面部分(图中阴影部分).∴点P 到原点距离小于1的概率为:14·π·1212=π4. 【评析】①以面积为度量的几何概型概率计算公式:P =事件A 构成区域的面积整个试验的全部结果构成区域的面积.②解此类问题的主要步骤为:列出条件组,画出图形,计算面积,再求概率.③多注意数形结合.(2)甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.求两人能会面的概率.【评析】①平面直角坐标系内用x轴表示甲到达约会地点的时间,y轴表示乙到达约会地点的时间,用0分到60分表示6时到7时的时间段,则横轴0到60与纵轴0到60的正方形中任一点的坐标(x,y)就表示甲、乙两人分别在6时到7时时间段内到达的时间.而能会面的时间由||x-y≤15所对应的图中阴影部分表示.②本题的难点在于把实际问题转化为几何模型.【考向3】以体积为度量的几何概型【例题】在棱长为a的正方体ABCDA1B1C1D1内任取一点P,则点P到点A的距离不大于a的概率为( )A.22B.22πC.16D.π6【评析】①以体积为度量的几何概型概率计算公式:P=构成事件A的区域的体积试验的全部结果构成的区域的体积;②对于以体积为度量的几何概型,要根据空间几何体的体积计算方法,把概率计算转化为空间几何体的体积计算.【考向4】随机模拟【例题】一只海豚在水池中游弋,水面为长30 m,宽20 m的长方形,随机事件A记为“海豚嘴尖离岸边不超过2 m”.(1)试设计一个能估算出事件A发生的概率的算法;(2)求P (A )的准确值.解:(1)建立如图的直角坐标系,并用计算机所产生的随机数x 和y 组成的有序数组(x ,y )来表示海豚嘴尖的坐标.这里几何区域D 所表示的范围为长方形:x ∈(-15,15),y ∈(-10,10),事件A 所表示的区域为图中的阴影部分d :||x |-15|≤2,或||y |-10|≤2. 算法框图如下:(2)如图所示,所求概率为P (A )=阴影部分的面积区域D 的面积=30×20-26×1630×20=2375.【评析】①简单说明:n 记录做了多少次试验,m 记录其中有多少次(x ,y )出现在阴影部分;rand()×30-15产生-15~15之间的随机数作为海豚嘴尖的横坐标,rand()×20-10产生-10~10之间的随机数y 作为海豚嘴尖的纵坐标;||||x -15≤2或||||y -10≤2判断(x ,y )是否落在阴影部分.②随机模拟的是计算机产生随机数,而算法的引入为模拟提供了可能,随着新课标注重应用的不断深入,此类问题会倍受关注.【趁热打铁】1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A.13 B.12 C.23 D.342.在区间-2,3]上随机选取一个数X ,则X ≤1的概率为( )A.45B.35C.25D.153.从1,2,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是( ) A .① B .②④ C .③ D .①③4.在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字5是取出的五个不同数的中位数的概率为( ) A.956 B.928 C.914 D.595.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( ) A.115 B.15 C.14 D.126.设k 是一个正整数,已知⎝ ⎛⎭⎪⎫1+x k k的展开式中第四项的系数为116,函数y =x 2与y =kx 的图象所围成的区域如图中阴影部分所示,任取x ∈0,4],y ∈0,16],则点(x ,y )恰好落在阴影部分内的概率为( )A.1796B.532C.16D.7487.如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A .1-π4 B.π2-1 C .2-π2 D.π48.已知数列{a n }是等差数列,从a 1,a 2,a 3,a 4,a 5,a 6,a 7中取走任意四项,则剩下三项构成等差数列的概率为( ) A.635 B.935 C .1或935 D .1或6359.在不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2所表示的平面区域内任取一点P ,若点P 的坐标(x ,y )满足y ≥kx的概率为34,则实数k =( )A .4B .2 C.23 D.1210.如图所示,在长方体ABCD A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1,过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .若AB =2AA 1=2a ,EF =a ,B 1E =B 1F ,在长方体ABCD A 1B 1C 1D 1内随机选取一点,则该点取自于几何体A 1ABFE D 1DCGH 内的概率为( )A.1116B.34C.1316D.78第五章1.A 甲、乙两人都有3种选择,共有3×3=9种情况,甲、乙两人参加同一兴趣小组共有3种情况,∴甲、乙两人参加同一兴趣小组的概率P =39=13,故选A.2.B 这是一个几何概型问题,测度是长度,此问题的总体长度为5,使得“X ≤1”的长度为3,故P (X ≤1)=35.3.C 从1,2,…,9中任取两数,包括一奇一偶、二奇、二偶,共三种互斥事件,所以只有③中的两个事件才是对立的.4.B 要满足题意,则抽取的除5以外的四个数字中,有两个比5小,有两个比5大,故所求概率P =C 24·C 23C 58=928.5.B 由题意分析可得,甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共4种,∴所求概率P =4·A 33C 36·A 33=15.7.A 依题意,有信号的区域面积为π4×2=π2,矩形的面积为2,故所求概率为P =2×1-π22×1=1-π4. 8.C 当等差数列{a n }的公差为0时,剩下三项一定构成等差数列,故概率为1.当等差数列{a n }的公差不为0时,从a 1,a 2,a 3,a 4,a 5,a 6,a 7中取走任意四项,剩下三项的总数有C 47=35(种),剩下三项构成等差数列,则符合条件的有(a 1,a 2,a 3),(a 2,a 3,a 4),(a 3,a 4,a 5),(a 4,a 5,a 6),(a 5,a 6,a 7),(a 1,a 3,a 5),(a 2,a 4,a 6),(a 3,a 5,a 7),(a 1,a 4,a 7)9种情况,故剩下三项构成等差数列的概率为935.思路点拨:根据公差是否为0进行分类讨论,由题意可求得所有的基本事件数目,也可求得符合条件的基本事件数目,由古典概型概率公式求解.9.D 如图,满足不等式组的区域是边长为2的正方形,面积是4,假设满足不等式y ≥kx 的区域如图阴影部分,其面积为4-12×2×2k ,由几何概型的概率公式得点P 的坐标(x ,y )满足y ≥kx 的概率为4-12×2×2k 4=34,解得k =12.10.D 在等腰直角三角形B 1EF 中,因为斜边EF =a ,所以B 1E =B 1F =22a . 根据几何概型概率公式,得P =VA 1ABFE D 1DCGH VABB 1A 1DCC 1D 1=VABB 1A 1DCC 1D 1-VEFB 1HGC 1VABB 1A 1DCC 1D 1=1-VEFB 1HGC 1VABB 1A 1DCC 1D 1=1-S △EFB 1S 矩形ABB 1A 1=1-12B 1E ·B 1F 2a 2=1-14a 2·22a ·22a =1-18=78.故选D.。
重点列表:重点详解:用样本的频率分布估计总体分布(1)通常我们对总体作出的估计一般分成两种:一种是用样本的__________估计总体的__________;另一种是用样本的________估计总体的__________.(2)在频率分布直方图中,纵轴表示________,数据落在各小组内的频率用________________表示.各小长方形的面积总和等于________.(3)连接频率分布直方图中各小长方形上端的中点,就得到频率分布________.随着样本容量的增加,作图时所分的________增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称之为______________________,它能够更加精细地反映出____________________________________.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以____________________,而且可以______________,给数据的记录和表示都带来方便.【参考答案】(1)频率分布分布数字特征数字特征(2) 各小长方形的面积 1(3)折线图组数总体密度曲线总体在各个范围内取值的百分比(4)保留所有信息随时记录重点1:频率分布表、频率分布直方图及其应用【要点解读】用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.【考向1】根据数据画出频率分布直方图【例题】某市2013年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成下列频率分布表、频率分布直方图;频率分布表频率分布直方图(2)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.解:(1)如图所示:频率分布表(2)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的115,有26天处于良的水平,占当月天数的1315,处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115,污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%,说明该市空气质量有待进一步改善.【评析】首先根据题目中的数据完成频率分布表,作出频率分布直方图,根据污染指数,确定空气质量为优、良、轻微污染、轻度污染的天数;对于开放性问题的解答,要选择适当的数据特征进行考察,根据数据特征分析得出实际问题的结论.本题主要考查运用统计知识解决简单实际问题的能力、数据处理能力和应用意识. 【考向2】频率分布直方图的逆用【例题】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[)50,60, [)60,70,[)70,80,[)80,90,[]90,100.(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生的语文成绩在某些分数段的人数(x )与数学成绩在相应分数段的人数(y )之比如下表所示,求数学成绩在[)50,90之外的人数.解:(1)由(2a +×10=1, 解得a =0.005.(2)=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.(3)由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:于是数学成绩在50重点2:茎叶图 【要点解读】茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作. 【考向1】根据茎叶图求方差【例题】以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.如果X =8,求乙组同学植树棵数的平均数和方差;注:方差s 2=1n(x 1-)2+(x 2-)2+…+(x n -)2],其中x 为x 1,x 2,…,x n 的平均数.解:当X =8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10, 所以平均数为=8+8+9+104=354;方差为s 2=14⎝ ⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫8-3542+⎝⎛⎭⎪⎫9-3542+⎝ ⎛⎭⎪⎫10-3542]=1116.【考向2】根据茎叶图求平均数【例题】某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.1 7 92 0 1 5 3(1)根据茎叶图计算样本平均值;(2)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人?难点列表:难点详解:用样本的数字特征估计总体的数字特征 (1)众数,中位数,平均数众数:在一组数据中,出现次数________的数据叫做这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或者最中间两个数据的________)叫做这组数据的中位数.平均数:样本数据的算术平均数,即=_______.在频率分布直方图中,中位数左边和右边的直方图的面积应该________. (2)样本方差,样本标准差 标准差s =])()()[(122221x x x x x x nn -+⋯+-+-,其中x n 是__________________,n 是________,是________.标准差是反映总体__________的特征数,________是样本标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.【答案】 (1)最多 平均数 (x 1+x 2+…+x n ) 相等 (2)样本数据的第n 项 样本容量 平均数 波动大小 样本方差难点1:用样本的数字特征估计总体的数字特征 【要点解读】能从一组数据中求出中位数、平均数和众数 【考向1】平均数、中位数【例题】某汽车制造厂分别从A ,B 两种轮胎中各随机抽取了8个进行测试,列出了每一个轮胎行驶的最远里程数(单位:1000 km): 轮胎A 9611297108100 103 86 98轮胎B 108101 94 105 9693 97 106(1)分别计算A ,B 两种轮胎行驶的最远里程的平均数、中位数; (2)分别计算A ,B 两种轮胎行驶的最远里程的极差、标准差; (3)根据以上数据,你认为哪种型号轮胎的性能更加稳定?(2)A 轮胎行驶的最远里程的极差为:112-86=26, 标准差为:s =8)2()14(308)3(12)4(22222222-+-++++-++-=2212≈7.43; B 轮胎行驶的最远里程的极差为:108-93=15, 标准差为:s =86)3()7()4(5)6(1822222222+-+-+-++-++=1182≈5.43. (3)虽然A 轮胎和B 轮胎的最远行驶里程的平均数相同,但B 轮胎行驶的最远里程的极差和标准差相对于A 轮胎较小,所以B 轮胎性能更加稳定.【评析】在理解平均数、中位数、众数、极差、标准差、方差的统计意义和数学表达式的情况下,不难作出解答. 【考向2】平均数、标准差【例题】某学员在一次射击测试中射靶10次,命中环数如下: 7,8,7,9,5,4,9,10,7,4. 则(1)平均命中环数为____________; (2)命中环数的标准差为____________.难点2:根据频率分布直方图计算样本的数字特征【要点解读】会从频率分布直方图中求出中位数、平均数和众数【考向1】中位数【例题】如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据,可知其中位数为( )A.12.5 B.13C.13.5 D.14【答案】B【考向2】平均数【例题】某市为了节约能源,拟出台“阶梯电价”制度,即制订住户月用电量的临界值a.若某住户某月用电量不超过a度,则按平价计费;若某月用电量超过a度,则超出部分按议价计费,未超出部分按平价计费.为确定a的值,随机调查了该市100户的月用电量,工作人员已将90户的月用电量填在了下面的频率分布表中,最后10户的月用电量(单位:度)为:18,63,43,119,65,77,29,97,52,100.(1)(2)根据已有信息,试估计全市住户的平均月用电量(同一组数据用该区间的中点值作代表);(3)若该市计划让全市75%的住户在“阶梯电价”出台前后缴纳的电费不变,试求临界值a. 解] (1)(2)由题意,用每小组的中点值代表该小组的平均月用电量,则100户住户组成的样本的平均月用电量为10×0.04+30×0.12+50×0.24+70×0.30+90×0.25+110×0.05=65(度).用样本估计总体,可知全市居民的平均月用电量约为65度.(3)计算累计频率,可得下表:面积(频率)为0.75,故有0.7+(a -80)×0.012 5=0.75,解得a =84,由样本估计总体,可得临界值a 为84.【趁热打铁】1.容量为20的样本数据,分组后的频数如下表:A .0.35B .0.45C .0.55D .0.652.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e ,众数为m o ,平均值为,则( )A .m e =m o =B .m e =m o <C .m e <m o <D .m o <m e <3.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( ) A .这种抽样方法是一种分层抽样 B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数4.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )图1图2A.30% B.10%C.3% D.不能确定5.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为甲,乙,中位数分别为m甲,m乙,则( )A.甲<乙,m甲>m乙B.甲<乙甲乙C.甲>乙,m甲>m乙D.甲>乙,m甲<m乙6.样本(x1,x2,…,x n)的平均数为,样本(y1,y2,…,y m)的平均数为y(≠y),若样本(x1,x2,…,x n,y1,y2,…,y m)的平均数=α+(1-α) y,其中0<α<,则n,m的大小关系为( )A.n<m B.n>mC.n=m D.不能确定7.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下.中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天中甲、乙两人日加工零件的平均数分别为________和________.8.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5],样本数据的分组为20.5,21.5),21.5,22.5),22.5,23.5),23.5,24.5),24.5,25.5),25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________.9.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.10.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.23.52.5 2.6 1.2 2.7 1.5 2.9 3.0 3.12.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.31.41.6 0.5 1.8 0.62.1 1.1 2.5 1.22.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?第三章1解:由频率分布表可知:样本数据落在区间10,40)内的频数为2+3+4=9,样本总数为20,故样本数据落在区间10,40)的频率为=0.45.故选B.2解:中位数为5.5,众数为5,平均值为.故选D.3解:这种抽样方法为简单随机抽样,该班这五名男生成绩的平均数为=90,方差为(86-90)2+(94-90)2+(88-90)2+(92-90)2+(90-90)2]=8;该班这五名女生成绩的平均数为=91,方差为(88-91)2+(93-91)2+(93-91)2+(88-91)2+(93-91)2]=6.故选C.5解:易知甲=21.5625,乙=28.5625,m甲=20,m乙=29,∴甲<乙,m甲<m乙.故选B.6解:∵x1+x2+…+x n=n,y1+y2+…+y m=m y,∴x1+x2+…+x n+y1+y2+…+y m=(m+n)=(m+n)α+(1-α)y]=(m+n)α+(m+n)(1-α)y,∴n+m y=(m+n)α+(m+n)(1-α)y.∴故n-m=(m+n)α-(1-α)]=(m+n)(2α-1).∵0<α<,∴2α-1<0.∴n-m<0,即n<m.故选A.7解:设甲、乙在这10天中日加工零件的平均数分别为a,b,则a=20+=24,b=20+=23.故填24;23.8解:平均气温低于22.5℃的城市所占频率为最左边两个矩形面积之和,即0.10×1+0.12×1=0.22,又其频数为11,故总城市数为=50,故样本中平均气温不低于25.5℃的城市共有50×0.18=9(个).故填9.9解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为=0.08.又因为第二小组频率=,所以样本容量===150.(2)由图可估计该学校高一学生的达标率约为×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.10解:(1)计算得A=2.3, B=1.6,从计算结果来看,A药的疗效更好.(2)5 2 1 0 3. 2从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎2,3上,而B药疗效的试验结果有的叶集中在茎0,1上,由此可看出A药的疗效更好.。