有效数字及其运算规则教案
- 格式:docx
- 大小:16.25 KB
- 文档页数:5
一、目的:建立有效数字及其运算规程,规范药品生产时记录数据的运算规范、准确。
二、范围:适用于所有相关数据的计算。
三、责任者:生产部、质量管理部。
四、内容1.有效数字1.1定义有效数字就是实际能测到的数字。
有效数字的位数和分析过程所用的分析方法、测量方法、测量仪器的准确度有关。
我们可以把有效数字这样表示。
有效数字=所有的可靠的数字+ 一位可疑数字1.2有效数字位数从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
例:A.0.0109,前面两个0不是有效数字,后面的109均为有效数字(注意,中间的0也算)。
B.3.109*10^5(3.109乘以10的5次方)中,3 1 0 9均为有效数字,后面的10的5次方不是有效数字。
C.5200000000,全部都是有效数字。
D.0.0230,前面的两个0不是有效数字,后面的230均为有效数字(后面的0也算)。
E.1.20 有3个有效数字。
F.1100.120 有7位有效数字。
G.2.998*104(2.998乘以10的4次方)中,保留3个有效数字为3.00*104。
H.对数的有效数字为小数点后的全部数字,如lg x=1.23有效数字为2.3,lg a=2.045有效数字为0、4.5,pH=2.35有效数字为3.5。
1.3“0”的双重意义1.3.1作为定位的标志。
例:滴定管读数为20.30毫升。
两个0都是测量出的值,算做普通数字,都是有效数字,这个数据有效数字位数是四位。
1.3.2作为普通数字使用例:改用“升”为单位,数据表示为0.02030升,前两个0是起定位作用的,不是有效数字,此数据是四位有效数字。
2.有效数字的运算规则2.1数字修约规则测量值的数字的舍入,首先要确定需要保留的有效数字和位数,保留数字的位数确定以后,后面多余的数字就应予以舍入修约,其规则为“四舍六入五成双”,具体规则如下:2.1.1当保留n位有效数字,若第n+1位数字小于5时,则舍去,即保留的各位数字不变。
一、目的:建立有效数字及其运算规程,规范药品生产时记录数据的运算规范、准确。
二、范围:适用于所有相关数据的计算。
三、责任者:生产部、质量管理部。
四、内容1.有效数字1.1定义有效数字就是实际能测到的数字。
有效数字的位数和分析过程所用的分析方法、测量方法、测量仪器的准确度有关。
我们可以把有效数字这样表示。
有效数字=所有的可靠的数字+ 一位可疑数字1.2有效数字位数从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
例:A.0.0109,前面两个0不是有效数字,后面的109均为有效数字(注意,中间的0也算)。
B.3.109*10^5(3.109乘以10的5次方)中,3 1 0 9均为有效数字,后面的10的5次方不是有效数字。
C.5200000000,全部都是有效数字。
D.0.0230,前面的两个0不是有效数字,后面的230均为有效数字(后面的0也算)。
E.1.20 有3个有效数字。
F.1100.120 有7位有效数字。
G.2.998*104(2.998乘以10的4次方)中,保留3个有效数字为3.00*104。
H.对数的有效数字为小数点后的全部数字,如lg x=1.23有效数字为2.3,lg a=2.045有效数字为0、4.5,pH=2.35有效数字为3.5。
1.3“0”的双重意义1.3.1作为定位的标志。
例:滴定管读数为20.30毫升。
两个0都是测量出的值,算做普通数字,都是有效数字,这个数据有效数字位数是四位。
1.3.2作为普通数字使用例:改用“升”为单位,数据表示为0.02030升,前两个0是起定位作用的,不是有效数字,此数据是四位有效数字。
2.有效数字的运算规则2.1数字修约规则测量值的数字的舍入,首先要确定需要保留的有效数字和位数,保留数字的位数确定以后,后面多余的数字就应予以舍入修约,其规则为“四舍六入五成双”,具体规则如下:2.1.1当保留n位有效数字,若第n+1位数字小于5时,则舍去,即保留的各位数字不变。
“近似数和有效数字”教案一、教学目标1. 让学生理解近似数和有效数字的概念。
2. 培养学生运用近似数和有效数字进行科学计算和数据分析的能力。
3. 提高学生对数值精确度的认识,增强其科学素养。
二、教学内容1. 近似数的概念:近似数是对一个数进行四舍五入或截取,使其与实际数值接近的数。
2. 有效数字的概念:有效数字是指一个数中从第一个非零数字开始到一个数字结束的所有数字。
3. 近似数的表示方法:精确到某位、保留几位小数等。
4. 有效数字的计算规则:加减乘除运算中,结果的有效数字位数取决于参与运算各数中有效数字位数最少的那一个。
5. 科学计算器在近似数和有效数字中的应用。
三、教学重点与难点1. 教学重点:近似数和有效数字的概念、表示方法及计算规则。
2. 教学难点:有效数字的计算规则,科学计算器的使用。
四、教学方法1. 采用讲授法,讲解近似数和有效数字的概念、表示方法及计算规则。
2. 运用案例分析法,让学生通过具体例子理解有效数字的计算规则。
3. 实践操作法,引导学生使用科学计算器进行近似数和有效数字的计算。
五、教学准备1. 教案、PPT、教学素材。
2. 科学计算器。
3. 练习题。
教学进程:1. 导入新课,讲解近似数和有效数字的概念。
2. 讲解近似数的表示方法,如精确到某位、保留几位小数等。
3. 讲解有效数字的计算规则,并通过案例分析让学生理解。
4. 引导学生使用科学计算器进行近似数和有效数字的计算。
5. 布置练习题,巩固所学知识。
6. 课堂小结,总结本节课的重点内容。
7. 课后作业:完成练习题,进一步巩固所学知识。
8. 课后反思:总结教学效果,针对学生掌握情况进行调整教学策略。
六、教学拓展1. 引导学生了解不同科学领域中近似数和有效数字的应用,如物理学、化学、生物学等。
2. 探讨近似数和有效数字在实际生活中的应用,如购物、医疗、工程等。
七、课堂互动1. 提问:什么是近似数?什么是有效数字?2. 提问:近似数和有效数字在科学研究中的应用有哪些?3. 小组讨论:如何运用有效数字进行数据分析和计算?八、案例分析1. 分析实际案例,如测量长度、质量、时间等,引导学生运用近似数和有效数字进行表示。
有效数字及其运算规则一、测量结果得有效数字1.有效数字得定义及其基本性质测量结果中所有可靠数字加上末位得可疑数字统称为测量结果得有效数字。
有效数字具有以下基本特性:(1)有效数字得位数与仪器精度(最小分度值)有关,也与被测量得大小有关。
对于同一被测量量,如果使用不同精度得仪器进行测量,则测得得有效数字得位数就是不同得。
例如用千分尺(最小分度值,)测量某物体得长度读数为。
其中前三位数字“”就是最小分度值得整数部分,就是可靠数字;末位“"就是在最小分度值内估读得数字,为可疑数字;它与千分尺得在同一数位上,所以该测量值有四位数字、如果改用最小分度值(游标精度)为得游标卡尺来测量,其读数为,测量值就只有三位有效数字。
游标卡尺没有估读数字,其末位数字“"为可疑数字,它与游标卡尺得也就是在同一数位上。
(2)有效数字得位数与小数点得位置无关,单位换算时有效数字得位数不应发生改变。
2、有效数字与不确定度得关系在我们规定不确定度得有效数字只取一位时,任何测量结果,其数值得最后一位应与不确定度所在得那一位对齐、如,测量值得末位“”刚好与不确定度得“"对齐。
由于有效数字得最后一位就是不确定度所在位,因此有效数字或有效位数在一定程度上反映了测量值得不确定度(或误差限值)。
测量值得有效数字位数越多,测量得相对不确定度越小;有效位数越少,相对不确定度就越大。
3.数值得科学表示法二、有效数字得运算规则1.数值得舍入修约原则测量值得数字得舍入,首先要确定需要保留得有效数字与位数,保留数字得位数确定以后,后面多余得数字就应予以舍入修约,其规则如下:(1)拟舍弃数字得最左一位数字小于5时,则舍去,即保留得各位数字不变。
(2)拟舍弃数字得最左一位数字大于5,或者就是5而其后跟有并非0得数字时,则进1,即保留得末位数字加1。
(3)拟舍弃数字得最左一位数字为5,而5得右边无数字或皆为0时,若所保留得末位数字为奇数则进1,为偶数或0则舍去,即“单进双不进”。
有效数字及其运算规则一、测量结果的有效数字1.有效数字的定义及其基本性质测量结果中所有可靠数字加上末位的可疑数字统称为测量结果的有效数字。
有效数字具有以下基本特性:有效数字具有以下基本特性:(1)有效数字的位数与仪器精度(最小分度值)有关,也与被测量的大小有关。
)有效数字的位数与仪器精度(最小分度值)有关,也与被测量的大小有关。
对于同一被测量量,如果使用不同精度的仪器进行测量,则测得的有效数字的位数是不同的。
例如用千分尺(最小分度值00.011m m ,0.004m mD =仪)测量某物体的长度读数为84.8334m m 。
其中前三位数字“483”是最小分度值的整数部分,是可靠数字;末位“4”是在最小分度值内估读的数字,为可疑数字;它与千分尺的D 仪在同一数位上,所以该测量值有四位数字。
如果改用最小分度值(游标精度)为00.022m m 的游标卡尺来测量,其读数为84.844m m ,测量值就只有三位有效数字。
游标卡尺没有估读数字,其末位数字“4”为可疑数字,它与游标卡尺的0.02m m D 仪=也是在同一数位上。
也是在同一数位上。
(2)有效数字的位数与小数点的位置无关,单位换算时有效数字的位数不应发生改变。
2.有效数字与不确定度的关系在我们规定不确定度的有效数字只取一位时,任何测量结果,其数值的最后一位应与不确定度所在的那一位对齐。
如39(8.922700.0005)/g c m r =±,测量值的末位“7”刚好与不确定度00.0005的“5”对齐。
”对齐。
由于有效数字的最后一位是不确定度所在位,因此有效数字或有效位数在一定程度上反映了测量值的不确定度(或误差限值)。
测量值的有效数字位数越多,测量的相对不确定度越小;有效位数越少,相对不确定度就越大。
越小;有效位数越少,相对不确定度就越大。
3.数值的科学表示法二、有效数字的运算规则1.数值的舍入修约原则测量值的数字的舍入,首先要确定需要保留的有效数字和位数,保留数字的位数确定以222()()()A B C D +D +D 2222()()0.300.088A C D +D +2222()()0.0402483.751.2R T RTD D æöæöæöæ+´=+´ç÷ç÷ç÷çèøèøèøè2。