无线通信基础复习要点
- 格式:doc
- 大小:50.00 KB
- 文档页数:4
一、无线通信专业(一)无线通信专业基础知识1.无线通信原理:(1)无线收发信设备知识;(2)无线信道的特性;(3)调制技术;(4)编码技术;(5)天线基本原理及相关参数;(6)跳频技术。
2.无线通信系统基础知识:(1)无线通信传输系统的组成及工作原理;(2)无线通信系统的制式、性能及分布状况、系统联网常识;(3)无线接口信令;(4)各种传输方式;(5)无线通信系统工作原理;(6)无线通信系统网络结构。
3.无线通信业务知识:(1)移动交换机的组成及电路结构;(2)移动交换机的工作原理;(3)移动交换机的维护常识;(4)相关仪器、仪表的使用和基本知识。
4.各种传输方式、工作原理、网络结构。
5.其他知识:本专业维护规程。
(二)无线通信专业技术知识无线通信专业分为无线传输系统、微波传输系统、卫星通信传输系统、无线接入四个职业功能,每个职业功能还分为不同的工作内容。
每个工作内容为一个考试模块,考生只需选择某一考试模块参加考试。
一、无线传输系统●工作内容:长波、中波、短波、超短波●专业能力要求:1.掌握测试仪表、工具的使用方法。
2.能够对分析测试结果,提出改进质量的技术措施。
3.掌握设备的软硬件构成及所使用的软件语言。
4.掌握各种电源设备的工作原理和性能。
5.熟练掌握主要测试仪表的原理和使用方法。
6.具备主持制定大中型工程计划并组织实施的能力。
7.完成设备的大修、更新、改造,组织新设备的安装、测试开通。
●相关知识:1.电波传播特性。
2.针对大功率发射机设备的风冷、水冷循环系统原理。
3.无线通信原理。
4.无线通信系统基础知识。
5.无线通信业务知识。
二、微波传输系统●工作内容:微波终端、微波中继●专业能力要求:1.微波通信传输系统的结构。
2.监控系统的原理和组成。
3.掌握测试仪表、工具的使用方法。
4.能够对分析测试结果,提出改进质量的技术措施。
5.掌握设备的软硬件构成及所使用的软件语言。
6.掌握各种电源设备的工作原理和性能。
无线通信基础知识一、天线的基本知识天线的作用和地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。
可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。
天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
对于许多类型的天线,需要进行适当的分类:*按用途分类:可分为通信天线、电视天线、雷达天线等*按工作频段分类:可分为短波天线、超短波天线、微波天线等;*按方向性分类:可分为全向天线、定向天线等;*按外形分类:可分为线状天线、面状天线等.电磁辐射导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。
如图1.1a所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1b所示,电场就散播在周围空间,因而辐射增强。
必须指出的是,当导线的长度L远小于波长λ时,辐射非常弱;当导体的长度L增加到与波长相当时,导体上的电流将大大增加,从而形成强辐射。
对称振子对称振荡器是迄今为止应用最广泛的一种经典天线。
一个半波对称振荡器可以单独使用,也可以作为抛物面天线的馈源,或者可以使用多个半波对称振荡器形成天线阵列。
两臂长度相等的振子叫做对称振子。
每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a。
此外,还有一种特殊形状的半波对称振子,可以看作是将全波对称振子折叠成一个狭窄的矩形框架,并将全波对称振子的两端重叠。
这种狭窄的矩形框架被称为折叠振子。
请注意,折叠振子的长度也是波长的一半,因此被称为半波折叠振子,如图1.2b所示。
天线方向性发射天线的基本功能之一是将从馈线获得的能量辐射到周围空间。
另一种是将大部分能量辐射到所需的方向。
垂直放置的半波对称振动器具有平面“甜甜圈”形状的三维图案(图1.3.1a)。
无线通信基础知识
无线通信是指通过无线电波进行信息传输的一种通信方式。
它的优点
是可以免去布线的繁琐工作,使得通信更加便捷和灵活。
在现代社会中,无线通信已经成为人们生活中不可或缺的一部分,如移动电话、
Wi-Fi网络、蓝牙设备等。
无线通信技术主要包括以下几个方面:
1. 传输介质:无线电波是无线通信的传输介质。
它们是由电场和磁场
交替变化形成的电磁波。
2. 调制技术:调制技术是将数字或模拟信号转换成适合于在无线电波
中传输的形式。
常见的调制技术有振幅调制(AM)、频率调制(FM)和相位调制(PM)等。
3. 天线技术:天线是将电能转换成电磁波并向空间辐射出去的装置。
不同类型的天线适用于不同频率范围内的通信。
4. 信道:在无线通信中,信道指信息从发送端到接收端所经过的路径。
由于空气中存在各种干扰因素,如多径效应、衰落等,导致信息传输
的可靠性受到影响。
5. 编码技术:编码技术是将原始信息转换成一定规则下的编码形式,以提高信息传输的可靠性和安全性。
常见的编码技术有卷积码、纠错码等。
6. 调制解调器:调制解调器是无线通信系统中必不可少的设备,用于将数字信号转换成模拟信号,并将其发送到天线上进行传输。
同时,在接收端,调制解调器还能将接收到的模拟信号转换成数字信号。
7. 无线网络:无线网络是指利用无线通信技术连接多个设备并进行数据交换的网络。
常见的无线网络包括Wi-Fi、蓝牙、ZigBee等。
总而言之,了解无线通信基础知识可以帮助我们更好地理解现代通信技术,并更好地应用于我们日常生活中。
⽆线通信复习整理填空部分:1.1、2、3G通信系统的主要特征,双⼯⽅式,多址⽅式,语⾳信号速率1G(模拟蜂窝移动通信系统)是采⽤了模拟技术、模拟电路。
技术界遇到的实际限制:在蜂窝很⼩时,难以切换,基站的选择和信号的控制变得越来越复杂、困难,且投资昂贵;⽽且不同地区采⽤的不同标准使得⽤户不能实现全球漫游。
FDMA/FDD系统。
2G(数字蜂窝移动通信系统)是采⽤了数字技术、数字处理电路SIM卡,⼿机体积⼩质量轻,系统容量⼤。
2G 的标准主要有欧洲的GSM、⽇本的JDC和美国的IS-136及IS-95。
仍然不能实现全球漫游。
FDMA/TDD及TDMA/FDD 系统。
3G(微系统)是采⽤了智能处理技术、微处理单元,⽀持多媒体业务,系统容量⼤。
标准主要有WCDMA,CDMA2000,TD-SCDMA。
是TD-SCDMA 是TDD多址,WCDMA是FDD。
2.功率控制功率控制只是在3G系统⾥⾯的,因为CDMA系统容量受限于系统内移动台的相互⼲扰,如果每个移动台到基站均为所需信噪⽐的最⼩值,则系统容量就会达到最⼤值。
功率控制分为:反向链路(从⽤户到基站)和前向链路(从基站到⽤户)。
反向主要解决远近效应,⽽前向主要解决同频⼲扰问题。
3.信道分配信道分配原则是有效利⽤⽆线频谱,增加系统容量和最⼩化⼲扰。
分配策略有:固定分配和动态分配两种。
动态分配可以解决负载不均衡的问题。
4.衰落信道的3种表现:阴影衰落、多径、损耗。
⼩尺度衰落的原因:多径。
短时间或短的传输距离内,信号幅度、相位或多径时延的快速变化。
⼩尺度衰落:平坦衰落、频率选择性衰落、快衰落、慢衰落。
平坦衰落:信号的带宽较窄,⼩于⼼信道的相⼲带宽,信号频带内受衰落影响是⼀致的,这样的衰落叫平坦衰落。
延迟扩展⽐符号周期⼩。
频率选择性衰落:信号带宽⼤于信道带宽,信号延迟扩展⼤于符号周期。
快衰落:⼤多普勒频移,信道相⼲时间(TD-SCDMA每个chip为时间长度为0.78us,也就是码⽚之间的相⼲时间是0.78us)⼩于符号周期,信道变化快于基带信号的变化。
无线通信基础知识要点一、引言无线通信作为现代通信技术的重要组成部分,已经深入到我们生活的方方面面。
本文将介绍无线通信的基础知识要点,帮助读者了解无线通信的原理和应用。
二、无线通信的原理无线通信是通过无线电波传输信号进行数据传输的技术。
它利用电磁波在空间中传播的特性,将信息编码成电磁波信号,并通过天线传输和接收信号。
1. 电磁波的特性电磁波是由电场和磁场交替变化而形成的波动现象。
无线通信主要使用的是无线电波,其波长范围广泛,包括了无线电、微波、红外线和可见光等。
2. 调制与解调调制是将待传输的信息信号转换成适合无线传输的电磁波信号的过程,解调则是将接收到的电磁波信号恢复成原始的信息信号的过程。
调制和解调过程中常用的调制方式包括频率调制、相位调制和幅度调制。
三、无线通信的基本组成部分无线通信系统由多个组成部分组成,每个部分起着不同的作用。
1. 发射设备发射设备包括信源、调制器和发射天线。
信源产生需要传输的原始信号,调制器将信源产生的信号调制成适合无线传输的信号,发射天线用于将调制后的信号转换成无线电波并进行传输。
2. 传输介质无线通信的传输介质主要是空气或真空中的电磁波。
电磁波在传播过程中会受到多径传播、衰落等影响,因此需要进行信号处理和调制技术来提高传输质量。
3. 接收设备接收设备由接收天线、解调器和接收器组成。
接收天线接收到传输的电磁波信号后,解调器将信号解调为原始信号,接收器用于对解调后的信号进行处理和分析。
四、无线通信的应用无线通信在现代社会中有广泛的应用,涉及到多个领域和行业。
1. 移动通信移动通信是无线通信的一个重要应用领域,包括手机通信、移动互联网等。
通过移动通信技术,人们可以随时随地进行语音通话、短信传送和数据传输。
2. 无线局域网无线局域网(WLAN)是在有限区域内通过无线通信技术实现网络连接的技术。
它在家庭、办公室等环境中广泛应用,为用户提供了更加便捷的网络访问方式。
3. 卫星通信卫星通信利用人造卫星作为中继站,将信号传输到全球各个角落。
无线通信基础知识无线通信作为现代通信领域中不可或缺的一部分,已经深入到我们生活的方方面面。
从手机通讯到无人机控制,无线通信技术的应用无处不在。
要理解无线通信的基础知识,我们首先需要了解几个重要的概念。
无线通信是指通过无线电波或红外线等无线电磁波进行信息传输的技术。
它与有线通信相比,具有灵活性高、覆盖范围广等优势。
无线通信系统通常由发射端、传输介质和接收端组成。
发射端通过调制将要传输的信息转换成无线电波,经传输介质传输后,接收端再进行解调还原成原始信息。
无线通信系统中常用的调制技术有幅度调制、频率调制和相位调制等。
幅度调制是通过改变载波信号的振幅来传输信息,频率调制是改变载波信号的频率,相位调制则是改变载波信号的相位。
不同的调制技术适用于不同的通信场景,选择合适的调制方式可以提高通信系统的性能。
无线通信系统中常用的调制解调器有调制器和解调器两部分。
调制器将要传输的数字信号转换成模拟信号,然后通过无线电传输出去;而解调器则负责接收无线电信号,将其转换成数字信号供接收端处理。
调制解调器的设计直接影响到通信系统的传输质量和效率。
无线通信系统中常用的频谱分配方式有频分复用、时分复用和码分复用等。
频分复用是将频段划分成若干个子频段,不同用户使用不同的子频段进行通信;时分复用则是将时间划分成若干个时隙,不同用户在不同时隙传输数据;码分复用则是通过不同的扩频码将数据进行编码,实现多用户同时传输。
无线通信系统中常用的调制误码率性能分析方法有误码率曲线和误比特率曲线等。
误码率曲线是描述调制技术在不同信噪比下的误码率性能,通过误码率曲线可以评估系统的抗干扰能力;而误比特率曲线则是描述在不同信噪比下,系统每传输一个比特出现误码的概率,是评估系统传输质量的重要指标。
总的来说,了解无线通信的基础知识对于理解现代通信技术至关重要。
通过掌握调制技术、调制解调器设计、频谱分配方式和误码率性能分析方法等内容,可以更好地应用无线通信技术,提高通信系统的性能和可靠性。
无线通信工程基础知识大全无线通信工程是指利用无线电波作为传输介质进行信息传递的技术领域。
随着移动互联网的快速发展,无线通信工程已经成为现代社会中不可或缺的一部分。
在无线通信工程中,有许多基础知识需要掌握。
首先是无线通信的原理和技术。
这包括了调制解调技术、信道编码与解码、多址技术、信道估计与均衡等。
调制解调技术是将数字信号转换成模拟信号的过程,常用的调制方式有幅度调制、频率调制和相位调制。
信道编码与解码是为了提高信道传输的可靠性和效率,常见的编码方式有卷积码和纠错码。
多址技术则是为了实现多个用户同时使用同一频段,常用的多址技术有时分多址和码分多址。
其次是无线通信系统的组成和结构。
一个典型的无线通信系统由无线终端设备、基站设备和核心网组成。
无线终端设备包括手机、平板电脑等个人设备,基站设备则负责与无线终端设备进行通信的任务,核心网则负责处理通信数据的交换与传输。
这些组成部分之间通过无线电波进行通信,并通过一系列的协议来实现数据的传输和处理。
此外,无线通信工程还涉及无线信号的传播特性和无线通信系统的覆盖范围。
无线信号的传播特性受到地形、建筑物和大气条件等多种因素的影响。
了解无线信号的传播特性有助于进行合理的网络规划和优化。
而无线通信系统的覆盖范围则是指一个基站设备能够覆盖的地理范围,覆盖范围的大小受到天线高度、发射功率和接收灵敏度等因素的影响。
最后,无线通信工程还包括无线网络的安全性和性能优化。
无线网络的安全性主要涉及数据加密和身份认证等技术,以确保通信数据的机密性和完整性。
而性能优化则是通过合理的网络规划和信道资源分配来提高无线通信系统的容量和覆盖范围,以满足用户日益增长的通信需求。
综上所述,无线通信工程基础知识包括无线通信的原理和技术、无线通信系统的组成和结构、无线信号的传播特性、无线通信系统的覆盖范围,以及无线网络的安全性和性能优化等内容。
掌握这些基础知识对于从事无线通信工程相关的工作和研究具有重要意义。
通信工程通信原理与无线通信技术重点复习要点通信工程是指通过电磁波、光波或其他电磁波传输媒体,实现信息交流的一门学科。
通信原理和无线通信技术是通信工程中最为重要的两个方面,本文将对它们的重点复习要点进行介绍。
一、通信原理1. 信号与噪声信号是指传输信息的波形或序列,而噪声是指在信号传输过程中产生的干扰。
通信原理要求我们能够正确地将信号与噪声区分开,提高信号的传输质量。
2. 调制与解调调制是指将基带信号转换为适合传输的调制信号的过程,解调则是将接收到的调制信号恢复为基带信号的过程。
常见的调制方式有调幅、调频和调相。
3. 香农定理香农定理是衡量信道容量的重要理论基础,它指出,对于高斯白噪声信道,信道的最大传输速率与频带宽度和信噪比有关。
4. 误码率与纠错编码误码率是衡量信道传输质量的重要指标,纠错编码则是通过在发送端添加冗余信息,使接收端能够更好地检测和纠正传输中产生的错误码。
5. 多址技术与多路复用多址技术是指将多个用户的数据在同一信道上传输的技术,如分时多址、频分多址和码分多址等。
而多路复用则是将多个信号通过不同的通道同时传输的技术,如时分复用和频分复用等。
二、无线通信技术1. 无线传播特性无线信号在传播过程中会受到多径传播、衰落和干扰等影响。
了解无线传播特性对于设计和优化无线通信系统至关重要。
2. 天线与传输链路天线是无线通信系统中的核心组成部分,它负责将电信号转换为无线电波进行传输。
传输链路包括发送端、信道和接收端,它们共同构成了无线信号的传输路径。
3. 蜂窝网络与移动通信蜂窝网络是现代无线通信系统的基础架构,它将服务区域划分为多个小区,并通过基站与移动终端进行通信。
移动通信技术则是实现终端与基站之间的无线连接的关键。
4. 调度与功率控制调度与功率控制是无线通信系统中实现资源优化和提高系统容量的重要手段。
调度算法决定了系统中用户的资源分配,而功率控制则是根据信道状态调整终端的传输功率。
5. 多媒体通信与移动互联网多媒体通信是将语音、图像和视频等多种媒体数据进行传输和交换的技术,而移动互联网则是指通过移动设备访问互联网的技术。
《无线通讯基础》复习重点题型:填空题 :知识简答题 :基本看法、基根源理名词解说:常用的英文简写计算题 :基本计算四选一:Chapter1 无线通讯概论(1,2)1、无线通讯的链路构成及功能(方框图)2、各种无线通讯系统工作频段及特色,英文缩写的中文表示3、无线通讯系统面对的挑战(简答题)Chapter2 无线信道流传体系(3,4)1、大气空间结构(建议不作重点要求)2、电磁波的传输方式3、掌握功率的dB 胸怀,天线增益及单位,全向有效辐射功率(EIRP)4、自由空间消耗计算方法(Friis 定律)及合用范围(重点)5、路径消耗d-n计算方法(重点)6、采纳菲尼尔半径及余隙估量绕射损失的方法(建议不作重点要求)7、噪声源,噪声温度,噪声系数,高斯白噪声的特征,系统的信噪比(重点)8、衰败余量、中断概率的看法(重点)9、系统的链路估量(重点,交融大尺度路径消耗、小尺度衰败余量、噪声系数、调制方式、分集接收)(综合题)Chapter3 无线信道的统计描述(5)1、信号幅度的小尺度衰败的成因(重点)2、小尺度衰败信号幅度的瑞利、莱斯分布发生条件3、瑞利、莱斯分布统计特征、小尺度衰败的相位的分布4、小尺度衰败的衰败余量及中断概率计算5、信号幅度的大尺度衰败的成因6、大尺度衰败的信号幅度的对数正态统计特征7、大尺度衰败的衰败余量及中断概率计算8、形成多普勒频移,多普勒谱的原由、经典或称Jakes 谱(建议只重点要求多普勒频移计算)9、衰败的时间依赖性(电平经过率(LCR) ,均匀衰败连续时间(ADF) )的参数的意义。
(建议不作重点要求)10、综述抗衰败技术(信道编码配合交错、分集、扩频、OFDM 、 MIMO )Chapter4 宽带和方向性信道的特征(6)1、信道时延色散的成因2、对窄带信号和宽带信号的影响3、功率时延谱,均匀时延rms 值,最大时延计算(重点)4、时延扩展,频率相关函数,信道的相关带宽,平展衰败与频率选择性衰败,之间的关系(联合详尽信道模型)(重点)5、多普勒扩展,时间相关函数,信道的相关时间,慢衰败与快选择性衰败,之间的关系Chapter5 信道模型( 7)1、信道建模方法(建议不作重点要求)2、窄带 Okumura 及 Okumura-Hata 的计算(建议不作重点要求)3、宽带 COST 207 模型的建模方法(将信道模型放到Chapter4 中,联合)Chapter6 数字调制解调(10,11,12)这章的重点是各种调制的带宽、在 AWGN 和 Rayleigh 信道中的误比特征能、不一样相关检测与非相关检测的优弊端解析,最好与信道、分集、信道编码等章节联合出题。
《无线通信基础》复习要点
题型:
填空题:常识
简答题:基本概念、基本原理
名词解释:常用的英文简写
计算题:基本计算
四选一:
Chapter1 无线通信概论(1,2)
1、无线通信的链路组成及功能(方框图)
2、各类无线通信系统工作频段及特点,英文缩写的中文表示
3、无线通信系统面临的挑战(简答题)
Chapter2无线信道传播机制(3,4)
1、大气空间结构(建议不作重点要求)
2、电磁波的传输方式
3、掌握功率的dB度量,天线增益及单位,全向有效辐射功率(EIRP)
4、自由空间损耗计算方法(Friis定律)及适用范围(重点)
5、路径损耗d-n计算方法(重点)
6、采用菲尼尔半径及余隙估算绕射损失的方法(建议不作重点要求)
7、噪声源,噪声温度,噪声系数,高斯白噪声的特性,系统的信噪比(重点)
8、衰落余量、中断概率的概念(重点)
9、系统的链路预算(重点,融合大尺度路径损耗、小尺度衰落余量、噪声系数、调制方式、
分集接收)(综合题)
Chapter3无线信道的统计描述(5)
1、信号幅度的小尺度衰落的成因(重点)
2、小尺度衰落信号幅度的瑞利、莱斯分布发生条件
3、瑞利、莱斯分布统计特性、小尺度衰落的相位的分布
4、小尺度衰落的衰落余量及中断概率计算
5、信号幅度的大尺度衰落的成因
6、大尺度衰落的信号幅度的对数正态统计特性
7、大尺度衰落的衰落余量及中断概率计算
8、形成多普勒频移,多普勒谱的原因、经典或称Jakes谱(建议只重点要求多普勒频移计
算)
9、衰落的时间依赖性(电平通过率(LCR),平均衰落持续时间(ADF))的参数的意义。
(建
议不作重点要求)
10、综述抗衰落技术(信道编码配合交织、分集、扩频、OFDM、MIMO)
Chapter4宽带和方向性信道的特性(6)
1、信道时延色散的成因
2、对窄带信号和宽带信号的影响
3、功率时延谱,平均时延rms值,最大时延计算(重点)
4、时延扩展,频率相关函数,信道的相干带宽,平坦衰落与频率选择性衰落,之间的关系
(结合具体信道模型)(重点)
5、多普勒扩展,时间相关函数,信道的相干时间,慢衰落与快选择性衰落,之间的关系
Chapter5信道模型(7)
1、信道建模方法(建议不作重点要求)
2、窄带Okumura及Okumura-Hata的计算(建议不作重点要求)
3、宽带COST 207 模型的建模方法(将信道模型放到Chapter4中,结合)
Chapter6数字调制解调(10,11,12)
这章的重点是各种调制的带宽、在AWGN和Rayleigh信道中的误比特性能、不同相干检测与非相干检测的优缺点分析,最好与信道、分集、信道编码等章节联合出题。
1、数字发射机,数字接收机和模拟传输通道的无线链路框图及各框图的功能
2、用于调制方法分析的数字链路简化模型
3、选择调制方式时应遵循的准则
4、矩形基带脉冲、奈奎斯特脉冲及升余弦滚降脉冲的时域、频域描述图形,线性调制的基
带功率密度谱和频带功率谱的关系
5、BPSK星座,矩形基带脉冲及升余弦滚降脉冲成形的带宽,功率密度谱,频带利用率
(90%)
6、QPSK星座,矩形基带脉冲及升余弦滚降脉冲成形的带宽,功率密度频谱,频带利用率
(90%)
7、OQPSK,π/4-DQPSK的星座,与QPSK调制方法的异同,与QPSK性能相比的优劣
8、正交FSK、MSK调制,GMSK及其关系,MSK和GMSK调制实现方法,功率密度频
谱,频带利用率(90%)。
9、信号的相干接收,匹配滤波器接收
10、AWGN信道下,BPSK,QPSK相干解调的误比特率,BPSK差分检测的误比特率
11、AWGN信道下,FSK 相干解调的误比特率,FSK 包络检测的误比特率
12、AWGN信道下,MSK匹配滤波相干解调的误比特率,MSK差分检测的误比特率
13、信号幅度服从瑞利衰落时,信噪比的分布及基于SNR概率分布的平均BER
14、信号幅度服从瑞利衰落时,BPSK相干解调的平均误比特率,BPSK差分检测的平
均误比特率
15、信号幅度服从瑞利衰落时,正交FSK相干解调的平均误比特率,正交FSK包络检
测的平均误比特率
16、差错基底,差错基底的原因,
17、频率色散信道条件下,MSK差分检测平均误比特率;时延色散信道条件下,MSK
差分检测平均误比特率;
Chapter7信道编码(14)
1、循环分组码的生成多项式的产生(给出因式分解结果),基于生成多项式的编码,编码
硬件结构图、伴随式计算、汉明距离与纠错能力分析(重点)
2、线性分组码的纠错能力,汉明码的纠错后的误字率,误比特率(重点),编码增益的概
念
3、卷积码、状态转移图(网格图),Viterbi硬、软译码方法不同之处(重点)
4、Turbo码编码框图,各部分作用(重点)
5、Turbo码译码框图,工作过程,对数似然比,软信息,外信息,性能(建议不作重点要
求)
6、低密度奇偶校验码(LDPC)概念(低密度的含义)
7、LDPC码中tanner图,圈(cycle)与围长(girth),BP译码思想,性能(建议不作重点要求)
8、衰落信道的编码策略
Chapter8分集(13)
1、衰落信道分集的原理
2、微分集:空间、时间、频率分集的去相关要求
3、宏分集(建议不作重点)
4、信号合并:选择式分集(中断概率与分集路数的关系)
5、信号合并:开关分集(建议不作重点)
6、信号合并:最大比值合并,等增益合并的原理
7、在高斯信道下最大比值合并,等增益合并分集带来的信噪比的改善,
8、在瑞利衰落下最大比值合并,等增益合并分集带来的信噪比分布的改善及平均误码率的
改善
9、混合选择-最大值合并信噪比的改善(建议不作重点)
Chapter9均衡(16)
1、ZF均衡基本原理、均衡器系数的计算、优缺点分析
2、MMSE均衡方程
3、最小均方误差准则下的最小均方(LMS)算法(建议不作重点)
4、判决反馈算法的思想
5、最大似然序列估计VITERBI检测器算法
6、各种均衡器性能的比较(建议不作重点)
Chapter10扩展频谱系统(18)(重在基本概念、原理)
1、跳频系统的组成和工作原理,跳频图案,快跳和慢跳,跳频多址
2、跳频系统如何抗干扰,抗衰落,抗多径
3、直接序列扩频收发信机结构,扩频解扩原理,扩频多址原理
4、直接序列扩频抗窄带,抗宽带干扰原理
5、直接序列扩频抗多径及RAKE接收机原理
6、扩频码,PN序列,Gold序列,Walsh码的产生和性能(建议不作重点)
7、码分多址系统的同步(建议不作重点)
8、码分多址系统的功率控制(远近效应)的意义
9、码分多址干扰受限(软容量)
Chapter11正交频分复用(19)
1、OFDM原理
2、OFDM系统的数字实现方法
3、OFDM的优缺点分析:频谱利用率高、数字IDFT,DFT实现简单,抗频率选择性衰落(单
抽头均衡)、如何克服ISI和ICI(保护间隔、循环前缀),缺点:对频偏较为敏感,较大的PAPR。
4、OFDM中的信道估计、PAPR、同步(建议不作重点)
5、OFDM中的多址(OFDMA),OFDMA的优点
6、OFDM参数设定
Chapter12多天线系统(20)
1、智能天线及波束赋形
2、采用智能天线的目的
3、智能天线权重的调整方法(建议不作重点)
4、多输入多输出天线空分复用,分层空时码H-BLAST,D-BLAST编码译码方法(建议不作
重点)
5、多输入多输出天线空间分集,正交-空时分组码(STBC)的编码译码方法(建议不作重点)。