第1章_色谱分离原理
- 格式:ppt
- 大小:4.80 MB
- 文档页数:70
《色谱分离技术》教案教学重点:色谱分类及基本术语。
注意事项:第一章绪论第一节色谱发展史1.1.1色谱方法的问世俄国植物学家茨维特(Tswett)于1903年前后在波兰的华沙大学研究植物叶片的组成时,用白垩土(碳酸钙)作吸附剂,分离植物绿叶的石油醚萃取物得到黄色、绿色和灰黄色彼此分离的六个色带。
其方法是:把干燥的碳酸钙粉末装到一根细长的玻璃管中,然后把植物绿叶的石油醚萃取液倒到管中的碳酸钙上,萃取液中的色素就吸附在管内上部的碳酸钙上,再用纯净的石油醚洗脱被吸附的色素,于是在管内的碳酸钙上形成三种颜色的六个色带。
茨维特把这样形成的色带叫做“色谱”(Chromatographie),茨维特用此名于l906年在德国植物学杂志上发表。
英译名为(Chromatography),在这一方法中把玻璃管叫做“色谱柱”,碳酸钙叫做“固定相”,纯净的石油醚叫做“流动相”。
现在把茨维特开创的方法叫液—固色谱法(Liquid-Solid Chromatography)。
1.1.2色谱的发展简史在茨维特提出色谱概念后的二十多年无人关注这—“伟大的发明”。
直到l931年德国的Kuhn和Lederer才重复了茨维特的某些实验,用氧化铝和碳酸钙分离了α、β、γ-胡萝卜素,此后用这种方法分离了六十多种这类色素。
Martin和Synge在1940年提出液-液分配色谱法(Liquid-Solid Partion Chromatography),即固定相是吸附在硅胶上的水,流动相为某种液体。
1941年他们发表了用气体作流动相的可能性,十一年之后James和Matin发表了从理论到实践比较完整的气-液色谱方法(Gas-Liquid Chromatography),因此而获得了1952年诺贝尔化学奖。
在此基础上l957年Golay叫开创了开管柱气相色谱法(Open—Tubular Column Chromatography),习惯上称为毛细管柱气相色谱法(Capillary Column Chromatography)。
色谱柱分离原理
色谱柱分离原理主要基于样品组分在色谱柱中与固定相发生相互作用的差异来实现。
色谱柱通常由一种固体材料填充,称为固定相,以及涂布在固定相表面或溶解在移动相中的一种液体或气体,称为流动相。
色谱柱的填充材料可以是多种不同的固体颗粒,如硅胶、氮化硅或聚碳酸酯等。
这些固定相具有不同的极性和特性,因此与样品中的化合物发生不同类型的相互作用。
在色谱柱中,流动相通过柱床,携带样品组分进行分离。
流动相的选择与分离目标有关。
对于液相色谱,常用的流动相有水、有机溶剂和缓冲液等。
对于气相色谱,常用的流动相是气体,如氦气或氮气。
根据样品组分与固定相之间的相互作用类型,可将色谱技术分为亲和色谱、气相色谱和液相色谱等。
在亲和色谱中,固定相表面上的配体与样品中的目标分子之间发生特异性相互作用,从而实现分离。
在气相色谱和液相色谱中,分离是通过样品组分与固定相之间的分配和吸附等作用来实现的。
总的来说,色谱柱分离原理基于样品组分与固定相之间的相互作用差异,通过调节流动相的性质和柱床的物化性质来实现对样品的分离。
不同的样品组分将在色谱柱中以不同的速率移动,从而完成分离过程。
第一章色谱分离1.1基本概念1906年,俄国植物学家Tsweet提出色谱,他用碳酸钙填充竖立的玻璃管,以石油醚洗脱植物色素的提取液,经过一段时间洗脱之后,植物色素在碳酸钙柱中实现分离,由一条色带分散为数条平行的色带。
色谱现象:1)一种是CaCO3吸附,使色素在柱中停滞下来2)一种是被石油醚溶解,使色素向下移动3)各种色素结构不同,受两种作用力大小不同,经过一段时间洗脱后,色素在柱子上分开,形成了各种颜色的谱带,这种分离方法称为色谱法。
定义:色谱法是利用不同物质在互不相溶的两相中具有不同的分配系数,并通过两相不断的相对运动而实现分离的方法。
原理:利用混合物中各组分的物理、化学性质(溶解度、分子极性、分子大小和形状、吸附能力等)的差别,使各组分以不同程度分布在两相(固定相、流动相)中达到分离固定相(Stationaryphase):是色谱的基质,可以是固体物质(如吸附剂、凝胶、离子交换剂等),也可以是液体物质(如固定在硅胶或纤维素上的溶液),这些物质能与待分离的化合物进行可逆的吸附、溶解、交换等作用。
流动相(Mobilephase):在色谱分离过程中,推动固定相上待分离的物质朝着一个方向移动的液体、气体等。
1.2色谱法的特点优点:高选择性:可将性质相似的组分分开高效能:反复多次利用组分性质的差异产生很好的分离效果高灵敏性:适于痕量分析分析速度快:十几分钟完成一次;可以测多种样品应用范围广:气液固物质,化学衍生缺点:对未知物分析的定性专属性查需要与其他分析方法连用1.3分类1.3.1按照固定相1)柱色谱法2)纸色谱法3)薄层色谱法1.3.2按照流动相1)气相色谱法2)液相色谱法1.3.3按照分离机理分类1)凝胶色谱法2)离子交换色谱法3)吸附色谱法4)亲和色谱法1.3.4按照分离的对象1)凝胶过滤色谱(GFC)2)凝胶渗透色谱(GPC)1.4固定相1)一种不带电荷的具有三维空间的多孔网状结构的物质2)凝胶的每个颗粒的细微结构就如一个筛子。
简述气相色谱的分离原理气相色谱(Gas Chromatography,简称GC)是一种广泛应用于化学分析领域的分离技术。
它是通过将混合物分离成单一组分并进行分析的方法,利用挥发性的气体作为载气,将混合物分离成各个组分,然后利用检测器对分离出的组分进行检测和定量分析。
气相色谱的分离原理是基于物质在固定相和移动相中的分配系数不同,使得各个组分按照一定的顺序被分离和检测。
以下将具体介绍气相色谱的分离原理。
一、分离原理:气相色谱分离原理是基于组分在固定相和移动相之间的物理和化学相互作用的差异来实现的。
分离的主要机制包括吸附、分区和解离等。
1. 吸附:吸附是指组分与固定相表面的物理吸附或化学吸附。
当样品通过柱子时,具有亲和力的组分会被固定相表面吸附,而无亲和力或亲和力较小的组分则较快通过。
吸附机制是常用的分离机制之一。
2. 分区:分区是指固定相与移动相之间的物理和化学分配。
固定相通常是涂在柱子内壁上的薄膜,移动相则是气体。
样品在移动相中溶解,然后在固相和移动相之间发生分配,根据其溶解度在两相之间分配的程度来分离。
分区机制是气相色谱的主要分离机制。
3. 解离:解离是指在色谱柱中的分子发生化学反应,产生离子,通过正负离子的移动来实现分离。
解离机制常用于分离极性化合物。
二、相关参考内容:1. 《仪器分析原理》(赵伟主编,高等教育出版社)- 第七章气相色谱分离原理该书介绍了气相色谱的基本原理和仪器原理,并详细解释了气相色谱的分离机制和方法。
2. 《现代色谱分离科学与技术》(吴进忠主编,化学工业出版社)- 第九章气相色谱该书详细介绍了气相色谱的原理、仪器和应用,并使用大量例子和图表来说明气相色谱的分离机制和方法。
3. 《色谱分析原理与技术》(陈忱,吴仁德主编,化学工业出版社)- 第四章气相色谱该教材详细介绍了气相色谱的原理、仪器和应用,并提供了实验操作和案例分析,有助于读者更好地理解和应用气相色谱。
4. 《分析化学原理》(吴裕民主编,人民教育出版社)- 第十章气相色谱该教材系统地介绍了气相色谱原理、仪器和应用,并提供了许多实例和实验操作,有助于初学者理解和掌握气相色谱的基本原理和技术。
第十四章色谱法分离原理一.教学内容1.色谱分离的基本原理和基本概念2.色谱分离的理论基础3.色谱定性和定量分析的方法二.重点与难点1.塔板理论,包括流出曲线方程、理论塔板数(n)及有效理论塔板数(n e f f)和塔板高度(H)及有效塔板高度(H e f f)的计算2.速率理论方程3.分离度和基本分离方程三.教学要求1.熟练掌握色谱分离方法的原理2.掌握色谱流出曲线(色谱峰)所代表的各种技术参数的准确含义3.能够利用塔板理论和速率理论方程判断影响色谱分离各种实验因素4.学会各种定性和定量的分析方法四.学时安排4学时第一节概述色谱法早在1903年由俄国植物学家茨维特分离植物色素时采用。
他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。
这种方法因此得名为色谱法。
以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义.但仍被人们沿用至今。
在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相;自上而下运动的一相(一般是气体或液体)称为流动相;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。
当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。
从不同角度,可将色谱法分类如下:1.按两相状态分类气体为流动相的色谱称为气相色谱(G C)根据固定相是固体吸附剂还是固定液(附着在惰性载体上的一薄层有机化合物液体),又可分为气固色谱(G S C)和气液色谱(GL C)。
液体为流动相的色谱称液相色谱(LC)同理液相色谱亦可分为液固色谱(L SC)和液液色谱(L LC)。
超临界流体为流动相的色谱为超临界流体色谱(SF C)。