继电保护基本原理讲解
- 格式:doc
- 大小:1.50 MB
- 文档页数:76
电力系统继电保护基本原理电力系统继电保护是电力系统中重要的安全保护措施,其基本原理是通过检测电力系统中的异常故障状态,并采取控制措施来迅速、准确地切除故障点,保护电力系统的安全运行。
下面将从基本概念、分类、原理以及应用等方面进行详细介绍。
一、基本概念继电保护是电力系统中用来对故障进行保护的设备。
它可以检测系统中的故障,并通过切除故障点、发送报警信号等手段来保护电力系统的安全运行。
二、分类根据继电保护的功能和应用,可以将其分为主保护、备用保护以及辅助保护。
1. 主保护:主保护是对电力系统中的主要设备(如变压器、发电机、电动机等)进行保护的措施。
主保护对应用最为严格的要求,需要快速、准确地切除故障点,并能适应系统的各种工作条件。
2. 备用保护:备用保护是为了当主保护出现故障或失效时,起到替代保护作用的设备。
备用保护的要求相对较低,主要是为了保证在主保护失效时仍能有效地保护电力系统。
3. 辅助保护:辅助保护是对系统中的辅助设备和线路进行保护的措施。
辅助保护的主要作用是检测系统中的异常情况,并发出相应的信号进行报警,以减少故障对系统的影响。
三、原理继电保护的工作原理是基于电气量的变化检测和测量。
通过对电流、电压、频率、功率因数等电气量的测量,判断系统中是否存在故障,并能够快速、准确地切除故障点。
1. 故障检测:继电保护能够检测到电力系统中的各种故障类型(包括短路、过载、接地故障等)。
通过对电流、电压等电气量进行检测和测量,在故障发生时能够及时判断故障类型和位置。
2. 故障切除:当继电保护检测到故障时,会通过控制开关进行故障点的切除。
切除故障的方式包括断开故障电路、切除故障设备、切换备用设备等。
3. 报警通知:继电保护还能够通过发送报警信号或故障信息来通知操作人员。
操作人员在接收到报警信息后,可以及时采取相应的措施来处理故障。
四、应用继电保护广泛应用于电力系统中的各个环节,包括输电线路、变电站、发电机等。
继电保护的四个基本原理继电保护是电力系统中非常重要的一项安全保护措施,它能够在电力系统发生故障时快速、准确地检测和切除故障部分,从而保护电力设备和电力系统的安全运行。
继电保护的实现依赖于一些基本原理,本文将介绍继电保护的四个基本原理。
一、电流保护原理电流保护是继电保护中最常见的一种保护方式。
它基于电流的大小和方向来判断电力系统中是否存在故障。
当电流超过设定值时,继电器就会触发动作,进而切除故障部分。
电流保护的实现主要依赖于电流互感器和继电器。
电流互感器将高电压线路中的电流转换成与之成比例的低电流,并通过继电器进行监测和切除故障。
二、电压保护原理电压保护是继电保护中另一种常见的保护方式。
它主要用于检测电力系统中的电压异常情况,如过高或过低的电压。
电压保护的实现需要使用电压互感器和继电器。
电压互感器将高电压线路中的电压转换成与之成比例的低电压,并通过继电器进行监测和切除故障。
三、差动保护原理差动保护是一种以比较电流差值来判断电力系统中是否存在故障的保护方式。
它主要应用于变压器、发电机等设备的保护。
差动保护的实现主要依赖于电流互感器和继电器。
电流互感器将设备输入和输出侧的电流转换成与之成比例的低电流,继电器通过比较两侧电流的差值来判断是否存在故障,并触发动作切除故障。
四、过电流保护原理过电流保护是一种以电流超过额定值来判断电力系统中是否存在故障的保护方式。
它主要用于保护电力系统中的配电线路和设备。
过电流保护的实现主要依赖于电流互感器和继电器。
电流互感器将高电压线路中的电流转换成与之成比例的低电流,并通过继电器进行监测和切除故障。
继电保护的四个基本原理分别是电流保护、电压保护、差动保护和过电流保护。
这些原理在电力系统中起到了至关重要的作用,保护了电力设备和电力系统的安全运行。
通过合理配置和使用继电保护装置,能够及时检测和切除故障,有效避免了电力系统事故的发生,保障了电力系统的可靠供电。
继电保护原理基础
继电保护是电力系统中常用的一种保护手段,它通过检测电力系统的异常状态,及时地切断故障电路,以保护设备和人员的安全。
其工作原理基于电路中的电流、电压、功率等物理量变化,利用继电器的动作来实现保护动作。
继电保护的基本原理是传感器将电力系统中的电流、电压等物理量转化为相应的信号,然后经过信号输出、信号处理等步骤,最终控制继电器动作。
一般来说,继电保护的工作流程包括以下几个步骤:
1. 传感器检测:传感器将电力系统中的电流、电压等物理量转化为电信号。
比如,电流互感器可以将高电压系统中的电流转化为低电压电流信号。
2. 信号输出:经过传感器检测后,得到的电信号需要进行处理,并输出给继电器。
这一步通常由信号处理模块完成,可以对信号进行放大、滤波等处理,以保证输出的信号稳定可靠。
3. 继电器动作:继电器是继电保护的核心组成部分,它根据输入的信号进行判断,并控制其触点的闭合或断开。
当电力系统出现异常情况时,继电器将根据预设的保护动作逻辑来进行相应的动作。
4. 保护动作:继电器动作后,将会触发保护设备执行相应的保护动作,如切断故障电路,保护设备免受进一步损坏。
继电保护的原理基于电力系统的物理量变化,通过传感器检测、信号输出、继电器动作和保护动作等步骤来实现对电力系统的保护。
不同类型的继电保护可以针对电压过高、电流过载、短路故障等不同故障情况进行保护,以确保电力系统运行的安全稳定。
继电保护的基本原理1.继电保护的类型电力系统发生故障时的特点是电流增大、电压降低、电流和电压间的相位角会发生变化。
因此,应用于电力系统中的各种继电保护的绝大多数都是以反应这些物理量的变化为基础,利用正常运行与发生故障时各物理量间的差别来实现的。
根据所反应的上述各种物理量的不同,构成了以下各种不同类型的继电保护:(1)反应电流改变的,有电流速断、定时限过流、反时限过流及零序电流保护等。
(2)反应电压改变的,有低电压和过电压保护。
(3)既反应电流又反应电流与电压间相角改变的,有方向过电流保护。
(4)反应电压和电流的比值,即反应短路点到保护安装处阻抗(或距离)的,有距离保护等。
(5)反应输入电流和输出电流之差的,有差动保护。
2.继电保护的组成继电保护虽有各种类型,但一般都由测量部分、逻辑部分和执行部分三个基本环节组成,其示意的框图如图8-2所示。
各基本部分的作用是:(1)测量部分。
是测量反映被保护设备工作状态(正常工作状态、不正常工作状态或事故状态)的一个或几个有关的物理量。
(2)逻辑部分。
是根据各测量元件输出量的大小或性质及其组成或出现的顺序,判断被保护设备的工作状态,以决定保护是否应该动作。
(3) 执行部分。
是根据逻辑部分所作出的决定,执行保护的任务(即给出信号、或跳闸,或不动作)。
现以图 3-1过电流保护接线为例加以说明。
在该保护中,电流继电器1KA、2KA 的线圈回路就是测量部分,它监视被保护设备的工作状态,反应电流的大小,只有线路发生短路故障时,它才会动作。
因此,测量部分可处于动作或不动作两种状态,并根据这两种状态确定发出作用于逻辑部分的信号。
电流继电器的接点回路就是逻辑部分,它接受测量部分送来的信号后,确定是否起动整套保护。
执行部分就是时间继电器和信号继电器回路,它接到逻辑部分送来的信号后,给出断路器的跳闸脉冲并发出信号。
继电保护原理
继电保护是一种常用的电气保护装置,其原理是利用电流、电压和其他参数的变化来监测电力系统中的故障,并通过控制继电器的动作来实现系统的保护。
继电保护的基本原理是利用电流或电压信号的变化来触发继电器的动作。
在正常情况下,电力系统中的电流和电压是稳定的,继电器处于闭合状态。
但是,当电力系统中发生故障时,例如短路或过载,电流或电压会发生异常变化,这时继电器将接收到异常信号,并触发动作。
继电保护系统通常由传感器、测量装置、继电器和触发器等组成。
传感器用于检测电流、电压和其他参数的变化,并将其转化为电信号。
测量装置负责测量和记录这些电信号的数值。
继电器是一个电磁开关装置,当接收到来自传感器或测量装置的异常信号时,会触发电磁线圈的动作,使开关状态发生变化。
触发器负责控制继电器的触发条件和动作时间。
继电保护的作用是保护电力系统中的各种设备和线路免受过电流、过电压、短路、地故障等故障的损害。
通过及时检测并断开故障点附近的电力传输,继电保护可以防止故障扩大,减少事故发生的可能性,并保护设备和人员的安全。
继电保护在电力系统中起着至关重要的作用,它不仅能够实现故障检测和保护,还可以提供监测和记录故障信息的功能,为电力系统的运行和维护提供重要依据。
同时,随着电力系统的
不断发展,继电保护的技术也在不断创新和改进,使其能够适应各种新型设备和复杂的故障情况,确保电力系统的稳定运行。
继电保护基本原理
继电保护基本原理是电力系统中一种常用的保护方法,它主要通过测量电路中的电流、电压等参数,并根据一定的逻辑关系和判据来判断电力系统是否存在故障或异常情况,并采取相应的措施,保护电力系统的安全运行。
继电保护的基本原理包括以下几个方面:
1. 电流与电压测量:继电保护通常通过电流互感器和电压互感器来测量电路中的电流和电压。
电流互感器将高电流变换为与之成比例的低电流,电压互感器则将高电压变换为与之成比例的低电压。
测量出的电流和电压信号将作为继电保护的输入信号。
2. 选择性:继电保护需要根据故障类型和位置来选择相应的保护元件,以实现快速、准确地判断故障位置和类型。
为了实现选择性保护,继电保护系统通常会设置多个保护回路,并通过元件的参数设置、电流电压比较等方式来实现选择性。
3. 逻辑判断:继电保护通过对测量得到的电流、电压信号进行逻辑判断,确定电力系统是否存在故障或异常情况。
常见的判断逻辑包括过流保护、距离保护、差动保护等。
例如,过流保护会比较电流信号与设定的额定电流值,当电流超过额定值时,保护动作,切断故障电路。
4. 装置操作:当继电保护判断存在故障时,它会采取相应的操作来保护电力系统。
常见的操作包括触发离合器、断路器等开
关设备,以切断故障电路。
此外,继电保护还可以向监控系统发送警报信号,以便及时采取措施修复故障。
继电保护基本原理的核心是通过测量和判断电路参数,实现对电力系统故障的快速、准确保护。
它在电力系统中起着重要的作用,可以有效地防止故障扩大、保护设备的安全运行。
继电保护的基本原理
继电保护的基本原理
继电保护是一种防止电气设备损坏、避免操作者人身伤亡和电气设备事故发生的技术手段,它将电力系统的安全运行和正常运行与扰动、紊乱、发生故障和熔断的现象相区分开来,它主要通过发出警告或采取必要的行动来防止电气设备的损坏和事故的发生。
继电保护的基本原理是根据电气设备的运行条件,设置相应的继电器及其他装置,以便在危险状态发生时迅速切断电路,以保护设备免受损坏,并将事故限制在最小范围内。
继电保护从发出警告的意义上分为警告继电保护和限制继电保护两大类:
(1)警告继电保护是一种警示和报警功能,当受保护的设备出现运行指标超出规定范围时,及时发出警告信号通知操作人员,以防范可能发生的事故。
(2)限制继电保护是一种技术防范功能,当受保护设备出现故障时,继电器能够迅速响应,自动断开设备的主回路,以阻止事故的发生。
最后,继电保护的最终目的是确保电力系统的安全运行,保证其有效运行和可靠运行。
- 1 -。
继电保护基本原理
1. 利用每个电气元件在内部故障和外部故障(包括正常运行情况)时,两侧电流相位或功率方向的差别,就可以构成各种差动原理的保护,如纵联差动保护、相差高频保护、方向高频保护等。
2. 差动原理的保护只能在被保护元件的内部故障时动作,而不反应外部故障。
所以被认为有绝对的选择性。
在按照上述原理构成各种继电保护装置时,可以使它们的参数反应于每相中的电流和电压,也可以使之仅反应于其中的某一个对称分量(负序、零序或正序)的电流和电压。
正常情况下,负和零序分量不会出现,而在发生不对称接地短路时,它们均具有较大的数值,在发生不接地的不对称短路时,无零序分量但负序分量较大,故利用这些分量构成的保护装置均具有良好的选择性和灵敏性,也是它获得广泛应用的原因。
另外,除反应于各种电气量的保护以外,还有根据电气设备的特点实现反应非电量的保护;当变压器油箱内部的绕组短路时,反应于油被分解所产生的气体而构成的瓦斯保护;反应于电动机绕组的温度升高而构成的过负荷或过热保护等等。
1。
继电保护的原理及应用动画一、继电保护的基本原理继电保护是电力系统运行中非常重要的一部分,它能够对电力系统中的故障进行检测、定位并采取相应的措施,以保证电力系统的安全运行。
继电保护的基本原理如下:1.故障检测:继电器通过检测电力系统中各个部分的电流、电压等参数,判断是否存在故障。
一般来说,当电流或电压超过设定的安全阈值时,会触发继电保护系统。
2.故障定位:一旦检测到故障,继电保护系统需要准确地定位故障的位置,以便快速采取措施。
这一步通常是通过测量电流和电压在电力系统中的传输时间来实现的。
3.故障隔离:确定故障位置后,继电保护系统会将故障部分与正常部分隔离,以避免故障扩大影响整个电力系统的安全运行。
4.保护控制:一旦故障隔离完成,继电保护系统会通过控制开关等装置,对故障部分进行控制操作,使故障得到修复或绕过。
二、继电保护的应用动画以下是继电保护的原理及应用动画演示,通过动画的方式直观地展示继电保护系统的运行过程。
1.故障检测阶段在这个动画中,可以看到继电保护系统实时监测电力系统中的电流和电压参数。
当电流或电压超过设定的安全阈值时,动画中的继电保护系统会触发报警并标出发生故障的位置。
2.故障定位阶段一旦发生故障,动画中的继电保护系统会测量电流和电压在电力系统中的传输时间。
通过计算传输时间,系统可以精确地定位故障的位置,并在动画中以箭头的形式标出。
3.故障隔离阶段故障定位完成后,动画中的继电保护系统会自动控制开关等装置,将故障部分与正常部分进行隔离。
在动画中,可以看到原先连接故障部分的线路被隔离开,并且继电保护系统会给出相应的提示。
4.保护控制阶段经过故障隔离操作后,动画中的继电保护系统会进一步进行保护控制。
例如,如果故障是因为某个设备损坏,系统可以关闭该设备并启用备用设备,以确保电力系统的正常运行。
通过这些动画,人们可以直观地了解继电保护的原理和应用过程,更好地理解电力系统的安全运行机制。
三、总结继电保护是电力系统中不可或缺的一部分,它可以通过检测、定位、隔离和控制的方式,保证电力系统的安全运行。
继电保护的基本原理和继电保护装置的组成继电保护是电力系统中重要的安全保障措施之一,用于保护电力设备和电力系统免受故障和过电流的损害。
本文将介绍继电保护的基本原理以及继电保护装置的组成。
一、继电保护的基本原理继电保护的基本原理是依靠电力系统中的电流、电压等参数的异常变化来判断设备是否发生故障,并对故障设备进行隔离和保护。
其基本原理包括故障检测、信号传输、故障判断和动作执行等环节。
1. 故障检测:继电保护装置通过检测电力系统中的电流、电压等参数,以确定是否存在设备异常。
常见的故障包括过电流、过电压、短路、接地故障等。
2. 信号传输:一旦检测到异常信号,继电保护装置会将信号传输给中央控制室或操作人员,以便进一步判断和采取相应的措施。
3. 故障判断:中央控制室或操作人员会根据接收到的异常信号进行故障判断,通过比对设备的工作状态和理论模型,确定具体的故障类型和位置。
4. 动作执行:一旦故障类型和位置确定,继电保护装置将发送信号给断路器或其他隔离设备,使其迅速切断故障电路,并保护其他设备免受影响。
二、继电保护装置的组成继电保护装置是实现继电保护原理的关键设备,其主要组成包括输入电路、测量元件、比较元件、判别元件和动作元件。
1. 输入电路:输入电路是继电保护装置的基础,充当了信息采集的作用。
输入电路包括电流互感器、电压互感器等,用于采集电力系统中的电流、电压等参数,并将信号传递给后续的测量元件。
2. 测量元件:测量元件是用来对输入电路中采集的信号进行精确的测量和转换。
常见的测量元件包括电流变压器、电压变压器等,能够将采集到的电流、电压等参数转换为标准的模拟量或数字量信号。
3. 比较元件:比较元件用于将测量得到的参数与事先设定的保护参数进行比较。
当测量参数超过或低于设定的保护参数范围时,比较元件会发出警报信号,通知判别元件进行下一步判断。
4. 判别元件:判别元件负责对比较元件发出的信号进行进一步的判断和分析,以确定是否存在故障。
叙述继电保护的基本原理1. 继电保护的基本概念嘿,朋友们,今天咱们来聊聊继电保护。
这玩意儿就像是电力系统里的“保镖”,确保我们的电力设施不被各种意外搞得乱七八糟。
想象一下,如果没有继电保护,电流就像无头苍蝇一样乱飞,设备随便受损,真是让人心慌慌啊!所以,继电保护就像是守护神一样,时时刻刻盯着电流的动向,一旦发现问题,立马发出警报,甚至切断电源,避免更大的麻烦。
1.1 继电保护的工作原理说到工作原理,继电保护可不是简单的开关。
它通过监测电流、电压等参数,当某个数值超出预定范围时,就会“亮起红灯”。
比如说,电流过载就像是喝醉酒的人,开始失去控制。
这个时候,继电保护就会立马出手,切断电路,确保其他设备不受牵连。
就好比一个负责任的家长,看到孩子玩得太疯,赶紧把他们拉回来,别让他们摔了!1.2 保护装置的类型其实,继电保护也有很多不同的“角色”。
常见的有过流保护、过压保护和接地保护等。
就像一个团队里,各司其职。
过流保护就负责看着电流,确保它不跑得太快;过压保护则是监控电压,避免“冲动”过大;而接地保护则像是大地的好朋友,确保任何漏电现象都能及时被发现,保护咱们的安全。
真是各显神通,各有千秋!2. 继电保护的重要性2.1 保障设备安全要说继电保护的重要性,那可真是毋庸置疑。
想象一下,如果没有它,我们的变压器、发电机等设备会被频繁地损坏,维修费用就像大海里的水,根本止不住。
而有了继电保护,它就像是一个无形的保护罩,时刻守护着设备的安危,减少了不必要的损失,省下来的钱可真能买不少好吃的呢!2.2 提高系统可靠性除了保护设备,继电保护还提升了整个电力系统的可靠性。
就好比一支球队,大家默契配合,才能打出好成绩。
继电保护能够迅速响应故障,及时切断问题电路,确保其他部分正常运转。
这样一来,整个系统就像是一台精密的机器,不会因为个别零件的故障而停摆。
想想看,这样的系统多么让人放心啊!3. 未来的发展趋势3.1 智能化的演变说到未来,继电保护也在不断进化。
继电保护的基本原理和继电保护装置的组成绪论继电保护在电力系统中扮演着至关重要的角色,它是保障电力系统安全运行的关键组成部分。
本文将探讨继电保护的基本原理以及继电保护装置的组成,以便更好地理解其在电力系统中的作用和重要性。
第一部分:继电保护的基本原理继电保护是电力系统中用于检测异常情况并采取措施来保护电力设备和系统不受损害的技术。
其基本原理包括以下几个关键要素:1. 电流和电压测量:继电保护装置通过监测电流和电压的变化来识别电力系统中的异常情况。
这些测量值提供了关于电流负载、电压水平和频率等信息。
2. 比较与判据:继电保护装置将测量值与预设的标准或判据进行比较。
如果测量值超出了允许的范围,继电保护系统将判定系统存在故障或异常情况。
3. 快速反应:一旦继电保护系统检测到异常情况,它会立即采取行动,例如切断电源或发出警报信号,以防止电力设备受到损害或电力系统发生故障。
4. 信号传输:继电保护系统需要将检测到的异常情况信息传输给相关设备或操作人员,以便采取适当的措施。
5. 稳定性和可靠性:继电保护系统必须具备高度的稳定性和可靠性,以确保不会误判正常操作并及时响应真正的故障情况。
第二部分:继电保护装置的组成继电保护装置是实现继电保护功能的关键工具,其组成部分通常包括以下要素:1. 传感器:传感器用于测量电流、电压、频率和其他电力参数。
电流变压器(CT)和电压变压器(VT)是常用的传感器类型,用于将高电压和电流降低到安全水平进行测量。
2. 保护继电器:保护继电器是继电保护系统的核心组件。
它们根据传感器提供的输入信号进行逻辑运算,并根据事先设定的保护方案判断是否需要采取措施。
3. 控制单元:控制单元负责继电保护系统的操作和控制。
它通常包括微处理器或微控制器,用于处理输入信号、执行保护逻辑和与其他系统通信。
4. 输出设备:输出设备包括断路器、接触器和报警器等,用于根据继电保护装置的决策来切断电源、分离故障设备或发出警报。
继电保护及原理归纳主要的继电保护及原理一、线路主保护(纵联保护)纵联保护利用某种通信通道将输电线路两端的保护装置纵向连接起来,将各端的电气量传送到对端,将各端的电气量进行比较,以判断故障是否在本线路范围内还是范围之外,从而决定是否切断被保护线路。
任何纵联保护总是依靠通道传送的某种信号来判断故障的位置是否在被保护线路内。
信号按期性质可分为三类:闭锁信号、允许信号和跳闸信号。
闭锁信号是保护动作跳闸的必要条件,收不到这种信号保护动作就不会跳闸。
允许信号是保护动作跳闸的必要条件,收到这种信号才能使保护动作跳闸。
跳闸信号是保护动作与跳闸的充要条件,收到这种信号才能使保护动作跳闸。
按输电线路两端所用的保护原理分,可分为:(纵联)差动保护、纵联距离保护、纵联方向保护。
通道类型包括:导引线通道、载波(高频)通道、微波通道和光纤通道。
纵联)差动保护纵联)差动保护的原理是根据基尔霍夫定律,即流向一个节点的电流之和等于零。
但是,差动保护存在一些问题:1.电容电流会从线路内部流出,因此对于长线路的空载或轻载线路容易误动。
解决办法:提高启动电流值(牺牲灵敏度);加短延时(牺牲快速性);必要时进行电容电流补偿。
注:穿越性电流是在保护区外发生短路时,流入保护区内的故障电流。
穿越电流不会引起保护误动。
2.TA断线会造成保护误动。
解决办法:使差动保护要发跳闸命令必须满足如下条件:本侧起动原件起动、本侧差动继电器动作、收到对侧“差动动作”的允许信号。
保护向对侧发允许信号的条件是保护起动和差流元件动作。
3.弱电侧电流纵差保护存在问题(变压器不接地系统的弱电侧在轻载或空载时电流几乎没有变化)。
解决办法:除两侧电流差突变量起动元件、零序电流起动元件和不对应起动元件外,加装一个低压差流起动元件。
4.高阻接地时保护灵敏度不够。
在线路一侧发生高阻接地短路时,远离故障点的一侧各个起动元件可能都不启动,造成两侧差动保护都不能切除故障。
解决办法:由零序差动继电器,通过低比率制动系数的稳态相差元件选相,构成零序1段差动继电器,经延时动作。
继电保护基本原理及电力知识问答第一篇 继电保护基本原理第一章 概述一.什么是电力系统?有两种说法:1.由生产和输送电能的设备所组成的系统叫电力系统,例如发电机、变压器、母线、输电线路、配电线路等,或者简单说由发、变、输、配、用所组成的系统叫电力系统。
2.有的情况下把一次设备和二次设备统一叫做电力系统。
一次设备:直接生产电能和输送电能的设备,例如发电机、变压器、母线、输电线路、断路器、电抗器、电流互感器、电压互感器等。
二次设备:对一次设备的运行进行监视、测量、控制、信息处理及保护的设备,例如仪表、继电器、自动装置、控制设备、通信及控制电缆等。
二.电力系统最关注的问题是什么?由于电力系统故障的后果是十分严重的,它可能直接造成设备损坏,人身伤亡和破坏电力系统安全稳定运行,从而直接或间接地给国民经济带来难以估计的巨大损失,因此电力系统最为关注的是:安全可靠、稳定运行。
三.电力系统的三种工况正常运行状态;故障状态;不正常运行状态。
而继电保护主要是在故障状态和不正常运行状态起作用。
四.继电保护装置就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。
它的基本任务简单说是:故障时跳闸,不正常运行时发信号。
五.继电保护的基本原理和保护装置的组成为完成继电保护所担负的任务,显然应该要求它正确地区分系统正常运行与发生故障或不正常运行状态之间的差别,以实现保护。
如图1-1(a )、(b )所示的单侧电源网络接线图,(这是一种最简单的系统),图1-1(a)为正常运行情况,每条线路上都流过由它供电的负荷电流İf (一般比较小), 各变电所母线上的电压,一般都在额定电压(二次线电压100V )附近变化,由电压和电流之比所代表的“测量阻抗”Z f 称之为负荷阻抗,其值一般很大。
图1-1(b )表示当系统发生故障时的情况,例如在线路B-C 上发生了三相短路,则短路点的电压U d 降低到零,从电源到短路点之间将流过很大的短路电流İd , 各变电所母线上的电压也将在不同程度上有很大的降低(称之为残压)。
设以Z d 表示短路点到变电所B 母线之间的阻抗,根据欧姆定律很2)显然Z d 要大大小于Z f 。
即短路阻抗要大大小于负荷阻抗。
图1-1 单侧电源网络接线六.继电保护分类在一般情况下,发生短路之后,总是伴随有电流的增大、电压的降低、线路始端测量阻抗的减少,以及电压与电流之间相位角的变化。
因此,利用正常运行与故障时这些基本参数的区别,就可以构成各种不同原理的保护。
一般继电保护可以分为两类:第一类—利用比较正常运行与故障时电气参量(U 、I 、Z 、f )的区别,便可以构成各种不同原理的继电保护,例如反应于电流增大而动作的过电流保护;反应于电压降低而动作的低电压保护;反应于阻抗降低而动作的距离保护,反应于频率降低而动作的低(或欠)频保护等。
第二类—首先规定两个前提:一个规定电流的正方向是从母线指向线路;第二个一定是双端电源。
例如图1-2(a )、(b )所示的双端电源网络接线。
分析1-2(a )、(b )图中BC线路靠近B 母线侧电流的情况,我们发现在正常运行的负荷电流和故障时的短路电流的相位发生了180°的变化。
因此利用比较正常运行(包括外部故障)与内部故障时,两侧电流相位或功率方向的差别,就可以构成各种差动原理的保护。
例如纵联差动保护、相差高频保护、方向高频保护等。
差动原理的保护只反应内部故障、不反应外部故障,因而被认为具有绝对的选择性。
图1-2 双侧电源网络接线七.对电力系统继电保护的基本要求动作于跳闸的继电保护,在技术上一般应满足四个基本要求,即选择性、速动性、灵敏性和可靠性。
a) 选择性定义:继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。
如图1-3所示单侧电源网络中,当d 1点短路时,应由距短路点最近的保护1和2动作跳闸,将故障线路切除,变电所B路3-4继续供电。
原则:就近原则,即系统短路时,(a)I (b) A B C应由距离故障点最近的保护切除相应的断路器。
相关链接:主保护—能在全线范围速动的保护。
后备保护—作为主保护的后备,不能在全线范围速动,要带一定的延时,图1-3 单侧电源网络中,又分为远后备和近后备。
有选择性动作的说明b).速动性所谓速动性,就是发生故障时,保护装置能迅速动作切除故障。
对不同的电压等级要求不一样,对110KV及以上的系统,保护装置和断路器总的切故障时间为0.1秒,因此保护动作时间只有几十个毫秒(一般30毫秒左右),而对于35KV 及以下的系统,保护动作时间可以为0.5秒。
c)灵敏性继电保护的灵敏性,是指对于其保护范围内发生故障或不正常运行状态的反应能力。
其灵敏性有的保护是用保护范围来衡量,有的保护是用灵敏系数来衡量。
d)可靠性保护装置的可靠性是指在该保护装置规定的保护范围内发生了它应该动作的故障时,它不应该拒绝动作,而在任何其他该保护不应该动作的情况下,则不应该误动作。
简单说就是:该动的时候动,不该动的时候不动。
该动的时候不动是属于拒动,不该动的时候动了是属于误动。
不管是拒动还是误动,都是不可靠。
以上四个基本要求不仅要牢牢记住,而且要理解它们的内涵,其中可靠性是最重要的,选择性是关键,灵敏性必须足够,速动性则应达到必要的程度。
我们所有的继电保护装置都是围绕这四个要求做文章,当然不同的保护,对这些要求的侧重点是不一样的,有的侧重于选择性,有的侧重于速动性,有时候为了保证主要的属性可能会牺牲一些其他的属性。
这些我们在以后讲到具体的保护时会提到。
八.继电保护的发展过程继电保护技术是随着电力系统的发展以及技术水平的进步而发展起来的,最早的熔断器就是最简单的过电流保护,以后经历了机电型、整流型、晶体管型、集成电路型、微机型五个阶段,而现在微机型的继电保护又进入第三代和第四代。
九.本章总结本章尽管没有讲具体的保护,但是对本书的主要内容作了简要的概述,是非常重要的,读者应掌握以下几个主要的重点:1.要能正确描述什么是电力系统、一次设备、二次设备。
2.电力系统故障有哪些严重后果?3.电力系统有哪三种工况?继电保护在哪些工况下起作用?起什么样的作用?4.继电保护可以分为几大类?它们是按什么原则划分的?5.对电力系统继电保护有哪些基本要求?读者不仅要牢记四个基本要求,更重要的是要理解其中的内涵以及它们之间的关系。
6.什么是主保护,什么是后备保护,远后备和近后备有何区别?第二章 电网的电流保护和方向性电流保护第一节 单侧电源网络相间短路的电流保护一.电流继电器1. 定义:电流继电器是实现电流保护最基本的元件,也是反应于一个电气量(单激励量)而动作的简单继电器的典型。
它的工作原理是非常简单的,就是电磁感应原理,因此不准备多讲,下面讲四个基本概念。
2 .四个基本概念:(1)起动电流—能使电流继电器动作的最小电流值,称为继电器的起动电流。
这里要特别关注最小两个字,因为电流继电器是反应电流增加而动作的,是增量动作的继电器。
如果是低电压继电器,是欠量动作的继电器,应该是能使电压继电器动作的最大电压值,称为起动电压。
(2)返回电流—能使继电器返回原位的最大电流称为继电器的返回电流。
这里特要别关注最大两个字,理由同前。
如果是低电压继电器的返回电压,应该是继电器返回原位的最小电压值,称为返回电压。
(3)继电特性—无论起动和返回,继电器的动作都是明确干脆的,它不可能停留在某一个中间位置,这种特性我们称之为“继电特性”。
(4)返回系数—返回电流与起动电流的比值称为继电器的返回系数,可表示为K h =j dz jh I I ..。
增量动作的继电器其返回系数小于1,欠量动作的继电器其返回系数大于1。
以上这四个基本概念不仅是适合于电流继电器和电压继电器,对所有的继电器或保护装置都是适用的,但首先要搞清楚是增量动作的还是欠量动作的。
如果是增量动作的,就按照电流继电器的原则去套,如果是欠量动作的,就按照低电压继电器的原则去套。
二.电流速断保护C 1.定义:反应于电流增大而瞬时动作的 电流保护,称为电流速断保护。
顾名思义 电流速断保护应该侧重于速动性。
2.动作特性分析: İd以图2-1来分析电流速断保护的动作 特性。
假定在每条线路上均装有电流速断保护, 则当线路A —B 上发生故障时,希望保护2能瞬时动作,而当B —C 上发生故障时,希望保护1能瞬时动作,它们的保护范围最好能达到本线路全长的100%。
但是这种愿望 0 L 是否能实现,需要作具体分析。
以保护2为 图 2-1电流速断动作特性分析例,当本线路末端d 1点短路时,希望速断保护2能够瞬时动作切除故障,而当相邻线路B —C 的始端(习惯上又称为出口处)d 2点短路时,按照选择性的要求,速断保护2就不应该动作,因为该处的故障应由保护1动作切除。
但是实际上,d1和d2点短路时,保护2所流过短路电流的数值几乎是一样的,很难区分开来(特别对于长线路)。
因此,希望d1点短路时速断保护2能动作,而d2短路时又不动作的要求就不可能同时得到满足。
3. 整定原则:为了解决这个矛盾可以有两种办法,通常都是优先保证动作的选择性,即从保护装置起动参数的整定上保证下一条线路出口处短路时不起动,即整定原则是:按躲开下一条线路出口处短路的条件整定,或者简单说躲相邻线路出口短路的最大短路电流。
所谓躲就是电流速断保护的整定电流要大于相邻线路出口短路的最大短路电流(因为电流速断是增量动作的)。
另一种办法就是在个别情况下,当快速切除故障是首要条件时,就采用无选择性的速断保护,而以自动重合闸来纠正这种无选择性的动作。
现在大多数是采用第一种方法。
4. 最大运行方式和最小运行方式最大运行方式—对每套保护装置来讲,通过该保护装置的短路电流为最大的方式,称之为最大运行方式。
最小运行方式—通过该保护装置的短路电流为最小的方式,称之为最小运行方式。
在最大运行方式下,保护安装处附近发生三相短路时流过保护装置的短路电流最大。
在最小运行方式下,保护范围末端发生两相短路时流过保护装置的短路电流最小。
在图2-1所示的电流速断保护动作特性分析中,可以看到有两条曲线I和II,它们分别为最大运行方式和最小运行方式下短路电流随着输电线路的分布曲线,还有一条平行于横轴的直线İ’d z.2,它为保护2的电流速断的定值,很显然它分别与I和II有两个交点,这两个交点在横轴上所对应的L即为两种运行方式下的保护范围,可以看出无论在最大运行方式还是最小运行方式都不能保护线路的全长,而且在不同的运行方式下,其保护范围是不一样的,最大运行方式下的保护范围大,最小运行方式下的保护范围小,这就有可能出现按最大运行方式的整定电流在最小运行方式下的保护范围不满足要求(电流速断的灵敏度是用保护范围来衡量),当最大运行方式和最小运行方式相差很大时,在最小运行方式下有可能没有保护范围。