迈克尔逊干涉仪
- 格式:doc
- 大小:133.50 KB
- 文档页数:5
迈克尔逊干涉仪实验报告一、实验目的1、了解迈克尔逊干涉仪的结构和工作原理。
2、观察等倾干涉和等厚干涉条纹,加深对干涉现象的理解。
3、学会使用迈克尔逊干涉仪测量光波的波长。
二、实验原理迈克尔逊干涉仪是一种分振幅双光束干涉仪,其光路图如下图所示:此处可插入迈克尔逊干涉仪光路图光源 S 发出的光经过分光板 G1 分成两束光,一束光反射后到达反射镜 M1,另一束光透射后到达反射镜 M2。
两束光分别被 M1 和 M2反射后,再次回到分光板 G1,并在观察屏 E 处相遇发生干涉。
当 M1 和 M2 严格垂直时,观察到的是等倾干涉条纹。
此时,两束光的光程差为:$\Delta = 2d\cos\theta$其中,d 为 M1 和 M2 之间的距离,θ 为入射光与 M1 或 M2 法线的夹角。
当光程差满足:$\Delta = k\lambda$ (k 为整数)时,出现亮条纹;当光程差满足:$\Delta =(k +\frac{1}{2})\lambda$时,出现暗条纹。
当 M1 和 M2 不严格垂直时,观察到的是等厚干涉条纹。
此时,两束光的光程差主要取决于 M1 和 M2 之间的距离变化。
三、实验仪器迈克尔逊干涉仪、HeNe 激光器、扩束镜、毛玻璃屏等。
四、实验步骤1、仪器调节调节迈克尔逊干涉仪的底座水平,使干涉仪处于水平状态。
调节 M1 和 M2 背后的三个微调螺丝,使 M1 和 M2 大致垂直。
打开 HeNe 激光器,使激光束经过扩束镜后均匀地照射在分光板G1 上,并在毛玻璃屏上看到清晰的光斑。
调节 M1 或 M2 的位置,使屏上出现圆形的等倾干涉条纹。
2、观察等倾干涉条纹仔细调节 M1 或 M2 的位置,使干涉条纹清晰、对比度高。
观察条纹的形状、疏密和级次分布,记录条纹的变化情况。
3、测量光波波长沿某一方向缓慢移动 M1,观察条纹的“冒出”或“缩进”现象,并记录条纹变化的条数 N 和 M1 移动的距离Δd。
迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是光学实验中一种重要的仪器,它的原理是基于干涉现象来测量长度、速度、折射率等物理量。
因此,正确地调节和使用迈克尔逊干涉仪对于实验结果的准确性和可靠性至关重要。
一、调节步骤1、粗调:首先调整干涉仪的粗调旋钮,使干涉条纹大致对称。
2、细调:然后调整干涉仪的细调旋钮,使干涉条纹更加清晰、对称。
具体步骤如下:(1)将光源对准干涉仪的入射缝,调整干涉仪的三个脚螺旋,使干涉条纹出现在视野中。
(2)调节干涉仪的粗调旋钮,使干涉条纹大致对称。
(3)调节干涉仪的细调旋钮,使干涉条纹更加清晰、对称。
可以通过观察干涉条纹的移动方向和距离来判断调节是否正确。
(4)重复以上步骤,直到干涉条纹完全对称、清晰。
二、使用注意事项1、保持干涉仪的清洁,避免灰尘和污垢进入干涉仪内部。
2、在调节过程中,要轻拿轻放,避免损坏干涉仪的精密部件。
3、在使用过程中,要避免过度调节粗调旋钮和细调旋钮,以免损坏干涉仪的调节机构。
4、在记录实验数据时,要保证记录的准确性和完整性。
5、在实验结束后,要将干涉仪恢复到初始状态,以便下一次使用。
正确地调节和使用迈克尔逊干涉仪需要耐心和细心。
只有掌握了正确的调节方法,才能更好地发挥其作用,提高实验的准确性和可靠性。
迈克尔逊干涉仪法测定玻璃折射率迈克尔逊干涉仪是一种精密的光学仪器,其原理基于干涉现象,能够用于测量微小的长度变化和折射率。
本文将介绍如何使用迈克尔逊干涉仪法测定玻璃的折射率。
一、实验原理折射率是光学材料的一个重要参数,它反映了光在材料中传播速度的改变。
迈克尔逊干涉仪法利用干涉现象来测量折射率。
当光线通过不同介质时,其速度和波长都会发生变化,这就导致了光程差的产生。
通过测量光程差,我们可以计算出介质的折射率。
二、实验步骤1、准备实验器材:迈克尔逊干涉仪、单色光源(如激光)、测量尺、待测玻璃片。
2、将单色光源通过分束器分为两束相干光束,一束直接照射到参考镜,另一束经过待测玻璃片后照射到测量镜。
迈克尔逊干涉仪误差分析1. 引言迈克尔逊干涉仪是一种常用于测量光程差的仪器,在各种光学实验和精密测量中广泛应用。
然而,由于各种原因,干涉仪的测量结果可能会受到误差的影响。
了解和分析这些误差对于准确测量和理解干涉现象至关重要。
2. 波长误差迈克尔逊干涉仪基于光的干涉现象,而光的波长是干涉仪测量的重要参数之一。
如果波长误差较大,将导致测量结果的不准确性。
波长误差可能来自于光源的波长不精确、干涉物镜的折射率误差等因素。
因此,在使用干涉仪进行测量之前,必须对光源和干涉物镜的波长进行精确校准。
3. 角度误差迈克尔逊干涉仪中的平台、反射镜等部件的角度误差会导致干涉现象的变化。
这些角度误差可能来自于仪器制造过程中的加工精度问题,或者在使用过程中由于机械振动等外部因素导致。
角度误差将引起光束的偏转,进而影响干涉图样的清晰度和位置。
因此,在使用干涉仪进行测量时,必须对仪器的角度进行精密校准和调整。
4. 环境误差迈克尔逊干涉仪对环境条件非常敏感。
例如,温度的变化会导致光路长度的改变,从而影响干涉现象的测量结果。
此外,空气中的振动、湿度等因素也会对干涉仪的测量结果产生影响。
为了减小环境误差的影响,需要在实验室中提供稳定的温度和湿度环境,并使用隔音装置来减小振动干扰。
5. 光学元件误差迈克尔逊干涉仪中使用的光学元件如分光镜、反射镜等都有一定的制造误差。
这些误差会导致光束的不均匀分布和偏移,从而影响干涉图样的形状和位置。
为了降低光学元件误差对测量结果的影响,需要选择质量优良的光学元件,并进行严格的质量控制。
6. 其他误差除了以上几种常见的误差来源外,还有一些其他因素可能对迈克尔逊干涉仪的测量结果产生影响。
例如,光源的强度波动、光电探测器的灵敏度误差等都可能导致测量结果的偏差。
在实际测量过程中,需要注意并排除这些潜在误差源的影响。
7. 误差分析与优化对迈克尔逊干涉仪的误差进行分析和优化是实现准确测量和高精度实验的关键。
通过定量分析不同误差源的影响,可以制定相应的措施来降低误差。
迈克尔逊干涉仪是利用干涉条纹精确测定长度或长度改变的仪器.它是迈克尔逊在1881年设计成功的。
迈克尔逊和莫雷应用该仪器进行了测定以太风的著名实验.后人根据此种干涉仪研制出各种具有实用价值的干涉仪。
预备知识⏹光程:光波实际传播的路径与折射率的乘积,⏹光程差:,在杨氏干涉的例子里,它的光程差就可以表示为⏹光程差与相位差的变换关系为:⏹相干条件:两束光满足频率相同,振动方向相同,相位差恒定时即可成为相干光源,这时的光强应表达为:令;对应的位相差为⏹获得相干光光源的两种常见方法1.分波阵面法:从同一波阵面上获取对等的两部分作为子光源成为相干光源;如杨氏实验等。
2.分振幅法:当一束光投射到两种介质的分界面时,它的所有的反射光线或所有的透射光线会聚在一起时即可发生相干;如薄膜干涉等。
⏹迈克尔逊干涉仪的结构和工作原理G2是一面镀上半透半反膜,M1、M2为平面反射镜,M1是固定的,M2和精密丝相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm, M1和M2后各有几个小螺丝可调节其方位。
当M2和M1’严格平行时,M2移动,表现为等倾干涉的圆环形条纹不断从中心“吐出”或向中心“消失”。
两平面镜之间的“空气间隙”距离增大时,中心就会“吐出”一个个条纹;反之则“吞进”一个个条纹。
M2和M1’不严格平行时,则表现为等厚干涉条纹,M2移动时,条纹不断移过视场中某一标记位置,M2平移距离d 与条纹移动数N 的关系满足。
迈克尔逊干涉仪示意经M2反射的光三次穿过分光板,而经M1反射的光只通过分光板一次.补偿板就是为了消除这种不对称而设置的.在使用单色光源时,补偿板并非必要,可以利用空气光程来补偿;但在复色光源时,因玻璃和空气的色散不同,补偿板则是不可缺少的。
若要观察白光的干涉条纹,两相干光的光程差要非常小,即两臂基本上完全对称,此时可以看到彩色条纹;若M1或M2稍作倾斜,则可以得到等厚的交线处(d=0)的干涉条纹为中心对称彩色直条纹,中央条纹由于半波损失为暗条纹。
一、等倾干涉等倾干涉是薄膜干涉的一种。
薄膜此时是均匀的,光线(光源为散射光)以倾角i入射,上下两条反射光线经过透镜作用汇聚一起,形成干涉。
由于入射角相同的光经薄膜两表面反射形成的反射光在相遇点有相同的光程差,也就是说,凡入射角相同的就形成同一条纹,故这些倾斜度不同的光束经薄膜反射所形成的干涉花样是一些明暗相间的同心圆环.这种干涉称为等倾干涉。
倾角i相同时,干涉情况一样如果想要在迈克尔逊干涉仪上调出等倾干涉条纹,要求M1和M2两个反射镜相互平行,调解时可以在光源上做一个标记,再调节这两个镜子后面的倾度粗调旋钮和细调旋钮,使得标记物在两个镜子里的反射像在视野里重合。
这样就可以看到环状的等倾干涉条纹条纹级次(1)明纹:显然,对于平行膜面厚度一定,上升,下降,上升。
说明:其干涉级次为内高外低,且中心级次最高。
薄膜厚度对条纹间距的影响假如上次间距是d中心为j级,这次间距为比d小的数级数肯定也小,则间距就大。
说明:薄膜厚度越薄,条纹间距越大。
条纹的动态变化(1)当厚度d0变化时,条纹的级次相应发生变化;(2)圆心处将会出现明-暗-明的交替变化;(3)条纹级次改变一个,薄膜厚度改变;(4)d0减小,中心条纹级次j0降低;圆心处的出现亮暗交替的变化,且各干涉条纹向中心收缩(向内移动)。
(5)d0增大,中心条纹级次j0升高;圆心处的出现亮暗交替的变化,且各干涉条纹向外涌出(向外移动)。
二、迈克尔逊干涉仪其他测量应用用迈克尔逊干涉仪测量折射率和厚度一般采用钠光光源,通过观测白光干涉条纹的方法,先调出白光0光程差的彩色干涉条纹,在光路1或2中垂直光线方向插入被测物,再调出0光程差的彩色干涉条纹,反射镜移动距离d与透明体厚度t、透明体(透明固体、液体、气体均可)折射率n、空气折射率n0(n0大致取1)有关系式)1-(ntd=由此可得td n/1+=但是该方法必须知道薄透明体的厚度或折射率之一,通过测出M1镜前移的距离d,才能得到测量体的折射率或厚度。
迈克尔逊和莫雷设计迈克尔逊干涉仪的目的:迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。
物理学三大判据实验:卡文迪许扭秤实验:四个铅球,称出了地球。
卡文迪许都不敢太宣传他用四个铅球,称出了地球。
他走了一条曲线,他用地球质量除以地球体积,然后重点宣布他得到了地球的平均密度。
万有引力定律中有两个质量,卡文迪许实验得到的地球和其它天体的质量激活了万有引力定律,使它有了价值。
迈克耳逊-莫雷实验:高频超声波都不随空气的流动而改变传播方向,光为什么要随以太的流动而改变方向。
这个实验现在看来,原理有错误。
但当时人们不可能看出这点,因为当时人们还不了解超声波的性质。
密立根油滴实验:我们先用电场,把那个小油滴固定不动。
再用现代的照相技术,可以很容易测定小油滴的直径,然后用体积乘以密度,得到小油滴的质量,这样用简单的算术就可以得到电子电量了(mg=eq)。
如果这样做的话,这个实验就露馅了。
电子质量的数量级是10的负31次方千克,这个测电量的实验实际测出了电子的质量。
这个实验的设备主要是两个金属板,这么简单的设备能干什么?发展了100年的量子物理就建立在这样的一个实验上,量子物理学家需要认真反省了。
量子物理是一个伟大的理论,这个学科的科学家应该勇于否定密立根的油滴实验,争取获得更大的发展。
迈克尔逊干涉仪还能测什么物理量:透镜的折射率,气体的折射率,线胀系数,透镜的产品质量,密度空间的变化,透镜的表面面形与均匀性,小角度,平面度,直线度,平行度,垂直等形位误差。
列举5~10钟干涉仪:瑞利干涉仪1896年瑞利为了测量惰性气体氩和氦的折射率,利用杨氏双缝干涉原理设计制作了一种专用干涉仪,称为瑞利干涉仪。
瑞利干涉仪是一种利用双光束干涉原理的高精度测量仪器,结构简单,使用方便。
泰曼干涉仪它是以迈克尔逊和莫雷所用的平面镜系统为基础的,在光学上,这种平面镜系统差不多等于两块面对面的玻璃板。
物理实验迈克尔逊干涉仪实验迈克尔逊干涉仪是一种基于干涉现象的物理实验装置,由美国物理学家阿尔伯特·迈克尔逊于1881年发明。
通过迈克尔逊干涉仪实验,我们可以观察到光的干涉现象,并进一步了解光的波动性和光的性质。
在本文中,我们将介绍迈克尔逊干涉仪的实验原理、实验步骤和实验结果的分析。
实验原理:迈克尔逊干涉仪的实验原理基于光的干涉现象和分光反射镜的特性。
迈克尔逊干涉仪由两面相互垂直的镜子组成,其中一面是半透明的分光反射镜。
当光线照射到分光反射镜上时,一部分光线透射通过,一部分光线反射掉。
透射光线和反射光线沿不同的路径传播,最终再次相遇形成干涉现象。
实验步骤:1. 准备实验材料和仪器,包括迈克尔逊干涉仪、光源、干涉纹检测器等。
2. 将迈克尔逊干涉仪放置在水平台上,并确保镜子垂直地安装在支架上。
3. 将光源置于适当的位置,使得光线能够照射到分光反射镜上。
4. 调整分光反射镜的角度,使得反射光线和透射光线的路径长度相等。
5. 打开干涉纹检测器,观察干涉纹的出现和变化。
6. 调整迈克尔逊干涉仪的一面镜子的位置,观察干涉纹的变化,记录实验结果。
实验结果分析:通过迈克尔逊干涉仪的实验,我们可以观察到干涉纹的出现和变化。
干涉纹是由光的干涉产生的亮暗交替的条纹,用于表示光的波动性和光的相位变化。
在实验中,当两束平行光线从迈克尔逊干涉仪的分光反射镜射出后,经过两面镜子的反射和透射,再次相遇时,光线的相位差会引起干涉现象。
如果两束光线的光程差是波长的整数倍,将会有加强干涉现象的出现,形成明条纹;而如果光程差是波长的半整数倍,将会有干涉现象的减弱甚至消失,形成暗条纹。
通过观察干涉纹的出现和变化,我们可以判断出光线的相位差和波长的关系,从而进一步了解光的波动性和干涉现象。
总结:迈克尔逊干涉仪实验是一种基于光的干涉现象的物理实验。
通过观察干涉纹的出现和变化,我们可以了解光的波动性和光的性质。
在实验中,我们需要准备实验材料和仪器,并按照实验步骤进行操作。
迈克尔逊干涉仪干涉实验原理1. 干涉仪的初步认识嘿,朋友们,今天咱们聊聊一个非常酷的东西——迈克尔逊干涉仪。
这可不是个什么稀奇古怪的仪器,而是物理学中一个闪闪发光的明星,简直就像是科学界的魔术师,能把光的秘密一一揭开。
你可能会问,干涉仪到底是个啥?简单来说,它是用来研究光的波动性质的。
光,咱们每天都在用,但其实它的很多特性还是个谜,而干涉仪就像是一个侦探,能帮我们揭开这些谜团。
说到干涉,咱们就得聊聊波。
想象一下,水面上的涟漪,波浪一层层的推来,互相叠加,有的地方水面高,有的地方低。
这种现象在光中也同样存在。
光是一种波,而当两束光波碰撞时,它们可以互相“合作”或者“争斗”,产生干涉现象。
哈哈,是不是有点意思?这就像一场舞会,有些光波在一起跳得欢快,有些则在角落里默默伤心。
2. 干涉仪的工作原理2.1 分光镜的作用咱们先从干涉仪的结构说起。
迈克尔逊干涉仪主要由一个光源、一个分光镜、两面反射镜和一个接收屏组成。
想象一下,这个分光镜就像个交际花,把光波分成两部分。
一束光朝着一个方向走,另一束光则去另一个方向。
你说这两束光波分开后会发生什么?就像朋友分开后去不同的派对,最后又回到一起,会发生怎样的火花呢?2.2 反射与重合这两束光分别在各自的路线上行进,经过反射镜的反射,它们又回到了分光镜那里。
在这里,嘿嘿,光波再次相遇。
你想想,刚刚在不同派对上玩得热火朝天的它们,现在又在同一个地方碰面了。
此时,它们会根据走的路程和相位的不同,互相“干扰”。
有些地方它们会合在一起,亮亮的;有些地方则会相互抵消,变得暗淡。
这种奇妙的现象,就是干涉的结果。
3. 干涉条纹的形成3.1 观察结果当我们仔细观察接收屏时,就能看到一系列明暗交替的条纹,哇,简直像是一幅美丽的光影画卷。
这些条纹可不是随便来的,它们是光波相互作用的结果。
亮的地方表示光波加强了,而暗的地方则是光波相互抵消了。
就好比人生中的高峰和低谷,光的世界也是一波三折,真是让人感慨万千。
大学物理实验——迈克尔逊干涉仪一.等倾干涉的特征等倾干涉,薄膜干涉的一种。
膜可以是透明固体、液体或由两块玻璃所夹的气体薄层。
入射光经薄膜上表面反射后得第一束光,折射光经薄膜下表面反射,又经上表面折射后得第二束光,这两束光在薄膜的同侧,由同一入射振动分出,是相干光,属分振幅干涉。
若光源为扩展光源(面光源),则只能在两相干光束的特定重叠区才能观察到干涉,故属定域干涉。
对两表面互相平行的平面薄膜,干涉条纹定域在无穷远,通常借助于会聚透镜在其像方焦面内观察;对楔形薄膜,干涉条纹定域在薄膜附近。
光线以倾角(锐角)入射,上下两条反射光线经过透镜作用会汇聚一起,形成干涉。
由于入射角相同的光经薄膜两表面反射形成的反射光在相遇点有相同的光程差,也就是说,凡入射角相同的就形成同一条纹,故这些倾斜度不同的光束经薄膜反射所形成的干涉花样是一些明暗相间的同心圆环。
当光程差为半波长的偶数倍时,为亮纹;当光程差为半波长的奇数倍时,为暗纹。
二.发明迈克尔逊干涉仪的原因19世纪的波动论者认为光波或电磁波必须在弹性介质中才得以传播,这种假想的弹性介质称为以太。
人们做了一系列实验来验证以太的存在并探求其属性。
以干涉原理为基础的实验最为精确,其中最有名的是菲佐实验和迈克耳孙-莫雷实验。
1851年,菲佐用特别设计的干涉仪做了关于运动介质中的光速的实验,以验明运动介质是否曳引以太。
1887年,迈克耳孙和莫雷合作利用迈克耳孙干涉仪试图检测地球相对绝对静止的以太的运动。
对以太的研究为爱因斯坦的狭义相对论提供了佐证。
迈克耳孙干涉仪是一种精密的光学仪器。
它是利用分振幅法产生双光束以实现干涉。
通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。
主要用于长度和折射率的测量。
在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。
利用该仪器的原理,研制出多种专用干涉仪。
三.迈克尔逊干涉仪可以测量的物理量1. 微小位移量的测量:将迈克尔逊干涉仪的动镜粘在压电陶瓷片上,当压电陶瓷片受到电激励产生机械伸缩时就带动动镜移动。
桌号同组人教室基-1303
实验时间 2 015年月日时段指导教师
图2 迈克尔逊干涉仪
镜背后的调节螺钉;调节粗调手轮使M1镜移至50mm
2
调节两个拉簧螺丝至中间位置,即保证上下(或左右)都能拧;
让光纤水平,出射激光光束应水平、与分束板成45o角入射
,穿过分束板向M1镜方向看过去。
细心调整M1、M2镜后的调节螺钉,改变反使两列像点中最亮的两个点在M1中心附近完全重合。
(会看到光点闪耀,
安上观察屏,仔细观察可看到干涉条纹,即点光源的非定域干涉条纹。
缓慢调节
端的两个拉簧螺丝,使干涉条纹呈圆形且圆心大致在视场中心(请特别注意拉簧螺丝的使用若找不到干涉条纹,或无法将圆环调到观察屏中心,则需调整上一步M
轻而缓慢地旋转粗调手轮,移动M1镜,观察干涉条纹的变化。
由干涉条纹的
M2ˊ间距离d的变化情况。
调节粗调手轮减小间距d,使衍射环放到到合适测量的大小,准备测量。