大肠杆菌质粒DNA的提取
- 格式:doc
- 大小:37.50 KB
- 文档页数:4
质粒扩增的步骤一、引言质粒扩增是分子生物学中常用的一种技术方法,用于在细菌中扩增质粒DNA。
通过质粒扩增,可以获得大量的目标DNA,用于进一步的实验或应用。
本文将介绍质粒扩增的步骤。
二、质粒提取质粒提取是质粒扩增的第一步。
首先,需要选择适当的细菌菌株,如大肠杆菌。
然后,将含有目标质粒的细菌培养物进行离心,将菌体沉淀下来。
接下来,使用质粒提取试剂盒等方法,提取出质粒DNA。
三、限制酶切限制酶切是质粒扩增的关键步骤之一。
通过限制酶的作用,可以将质粒DNA切割成特定的片段。
首先,选择适当的限制酶,根据目标片段的大小和限制酶的切割位点来确定。
然后,在适当的条件下,将质粒DNA与限制酶一起反应。
反应后,通过琼脂糖凝胶电泳,可以确定限制酶切割后的DNA片段大小。
四、连接反应连接反应是质粒扩增的下一步。
通过连接反应,可以将目标DNA片段连接到载体DNA上,形成重组质粒。
首先,选择适当的连接酶,如T4 DNA连接酶。
然后,在适当的条件下,将目标DNA片段与载体DNA和连接酶一起反应。
反应后,通过琼脂糖凝胶电泳,可以确定连接反应的效果。
五、转化转化是质粒扩增的关键步骤之一。
通过转化,将重组质粒导入细菌中。
首先,选择适当的细菌菌株,如大肠杆菌。
然后,将重组质粒与细菌进行共培养,使其发生转化。
转化后,通过在含有适当抗生素的培养基上进行筛选,可以获得含有目标质粒的细菌克隆。
六、扩增扩增是质粒扩增的最后一步。
通过扩增,可以获得大量的目标质粒。
首先,选择合适的引物,设计扩增反应体系。
然后,在适当的条件下,进行PCR反应,扩增目标质粒的DNA序列。
扩增后,使用琼脂糖凝胶电泳,可以确定扩增反应的效果。
七、总结质粒扩增是一种常用的分子生物学技术,用于在细菌中扩增质粒DNA。
本文介绍了质粒扩增的步骤,包括质粒提取、限制酶切、连接反应、转化和扩增。
通过这些步骤,可以获得大量的目标质粒,用于进一步的实验和应用。
质粒扩增技术的应用范围广泛,对于分子生物学研究和基因工程等领域具有重要意义。
一、实验名称:质粒DNA的提取与纯化,DNA琼脂糖凝胶电泳二、实验原理:1.质粒DNA的提取:质粒是一类存在于几乎所有细菌等微生物中染色体之外(细胞质中)呈游离状态的双链、闭环的DNA分子,能够自主复制和稳定遗传,以超螺旋形式存在,是最常用的基因克隆载体。
除质粒外,大肠杆菌中还含有基因组DNA、各种RNA、蛋白质和脂质等物质,因此需要裂解细胞并除去蛋白质和染色体DNA等物质才能分离纯化出质粒DNA。
分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。
在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。
本实验使用碱裂解法,即利用SolutionⅠ、Ⅱ、Ⅲ三种溶液分离提取质粒DNA.其原理如下。
(1)碱裂解法提取大肠杆菌质粒DNA的原理:碱裂解法提取质粒DNA是根据共价闭合环状质粒DNA和线性染色体DNA之间变性与复性的差异来分离质粒DNA,达到分离提纯质粒DNA的目的。
在pH值高达12.6的碱性条件下,线性的DNA因氢键断裂,双螺旋结构解开而变性,尽管在这样的条件下,共价闭环质粒DNA的大部分氢键会被断裂,但超螺旋共价闭合环状的两条互补链相互缠绕,不会完全分离。
当加入pH4.8乙酸钾高盐缓冲液恢复pH至中性时,共价闭合环状的质粒DNA复性,恢复其天然构象,以可溶状态存在于液相中;而线性的染色体DNA由于两条互补链彼此已完全分开、分子量大、结构复杂而相互缠绕形成不溶性网状结构。
与不稳定的大分子RNA、变形的蛋白质以及细菌碎片等一起沉淀而被除去。
进一步用酚、氯仿使蛋白质变性去除蛋白质杂质,然后用无水乙醇沉淀,即可获得纯化的质粒DNA。
SolutionⅠ、Ⅱ、Ⅲ三种溶液以及无水乙醇沉淀DNA的具体作用和原理如下。
(2)四种溶液作用及原理:①Solution I的作用:悬浮大肠杆菌菌体,增加溶液的粘度,维持渗透压及防止DNA受机械剪切力作用而降解。
质粒提取实验报告质粒提取实验报告引言:质粒提取是分子生物学中常用的实验技术之一,它的目的是从细菌中提取质粒DNA。
质粒是一种环状的DNA分子,存在于细菌细胞质中,具有自主复制的能力。
质粒提取实验对于研究基因功能、基因工程以及遗传学等领域具有重要意义。
实验材料与方法:本次实验所用材料包括细菌培养物、质粒DNA提取试剂盒、离心管、离心机等。
实验步骤如下:1. 选择合适的细菌培养物,如大肠杆菌。
2. 将细菌培养物转移到含有适当抗生素的琼脂平板上,孵育过夜。
3. 从琼脂平板上挑取单个菌落,接种到含有适当抗生素的培养基中,培养过夜。
4. 将过夜培养的细菌转移到含有适当抗生素的液体培养基中,继续培养。
5. 收集培养物,离心沉淀细菌细胞。
6. 使用质粒DNA提取试剂盒进行质粒提取。
实验结果与讨论:经过以上步骤,我们成功地从细菌中提取到质粒DNA。
提取的质粒DNA经过琼脂糖凝胶电泳分析,显示出明亮的DNA条带。
这些条带的大小与我们预期的质粒大小相符,证明提取的质粒DNA质量良好。
质粒提取实验的成功与否受到多个因素的影响。
首先,选择合适的细菌培养物非常重要。
常用的大肠杆菌是质粒提取实验的理想选择,因为大肠杆菌具有较高的质粒含量。
其次,培养条件的控制也是关键。
适当的培养时间和培养温度可以提高质粒的复制效率。
此外,质粒提取试剂盒的选择和使用方法也会对实验结果产生影响。
正确操作试剂盒中的各个步骤,如细胞破裂、DNA纯化和洗涤等,是保证实验成功的关键。
质粒提取实验在科学研究和应用中有着广泛的应用。
首先,通过质粒提取实验可以获得大量的质粒DNA,为基因克隆、基因测序等实验提供了材料基础。
其次,质粒提取实验也是进行基因工程技术的前提。
通过将目标基因插入质粒中,可以实现基因的定向表达和转基因等操作。
此外,质粒提取实验还可以用于研究细菌的耐药性、毒力因子等重要基因的分析。
然而,质粒提取实验也存在一些局限性。
首先,质粒提取实验只能提取到细菌中的质粒DNA,无法获取真核生物的质粒。
实验六质粒DNA的提取一、实验目的通过本实验学习和掌握碱裂解法提取质粒二、实验原理质粒(Plasmid)是独立于染色体外的,能自主复制且稳定遗传的遗传因子。
它是一种环状的双链DNA分子,存在于细菌、放线菌、真菌以及一些动植物细胞中,在细菌细胞中最多。
本实验利用SDS碱裂解法提取质粒DNA。
将细菌悬浮液暴露于高pH值的强阴离子洗涤剂中,会使细胞壁破裂,染色体DNA和蛋白质变性,将质粒DNA释放到上清中。
在裂解过程中,细菌蛋白质、破裂的细胞壁和变性的染色体DNA会相互缠绕成大型复合物,后者被SDS (十二烷基硫酸钠)包盖。
当用K+取代Na+时,这些复合物会从溶液中有效地沉淀下来。
离心除去变性剂后,就可以从上清中回收复性的质粒DNA。
三、实验材料与试剂1、实验材料大肠杆菌(含有携带插入片段的质粒PMD-18T)2、实验试剂(1) 溶液Ⅰ:Tris·HCl(pH8.0)25mmol/L,EDTA(pH8.0)10mmol/L,葡萄糖50mmol/L;(2) 溶液Ⅱ(新鲜配制) :NaOH 0.2mol/L,SDS 1%(W/V);(3) 溶液Ⅲ(100ml):5mol/L乙酸钾60ml,冰乙酸11.5ml(pH4.8),水28.5ml;(4) 氯仿-异戊醇(24:1);(5) 异丙醇、70%乙醇;四、实验步骤(一)提取质粒1. 挑转化后的单菌落(含PMD-18T质粒),接种到20ml含有适当抗生素(Amp)的丰富培养基中(LB培养液),于37℃剧烈振摇下培养过夜。
(由老师完成)2. 将1.5ml的培养物倒入1.5ml的EP管中,于4 ℃以12000rpm离心1min。
3. 离心结束, 弃去上层培养液,再向离心管中加入1.5ml的培养物,于4 ℃以12000rpm 离心1min。
4. 弃去上层培养液,使细菌沉淀尽可能干燥。
5. 将细菌沉淀重悬于100μl冰预冷的溶液Ⅰ中,用Tip吸头吹打沉淀至完全混匀(无块状悬浮)。
碱裂解法提取质粒DNA的实验原理和操作步骤碱裂解法是一种常用的方法,用于提取质粒DNA(plasmid DNA)纯化。
以下是具体的实验原理和操作步骤。
实验原理:碱裂解法利用碱性溶液将细菌细胞的细胞壁和细胞膜溶解,使细菌细胞内的质粒DNA被释放出来。
接着,使用中性化剂中和碱性溶液,使DNA带正电荷,而细胞中的蛋白质则带负电荷,从而能够通过离心将DNA与蛋白质分离。
最后,通过浓缩、洗涤和纯化,得到高质量的质粒DNA。
操作步骤:1.培养细菌:选取含有质粒DNA的细菌菌株,如大肠杆菌。
在含有适当抗生素的培养基中培养细菌菌株。
2.收获细菌:当菌液呈现较稠的浑浊状态时,收取细菌培养物。
使用离心机将菌液离心,分离菌体沉淀和上清液。
将上清液倒掉,保留菌体沉淀。
3.碱裂解:将菌体沉淀溶解于碱性溶液中,如盐酸和十二烷基硫酸钠(SDS)溶液。
轻轻混合并将溶液放入水浴中加热,使细菌细胞壁和细胞膜被溶解。
4.中和:使用中性化剂,如醋酸,使溶液中的酸性物质中和。
这样可以确保DNA带正电荷,而蛋白质和其他污染物则带负电荷。
5.离心:将溶液离心,在离心过程中,DNA会与细胞内其他分子分离,形成一个DNA沉淀。
上清液中含有蛋白质和其他污染物。
6.洗涤:使用洗涤缓冲液,如乙酸盐缓冲液,洗涤DNA沉淀,去除残留的污染物。
7.纯化:用去离子水溶解DNA沉淀,使其溶解在水中。
将溶解的DNA沉淀通过滤纸等过滤装置过滤掉残余杂质。
8.浓缩:通过酒精沉淀法或其他方法,将DNA溶液浓缩到所需的浓度。
9.检测:使用紫外分光光度计等方法,测定提取的质粒DNA的纯度和浓度。
注意事项:1.在实验过程中保持操作环境和仪器无菌。
2.碱裂解法中使用的溶液需准备新鲜,并避免受到污染。
3.操作过程中需要低温处理和离心操作,以保护DNA的完整性。
4.质粒DNA的提取可以根据实验目的进行进一步的扩增、测序或转染等应用。
总结:通过碱裂解法,可以从细菌中提取纯化的质粒DNA。
质粒DNA的碱变法提取、纯化和检测史倩20100514008110级生命基地同组者:阎珍珍、张姗一、实验目的1.利用碱变法从大肠杆菌DH5α(E.coli DH5α)中提取pUC19质粒2.学习并掌握质粒DNA提取的原理、纯化和检测方法及琼脂糖凝胶电泳技术二、实验原理1.质粒概述:质粒是染色体外能够进行自主复制的遗传单位,现在习惯上用来专指细菌、酵母菌和放线菌等生物中染色体以外的DNA分子。
在基因工程中质粒常被用做基因的载体。
目前,已发现有质粒的细菌有几百种,已知的绝大多数的细菌质粒都是闭合环状DNA分子(简称cccDNA)。
细菌质粒的相对分子质量一般较小,约为细菌染色体的0.5%-3%,大小在1Kb-200Kb之间。
质粒由于分子小、便于分离和提取,在DNA重组中,质粒或经过改造后的质粒可通过连接外源基因构成重组体,携带目的基因进入细菌、动物细胞或植物体内进行扩增与表达,因此是基因工程中一种非常重要的载体,质粒特征的分析已被广泛用于细菌种属鉴定、耐药性、毒力及同源性分析。
近年来由于基因芯片技术的出现,质粒基因探针的开发和应用也得到了飞速的发展,所以这就要求我们从宿主细胞中提取高质量的质粒DNA,质粒提取成为分子生物学实验室一项最基本的工作。
2. 质粒DNA的提取、纯化和检测:提取和纯化质粒DNA的方法很多,目前常用的有:碱裂解法、煮沸法、羟基磷灰石柱层析法、EB-氯化铯密度梯度离心法和Wizard法等。
其中,碱变性提取法最为经典,适用于不同量质粒DNA的提取。
该方法操作简单,易于操作,一般实验室均可进行。
提取的质粒DNA纯度高,可直接用于酶切、序列测定及分析。
碱变性提取质粒DNA一般包括三个基本步骤:培养细菌细胞以扩增质粒;收集和裂解细胞;分离和纯化质粒DNA。
在细菌细胞中,染色体DNA和质粒DNA均被释放出来,但是两者变性与复性所依赖的溶pH值不同。
在pH值高达12.0的碱性溶液中,染色体DNA的氢键断裂,双螺旋结构解开而变性;共价闭合环状质粒DNA的大部分氢键断裂,但两条互补链不完全分离。
实验四质粒DNA的提取与鉴定一、实验目的1、熟悉细菌的培养和质粒的扩增。
2、学习和掌握从大肠杆菌中提取质粒DNA的原理和方法以及琼脂糖凝胶电泳鉴定质粒DNA的技术。
二、实验原理质粒广泛存在与原核细胞中,大多是双联的共价闭合环状DNA分子,长度可以从1kb 到200kb不等,是染色体外寄生性的自主复制子,在细胞分裂时能恒定地传递给子代细胞。
在分子生物学研究中,为了迅速扩增和提取大量的质粒DNA,通常使用松弛型(其复制受宿主的控制不严格,在宿主细胞中拷贝数较多)质粒。
从大肠杆菌中分离质粒的方法很多,常见的有煮沸法和碱变性抽提法。
碱变性抽提法是基于染色体DNA与质粒DNA的变性与复兴差异而达到分离的目的。
在pH高达12.5的条件下,染色体DNA的氢键断裂、双螺旋解开而变性;质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状结构的两条互补链未完全分离,当用pH4.8的醋酸钾高盐缓冲液调节pH至中性时,变形的质粒DNA又恢复到原来的构型,通过离心保留在溶液中,而染色体DNA不能复性,形成缠绕的网状结构,与不稳定的大分子RNA、蛋白质等一起沉淀出来。
在抽屉过程中,由于各种因素的影响,同一质粒DNA可能呈现以下不同的构型:①超螺旋型,即共价闭合环状DNA(cccDNA);②一条链发生一处或多处断裂,致使另一条链发生自由旋转,分子内的扭曲折叠消失,形成松弛的分子即开环DNA(ocDNA);③两条链都发生了随机的断裂成为线状DNA。
在这三种构型中,cccDNA由于扭曲折叠,体积很小,在具有分子筛效应的琼脂糖凝胶电泳中受到阻力最小,迁移速度最快;ocDNA因扭曲状态被破坏而呈松弛的环状,迁移速度较慢;线状DNA受到的阻力最大,迁移速度最慢。
DNA分子在琼脂糖凝胶中泳动时,除受分子构型的影响,还受所带净电荷多少的影响。
因此在鉴定质粒DNA纯度时,应尽量减少电荷效应。
增大凝胶浓度可以在一定程度上降低电荷效应,分子的迁移速度主要取决于受凝胶阻滞程度的差异,由此将不同构型的质粒DNA 分开。
一、大肠杆菌质粒DNA的提取
质粒DNA的提取是从事基因工程工作中的一项基本实验技术,但提取方法有很多种,以下介绍一种最常用的方法:
碱裂解法:此方法适用于小量质粒DNA的提取,提取的质粒DNA可直接用于酶切、PCR扩增、银染序列分析。
方法如下:
1、接1%含质粒的大肠杆菌细胞于2ml LB培养基。
2、37℃振荡培养过夜。
3、取1.5ml菌体于Ep管,以4000rpm离心3min,弃上清液。
4、加0.lml溶液I(1%葡萄糖,50mM/L EDTA pH8.0,25mM/L Tris-HCl pH8.0)充分混合。
5、加入0.2ml溶液II(0.2 mM/L NaOH,1%SDS),轻轻翻转混匀,置于冰浴5 min 。
6、加入0.15m1预冷溶液III(5 mol/L KAc,pH4.8),轻轻翻转混匀,置于冰浴5 min 。
7、以10,000rpm离心20min,取上清液于另一新Ep管
8、加入等体积的异戊醇,混匀后于?0℃静置10min。
9、再以10,000rpm离心20min,弃上清。
10、用70%乙醇0.5ml洗涤一次,抽干所有液体。
11、待沉淀干燥后,溶于0.05mlTE缓冲液中
煮沸法
1、将1.5ml培养液倒入eppendorf管中,4℃下12000g离心30秒。
2、弃上清,将管倒置于卫生纸上几分钟,使液体流尽。
3、将菌体沉淀悬浮于120ml STET溶液中, 涡旋混匀。
4、加入10ml新配制的溶菌酶溶液(10mg/ml), 涡旋振荡3秒钟。
5、将eppendorf管放入沸水浴中,50秒后立即取出。
6、用微量离心机4℃下12000g离心10分钟。
7、用无菌牙签从eppendorf管中去除细菌碎片。
8、取20ml进行电泳检查。
[注意] 1. 对大肠杆菌可从固体培养基上挑取单个菌落直接进行煮沸法提取质粒DNA。
2. 煮沸法中添加溶菌酶有一定限度,浓度高时,细菌裂解效果反而不好。
有时不同溶菌酶也能溶菌。
3. 提取的质粒DNA中会含有RNA,但RNA并不干扰进一步实验,如限制性内切酶消化,亚克隆及连接反应等。
质粒DNA的大量提取和纯化
在制作酶谱、测定序列、制备探针等实验中需要高纯度、高浓度的质粒DNA,为此需要大量提取质粒DNA。
大量提取的质粒DNA一般需进一步纯化,常用柱层析法和氯化绝梯度离心法。
(一)、碱法
1、取培养至对数生长后期的含pBS质粒的细菌培养液250ml,4℃下5000g离心15分钟,弃上清,将离心管倒置使上清液全部流尽。
2、将细菌沉淀重新悬浮于50ml用冰预冷的STE中(此步可省略)。
3、同步骤1方法离心以收集细菌细胞。
4、将细菌沉淀物重新悬浮于5ml溶液I中,充分悬浮菌体细胞。
5、加入12ml新配制的溶液II, 盖紧瓶盖,缓缓地颠倒离心管数次,以充分混匀内容物,冰浴10分钟。
6、加9ml用冰预冷的溶液III, 摇动离心管数次以混匀内容物,冰上放置15分钟,此时应形成白色絮状沉淀。
7、4℃下5000g离心15分钟。
8、取上清液,加入50ml RNA酶A(10mg/ml), 37℃水浴20分钟。
9、加入等体积的饱和酚/氯仿,振荡混匀,4℃下12000g离心10分钟。
10、取上层水相, 加入等体积氯仿,振荡混匀,4℃下12000g离心10分钟。
11、取上层水相,加入1/5体积的4mol/L NaCl和10% PEG(分子量6000), 冰上放置60分钟。
12、4℃下12000g离心15分钟, 沉淀用数ml 70%冰冷乙醇洗涤,4℃下12000g离心5分钟。
13、真空抽干沉淀,溶于500ml TE或水中。
[注意] 1. 提取过程中应尽量保持低温。
2. 加入溶液II和溶液III后操作应混和,切忌剧烈振荡。
3. 由于RNA酶A中常存在有DNA酶,利用RNA酶耐热的特性,使用时应先对该酶液进行热处理(80℃ 1小时),使DNA酶失活。
二、质粒DNA琼脂糖凝胶电泳鉴定
琼脂糖是从海藻中提取出来的一种线状高聚物,应选用电泳纯的,琼脂糖此级产品筛除了抑制物和核酸酶,而且用溴化乙锭染色后荧光背景最小。
(1)琼脂糖凝胶电泳装置
由于琼脂糖凝胶电泳既要求不高,而适应性又强,在过去15年里已成功地设计了形形色色及大大小小的电泳槽。
对这些装置的选择主要是依据个人的喜恶。
使用最普遍的装置是Walter Schaffner发明的水平板凝胶。
水平板凝胶通常在一块可安放于电泳槽平台的玻璃板或塑料盘上灌制。
在有些装置中,则可将凝胶直接铺在平台上。
凝胶恰好浸在缓冲液液面下进行电泳。
凝胶的电阻几乎与缓冲液的电阻相同,所以有相当一部分的电流将通过凝胶的全长。
(2)琼脂糖凝胶的制备
琼脂糖凝胶的制备是将琼脂糖在所需缓冲液中熔化成清澈、透明的溶液。
然后将熔化液倒入胶模中,令其固化。
凝固后,琼脂糖形成一种固体基质,其密度取决于琼脂糖的浓度。
通贯凝胶的电场接通后,在中性pH值下带负电荷的DNA向阳极迁移。
(3)琼脂糖凝胶的染色
电泳完毕,将琼脂糖凝胶转移入含EB的染液中,染色10分钟,取出紫外灯下观察。
三、大肠秆菌感受态细胞的制备
感受态的细胞可以摄入外部溶液中的DNA,而常态的细胞却不能,所以要转化质粒DNA进入大肠杆菌必须首先制备感受态的大肠杆菌细胞。
1、取1%大肠杆菌E.coli接种于含2ml LB培养基的试管中,37℃振荡培养过夜
2、取0.1ml过夜培养物转种于含10ml LB培养基的三角瓶中,37℃振荡培养3h至OD600=0.3
3、然后把培养物倒入1.5ml离心管中,冰浴10min。
4、在4℃下以4000rpm离心5min,去上清液
5、把菌体悬浮于15m1冰冷的0.1M CaCl2溶液中,置冰上30min
6、然后再在4℃下以4000rpm离心10min,去上清液
7、将菌体悬浮于0.1ml CaCl2溶液中,冰浴放置4-12hr备用。
四、质粒DNA高频转化大肠杆菌
制备好感受态细胞后,接下来就是质粒DNA转化入大肠杆菌细胞的过程。
但要注意的是感受态细胞最好是新制备的,因为保存一定时间的感受态细胞会使转化率降低;此外DNA 的浓度也要注意,不能太高。
1、取新制备的一管感受态细胞。
2、取0.03ml感受态细胞转和4ng质粒DNA混匀,置冰浴30min
3、将Ep管置于42℃水浴中热冲击2分钟,立即置于冰上1分钟。
4、在Ep管中加70u1 LB培养基混匀,37℃培养30min
5、涂在含适当浓度抗生素的LB平板上。
6、37℃培养过夜,长出的菌斑既为阳性克隆。
五、线形质粒DNA 5'-粘性末端去磷酸
经限制性内切酶酶切的质粒DNA 5'端均带有磷酸集团,如用此载体直接转化大肠杆菌,其自身环化几率非常高,影响连接、转化效率。
因此一般酶切的质粒DNA要经脱磷,使用碱性磷酸酶(CIAP)去除5'端磷酸集团。
方法如下:
1、质粒DNA和CIAP以及BUFFER 37℃水浴30min
2、补充CIAP 再37℃水浴30min
3、加入50mM EDTA至终浓度5mM 75℃加热10min 失活CIAP
4、冷却至室温,酚-氯仿抽提,乙醇沉淀浓缩。
5、抽干溶液,加适量TE溶解。
六、聚合酶链式反应(PCR)技术
PCR是一种选择性体外扩增DNA或RNA片段的方法。
其特异性是由两个人工合成的引物序列决定的。
所谓引物就是与待扩增DNA片段两翼互补的寡聚核苷酸,其本质是ssDNA 片段。
待扩增DNA模版加热变性后,两引物分别与两条DNA的两翼序列特异复性。
此时,两引物的3'端相对,5'向背。
在合适的条件下,由Taq DNA聚合酶催化引物引导的DNA合成,既引物的延伸。
上述过程是由温度控制。
这种热变性-复性-延伸的过程就是一个PCR 循环。
PCR就是在合适条件下的这种循环的不断重复。
理论上扩增产物量成指数上升,既n 个循环后,产量为2n拷贝。
典型的PCR操作过程如下:
1、反应体系:
(反应溶液可置于毛细管或薄壁离心管中扩增)
2、操作过程:(所用仪器为AMP1605热循环PCR扩增仪
预变性:94℃90秒
循环过程:94℃1秒48℃1秒72℃40秒40个循环
延伸:72℃5分钟
3、检测:琼脂糖电泳检测。