数据的集中趋势----平均数
- 格式:ppt
- 大小:2.24 MB
- 文档页数:10
数据的集中趋势和离散程度【知识点1】正确理解平均数、众数和中位数的概念一、平均数:平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.例1:有四个数每次取三个数,算出它们的平均数再加上另一个数,用这种方法计算了四次,分别得到以下四个数:86, 92, 100, 106, 那么原4个数的平均数是________ .例2:有几位同学参加语文考试,赵峰的得分如果再提高13分,他们的平均分就到达90分,如果赵峰的得分降低5分,他们的平均分就只得87分,那么这些同学共有________人.例3:有5个数,其平均数为138,按从小到大排列,从小端开始前3个数的平均数为127,从大端开始顺次取出3个数,其平均数为148,那么第三个数是_______ .例4:某5个数的平均值为60,假设把其中一个数改为80,平均值为70,这个数是________ .例10:某人沿一条长为12千米的路上山,又从原路返回,上山的速度是2千米/小时,下山的速度是6千米/小时。
那么,他在上山和下山的全过程当中的平均速度是多少千米每小时?例11:假设不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
求该校初二年级在这次数学考试中的平均成绩?二、众数:在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个〔或几个〕数据就可以了.当一组数据中有数据屡次重复出现时,它的众数也就是我们所要关心的一种集中趋势.注:众数是数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.众数有可能不唯一,注意不要遗漏.例12:在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、x 、90、70,假设这四个同学得分的众数与平均数恰好相等,那么他们得分的中位数是【 】A 、100 B 、90 C 、80 D 、70 例13:当5个整数从小到大排列,其中位数是4,如果这组数据的唯一众数是6,那么5个整数可能的最大的和是【 】A 、21 B 、22 C 、23 D 、24例14:10名工人,某天生产同一零件,生产到达件数是:15,17,14,10,15,19,17,16,14,12,那么这一组数据的众数是【 】A 、15 B 、17 15 C 、14 D 、17 15 14 例15:〔1〕计算这9双鞋尺码的平均数、中位数和众数.〔2〕哪一个指标是鞋厂最感兴趣的指标?哪一个指标是鞋厂最不感兴趣的?三、中位数:是将一组数据按大小顺序排列后,处在最中间的一个数〔或处在最中间的两个数的平均数〕.一组数据中的中位数是唯一的. 注:求中位数要先把数据按大小顺序排列,可以从小到大,也可以从大到小.如果数据个数n 为奇数时,第21+n 个数据为中位数;如果数据个数n 为偶数时,第2n 、12+n 个数据的平均数为中位数.例16:李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的樱桃,分别称得每据调查,市场上今年樱桃的批发价格为每千克15元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为【 】A .200千克,3000元B .1900千克,28500元C . 2000千克,30000元D .1850千克,27750元〔1〕该班学生每周做家务劳动的平均时间是多少小时?〔2〕这组数据的中位数、众数分别是多少?〔3〕请你根据〔1〕、〔2〕的结果,用一句话谈谈自己的感受.【知识点2】极差、方差和标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.一、极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,实际生活中我们经常用到极差.如一支足球队队员中的最大年龄与最小年龄的差,一个公司成员中最高收入与最低收入的差等都是极差的例子.极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大方差越小数据的波动越小. 求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x 1、x 2、x 3、…、x n 的平均数为x ,那么该组数据方差的计算公式为:])()()[(1222212x x x x x x nS n -++-+-= . 例18:数据0、1、2、3、x 的平均数是2,那么这组数据的极差和标准差分别是【 】A 4,2B 4,2C 2,10D 4,10三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=方差. 例19:数据90,91,92,93的标准差是【 】〔A 〕 2 〔B 〕54 〔C 〕54 〔D 〕52✪注意:极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比拟两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.例20:从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下:〔单位:cm 〕甲: 21 42 39 14 19 22 37 41 40 25乙: 27 16 40 41 16 44 40 40 27 44(1)根据以上数据分别求甲、乙两种玉米的极差、方差和标准差.(2)哪种玉米的苗长得高些;(3)哪种玉米的苗长得齐.例21:市体校准备挑选一名跳高运发动参加全市中学生运动会,对跳高运动队的甲、乙两名运发动进行了8次选拔比赛.他们的成绩〔单位:m 〕如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运发动的跳高平均成绩分别是多少?(2)哪位运发动的成绩更为稳定?(3)假设预测,跳过1.65m 就很可能获得冠军,该校为了获得冠军,可能选哪位运发动参赛?假设预测跳过1.70m 才能得冠军呢?。
21.1数据的集中趋势--------平均数(第一课时)
教材分析
本节主要研究数据的集中趋势,包括平均数、中位数和众数。
本节课主要学习的是“平均数”,通过实际情景,提出用平均数刻画一组数据的必要性,引入平均数的计算公式,接着由平均数的局限性提出加权平均数的必要性,引入加权平均数的计算公式。
教学目标知识与技能
1、掌握算术平均数的概念,会求一组数据的算术平均数。
2、认识和理解数据的权及其作用。
3、通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有
关计算。
过程与方法
1、根据有关平均数问题的解决,培养学生的判断能力和数据处理能力。
2、通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法。
情感态度与
价值观
通过平均数、加权平均数的学习,初步认识数学与人类生活的密切联系,
感受数学结论的确定性,激发学生学好数学的热情。
重点
1、掌握算术平均数的概念。
2、加权平均数的概念以及运用加权平均数解决实际问题。
难点
1、求一组数据的平均数。
2、对数据的权及其作用的理解。
学习过程
教学
环节
教学内容师生行为设计意图
新课导入2008年奥运会中国男篮部分队员身
高统计表
教师用多媒体出示图片,创设情境,
提出问题,引入新课。
用学生熟
悉的姚明
身高引入
新课,激发
学生探究
新知的兴
趣。
众数、中位数、平均数的特点及其应用-概述说明以及解释1.引言1.1 概述概述在统计学和数据分析领域,众数、中位数和平均数是常用的统计指标,用于描述和分析数据集的集中趋势。
它们可以帮助我们理解数据的分布情况,并从中提取有用的信息。
本文将重点介绍众数、中位数和平均数的特点及其应用。
众数是指在一组数据中出现频率最高的数值。
它可以用来反映数据的集中程度,并且适用于各种数据类型。
众数的计算相对简单,只需要统计每个数值出现的次数,然后找出出现次数最多的数值即可。
众数在实际应用中常用于描述一组数据的典型取值,如民意调查中的最受欢迎的候选人、销售数据中最畅销的产品等。
中位数是将一组数据按照大小排序后位于中间位置的数值。
它不受极值的影响,更能反映数据的中间位置。
计算中位数的方法相对直观,只需要将数据排序,并确定中间位置的数值即可。
中位数在实际应用中常用于描述数据的中间水平,如家庭收入的中位数可以反映社会的平均收入水平,股票价格的中位数可以反映市场的平均估值水平等。
平均数是指一组数据的总和除以数据的个数,是最常用的统计指标之一。
它可以反映数据的整体水平,并且易于计算和理解。
平均数的计算非常简单,只需要将所有数值相加,然后除以数值的个数即可。
平均数在实际应用中广泛用于描述数据的均值水平,如平均工资可以反映一个地区的平均收入水平,平均成绩可以反映一个班级的整体学习水平等。
众数、中位数和平均数在统计分析中扮演着重要的角色,并且在不同领域有着广泛的应用。
它们能够提供关于数据集的集中趋势、分布形态和离散程度等信息,帮助我们理解数据背后的规律和趋势。
同时,在决策和预测中,这些统计指标也能够提供有用的参考,帮助我们做出更准确的判断和预测。
本文将详细介绍众数、中位数和平均数的特点及其应用,并探讨它们在实际生活中的意义和作用。
通过对这些统计指标的深入了解和应用,我们可以更好地应对数据分析和决策问题,并为未来的研究和实践提供更多的启示和方向。
怎么判断数据的集中趋势在统计学中,我们通常使用一些指标来判断数据的集中趋势,主要包括平均数、中位数和众数。
除了这些指标,还可以通过绘制直方图和箱线图来直观地观察数据的分布情况。
下面我将详细介绍这些方法。
1. 平均数:平均数是最常用的用来表示数据集中趋势的指标。
它等于所有数据之和除以数据的个数。
平均数的计算公式为:均值= ΣX / n,其中ΣX表示所有数据之和,n 表示数据的个数。
平均数适用于对正态分布或近似正态分布的数据进行判断。
当数据集中的趋势对称分布时,平均数是一个较好的代表。
然而,当数据集中存在异常值时,平均数会受到影响,不再能很好地反映数据的集中趋势。
2. 中位数:中位数是将数据按照从小到大的顺序排列后,处于中间位置的数值,可以划分数据集为两个等分。
当数据集中存在异常值或者数据分布不对称时,中位数是一个较好的指标。
中位数的计算方法如下:如果数据个数(n)为奇数,则中位数为第(n+1)/2个数;如果数据个数(n)为偶数,则中位数为第n/2个数与第n/2+1个数的平均值。
中位数相对于平均数更稳健,不受异常值的影响。
因此,在分析数据集中存在离群值或者数据分布不均匀的情况时,更推荐使用中位数。
3. 众数:众数是数据集中出现次数最多的数值。
一个数据集可以有一个或多个众数,或者没有众数。
众数在分析离散型数据时特别有用。
像衣服的尺码(S、M、L)或者性别(男、女)这样的变量是离散型数据。
对于连续型数据,我们可以将其分组成区间,并绘制直方图来观察数据的集中趋势。
直方图将数据根据不同的区间划分,并统计每个区间内的数据频数。
通过观察直方图的形状和峰值位置,我们可以判断数据集中的趋势。
例如,当直方图中存在一个明显的峰值时,可以认为该峰值所对应的区间是数据的众数。
除了直方图,箱线图也是一种常用的分析数据集中趋势的方法。
箱线图主要用于展示数据的分布情况和异常值。
箱线图由五个数值组成:最小值、下四分位数(Q1)、中位数(Q2)、上四分位数(Q3)和最大值。
平均数在统计学中的地位平均数在统计学中的地位1. 在统计学中,平均数是最基本和最常用的一种测量指标,它能够很好地反映一组数据的集中趋势。
平均数可以帮助我们了解数据的整体情况,将众多观测值归纳为一个代表性的数值,有助于我们进行更全面、深入和准确的分析。
2. 平均数的计算方法相对简单,只需将所有观测值相加,再除以观测值的数量即可得到平均值。
这种计算方法的简洁性使得平均数在实际应用中得到广泛使用。
无论是在教育领域、经济学研究、医学实践还是其他领域,平均数都是最常见的统计指标之一。
3. 平均数可以以不同的方式来解释和理解。
它可以作为一种中心趋势度量,帮助我们确定数据集中的核心位置。
平均数还可以作为一个参考点,用于判断个别观测值与整体趋势的偏离程度。
通过计算与平均数的差值,我们可以判断一个观测值在数据集中是偏大还是偏小,从而更好地了解其相对位置。
4. 平均数的应用也不仅仅限于描述数据集的集中趋势,它还可以作为一种预测工具。
通过观察数据的平均数,我们可以推测未来的趋势和变化方向。
在经济学中,通过计算过去几年的平均增长率,可以预测未来的经济增长趋势。
5. 当然,平均数也存在一定的局限性。
平均数不能有效地反映数据的变异程度。
在一组数据中,如果存在极端值或离群值,平均数会受到这些值的显著影响,导致平均数不够准确。
为了更全面地了解数据的分布情况,我们需要使用其他统计指标,比如方差、标准差等。
平均数适用于数值型数据,但并不适用于分类型数据或序数型数据。
在处理这些数据类型时,我们需要使用其他的统计方法。
6. 总结回顾:平均数是统计学中最基本和常用的测量指标之一,可以很好地反映数据集的集中趋势。
通过计算观测值的总和除以观测值的数量,我们可以得到平均数的数值。
平均数具有简洁性和易于理解的特点,适用于各个领域的数据分析。
然而,平均数也存在一定的局限性,特别是在面对极端值和不同类型的数据时。
在进行数据分析时,我们需要结合其他统计指标来全面理解数据的分布和趋势。