131平方根(1)
- 格式:doc
- 大小:89.00 KB
- 文档页数:4
**平方根 知识要点 课标要求 中考考点 节内对应例题 节内对应习题算术平方根了解算术平方根的概念,会用根号表示数的算术平方根,会用计算器求算术平方根。
会求一个非负数的算术平方根,理解和掌握算术平方根的性质.会用计算器求一个非负数的算术平方根。
试练例题1;易错典例3,4,5; 题型典例1, 3,4,5, 8,9,10 中考典例1,4 中考变式练1,4新题精练 1,2,4,5,6,7, 8,9,10,13,15,17,18 平方根了解平方根的概念,会用根号表示数的平方根。
了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根。
会求一个非负数的平方根,理解和掌握平方根的性质试练例题2; 易错典例1,2题型典例1,4,6,7,中考典例2,中考变式练2 新题精练 8,11,12,14,16本节重、难点(1)重点: 掌握算术平方根和平方根的概念及性质,会求一个非负数的算术平方根、平方根。
(2)难点:估计一个正数的算术平方根的近似值知识全解知识点一:算术平方根的概念及表示方法(重点)知识点:一般地,如果一个正数x 的平方等于a ,即2x =a ,那么这个正数x 叫做a 的算术平方根.规定:0的算术平方根是0.非负数a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.知识拓展:算术平方根a 具有双重非负性:(1)被开方数a 是非负数;(2)算术平方根a 本身是非负数. 知识警示:①“”的指数为2,是2的简写形式;②0的算术平方根是0,负数没有算术平方根,也就是说,当式子a 有意义时,它一定表示一个非负数;③由于任何一个数的平方都是非负数,所以求算术平方根时,被开方数必须是非负数,它的算术平方根也一定是非负数,即算术平方根具有非负性,;0 a ④算术平方根是它本身的数只有0和1. 【试练例题1】求下列各数的算术平方根: (1)169, (2)121144(3)0.01 (4)(-6 )2 (5)106(6)13 思路导引:按照算术平方根的定义,只要分别找到一个非负数的平方分别等于上面的几个数,那么这几个非负数就是上面几个数的算术平方根.4 4 1 = 解:(1)∵132=169,∴169的算术平方根是13,即:16913=。
八年级上册数学《第4章实数》4.1平方根◆1、平方根的定义:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.这就是说,如果x2=a,那么x叫做a的平方根.◆2、开平方:求一个数a的平方根的运算,叫做开平方.开平方与平方互为逆运算,运用这种关系可以求一个数的平方根.◆3、平方根的表示方法:正数a正的平方根可以表示为a,正数a的负的平方根,可以表示为-a.正数a的平方根可以用±a表示,读作“正、负根号a”.◆4、平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.◆1、算术平方根的定义:我们把正数a的正的平方根叫做a的算术平方根.a的算术平方根记作:a,读作:“根号a”.规定:0的算术平方根是0.记作:0=0.◆2、算术平方根的性质:算术平方根具有双重非负性.①被开方数一定是非负数,即a≥0.②一个非负数的算术平方根也是非负数,即a≥0.◆3、求一个正数的算术平方根与求一个正数的平方恰好是互逆的两种运算,因而,求一个数的算术平方根实际上可以转化为求一个正数的平方运算,但是,只有正数和0有算术平方根,负数没有算术平方根.◆4、被开方数越大,对应的算术平方根也越大.【注意】a实际上省略了2中的根指数2,不要误认为根指数是1或没有,因此a也读作:“二次根号a”.◆5、算术平方根与平方根的联系和区别:联系:(1)包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)只有非负数才有平方根和算术平方根.(3)0的平方根是0,算术平方根也是0.区别:(1)个数不同:一个正数有两个平方根,但正数算术平方根只有一个.;(2)表示方法不同:正数a的算术平方根表示为a,正数a的平方根表示为a【例题1】下列说法正确的是()A.25的平方根是5B.(﹣3)2的平方根是﹣3C.925的算术平方根是35D.0.16的算术平方根是±0.4【分析】依据平方根、算术平方根的定义和性质求解即可.【解答】解:A、25的平方根是±5,故A错误;B、(﹣3)2的平方根是±3,故B错误;C、925的算术平方根是35,故C正确;D、0.16的算术平方根是+0.4,故D错误.故选:C.【点评】本题主要考查的是算术平方根和平方根的定义和性质,熟练掌握相关知识是解题的关键.解题技巧提炼±(a≥0)表示非负数的a的平方根,(a≥0)表示非负数a的算术平方根.【变式1-1】(2022秋•莱州市期末)144的平方根是±12的数学表达式是()A.144=12B.144=±12C.±144=±12D.±144=12【分析】根据平方根的定义进行计算即可.【解答】解:144的平方根是±12的数学表达式是±144=±12,故选:C.【点评】本题考查平方根,理解平方根的定义以及表示方法是正确解答的前提.【变式1-2】下列说法中,正确的是()A.任何数的平方根都有两个B.一个数的平方根是它本身C.只有正数才有平方根D.负数没有平方根【分析】根据平方根的定义进行解答即可.【解答】解:A、0的平方根是0,只有一个,故错误,不符合题意;B、一个数的平方根不一定是它本身,故错误,不符合题意;C、0也有平方根,故错误,不符合题意;D、负数没有平方根,正确,符合题意.故选:D.【点评】本题考查的是平方根,熟知正数和0有平方根,负数没有平方根,且正数的平方根有两个,0的平方根还是0是解题的关键.【变式1-3】(2022秋•陈仓区期中)下列语句中,错误的是()A.14的平方根是±12B.9的平方根是±3C.−12是14的一个平方根D.9的平方根是±3【分析】如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根,根据平方根的意义解题即可.【解答】解:A.14的平方根是±12,该选项正确,故本选项不符合题意;B.9的平方根是±3,该选项错误,故本选项符合题意;C.−12是14的一个平方根,该选项正确,故本选项不符合题意;D.9的平方根是±3,该选项正确,故本选项不符合题意.故选:B.【点评】本题考查了平方根,正确理解平方根的意义是解题的关键.【变式1-4】(2022秋•鄞州区校级月考)平方根是±13的数是()A.13B.16C.19D.±19【分析】根据平方根的定义即可求解.【解答】解:∵(±13)2=19,∴平方根是±13的数是19,故选:C.【点评】本题主要考查了平方根,掌握平方根的定义是解题的关键.【变式1-5】(2022春•澄迈县期末)(﹣6)2的平方根是()A.6B.±6C.±6D.36【分析】根据平方根的定义解答即可.【解答】解:(﹣6)2=36,36的平方根是±6,故选:B.【点评】本题考查平方根的定义,熟练掌握平方根的定义是解题关键.【变式1-6】(2022秋•城阳区期中)若x+4是4的一个平方根,则x的值为()A.﹣2B.﹣2或﹣6C.﹣3D.±2【分析】依据平方根的定义得到x+4=2或x+4=﹣2,从而可求得x的值.【解答】解:∵x+4是4的一个平方根,∴x+4=2或x+4=﹣2,∴解得:x=﹣2或x=﹣6.故选:B.【点评】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.【变式1-7】(2022秋•薛城区校级月考)一个自然数的一个平方根是a,则与它相邻的上一个自然数的平方根是()A.±−1B.a﹣1C.a2﹣1D.±2−1【分析】由一个自然数的一个平方根是a,可得出这个自然数是a2,进而得到与这个自然数相邻的上一个自然数是a2﹣1,再根据平方根的定义得出答案即可.【解答】解:∵一个自然数的一个平方根是a,∴这个自然数是a2,∴与这个自然数相邻的上一个自然数是a2﹣1,∴与这个自然数相邻的上一个自然数的平方根是±2−1,故选:D.【点评】本题考查平方根,理解平方根的定义是正确解答的前提.【例题2】求下列各数的平方根:(1)2549(2)0.36(3)(﹣9)2(4)49【分析】(1)(2)根据一个正数有两个平方根,这两个平方根互为相反数计算结果;(3)先求出(﹣9)2=81,再根据一个正数有两个平方根,这两个平方根互为相反数计算结果;(4)先求出49=7,再根据一个正数有两个平方根,这两个平方根互为相反数计算结果.【解答】解:(1)2549的平方根是±57;(2)0.36的平方根是±0.6;(3)∵(﹣9)2=81,∴(﹣9)2的平方根是±9;(4)∵49=7,∴49的平方根是±7.【点评】本题考查了算术平方根和平方根,掌握算术平方根和平方根的定义,根据定义计算是解题关键.【变式2-1】1649的平方根是()A.47B.±47C.−47D.27【分析】直接根据平方根的概念解答即可.【解答】解:∵(±47)2=1649,∴1649的平方根是±47,故选:B.【点评】此题考查的是平方根,掌握其概念是解决此题关键.【变式2-2】(2023•常德三模)16的平方根是()A.4B.±4C.±2D.2【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:16=4,4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【变式2-3】(2023•西乡塘区校级开学)已知实数a的一个平方根是2,则它的另一个平方根是()A.﹣2B.−2C.4D.﹣4【分析】一个正数的平方根有2个,它们互为相反数,据此即可得出答案.【解答】解:∵实数a的一个平方根是2,∴它的另一个平方根是﹣2,故选:A.【点评】本题考查平方根的性质,熟练掌握其性质是解题的关键.【变式2-4】(2022秋•二道区校级期中)在﹣2,0,117,23,1.44中,有平方根的数有()A.4个B.3个C.2个D.1个【分析】根据平方根的性质即可求得答案.【解答】解:0,117,23,1.44都有平方根,﹣2没有平方根,则有平方根的数有4个,故选:A.【点评】本题考查平方根的性质,此为基础且重要知识点,必须熟练掌握.【变式2-5】(﹣8)2的平方根是()A.﹣8B.8C.±8D.±64【分析】根据平方根的概念即可求出答案.【解答】解:由于(﹣8)2=64,∴64的平方根是±8,故选:C.【点评】本题考查平方根,解题的关键是熟练运用平方根的概念,本题属于基础题型.【变式2-6】(2022秋•雁塔区校级月考)求下列各数的平方根:(1)49;(2)1625;(3)279;(4)0.36;(5)(−38)2.【分析】(1)根据平方根的定义求一个数的平方根;(2)根据平方根的定义求一个数的平方根;(3)根据平方根的定义求一个数的平方根;(4)根据平方根的定义求一个数的平方根;(5)根据平方根的定义求一个数的平方根.【解答】解:(1)∵(±7)2=49,∴49的平方根是±7;(2)∵(±45)2=1625,∴1625的平方根是±45;(3)∵279=259,(±53)2=259∴279的平方根是±53;(4)∵(±0.6)2=0.36∴0.36的平方根是±0.6;(5)∵(−38)2=964=(38)2,∴(−38)2的平方根是±38.【点评】本题考查的是平方根,掌握平方根的定义是解题的关键.平方根:如果一个数的平方等于a,那么这个数就叫a的平方根,一个整数的平方根有2个,它们互为相反数.【变式2-7】求下列各式的值:(1)−196;(2)(3)2−1.75;(4)±(−8)2.【分析】(1)根据算术平方根定义计算;(2)根据平方根定义计算;(3)根据算术平方根定义计算;(4)根据平方根定义计算.【解答】解:(1)原式=﹣14;(2)原式=±52;(3)原式=0.5;(4)原式=±8.【点评】本题考查了算术平方根和平方根,掌握算术平方根和平方根定义,根据定义计算是解题关键.【例题3】求下列各数的算术平方根:(1)144;(2)0.49;(3)614;(4)(−32)2.【分析】根据开方运算,可得算术平方根.【解答】解:(1)144=122=12;(2)0.49=0.72;(3==52;(4=|−32|=32.【点评】本题考查了算术平方根,开方运算是解题关键.【变式3-1】(2022秋•宁强县期末)9的值等于()A.3B.﹣3C.±3D.5【分析】根据算术平方根定义解答.【解答】解:∵32=9,∴9=3,故选:A.【点评】此题考查了算术平方根的定义:若一个正数x的平方等于a,则x是a的算术平方根,熟记定义是解题的关键.【变式3-2】(2023春•兴义市月考)81的平方根是.【分析】根据算术平方根的定义求出81=9,再根据平方根的定义求出9的平方根即可.【解答】解:∵81=9,∴81的平方根,即9的平方根为±9=±3,故答案为:±3.【点评】本题考查平方根、算术平方根,理解平方根、算术平方根的定义是正确解答的前提.【变式3-3】(2023春•秀屿区校级期中)16的算术平方根是.【分析】根据算术平方根的运算法则,直接计算即可.【解答】解:∵16=4,4的算术平方根是2,∴16的算术平方根是2.故答案为:2.【点评】此题考查了求一个数的算术平方根,这里需注意:16的算术平方根和16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.【变式3-4】(2022•济宁三模)若=5,则a的值为()A.10B.5C.25D.±25【分析】根据算术平方根的定义即可求出答案.【解答】解:∵52=25,∴若=5,则a的值为25.故选:C.【点评】本题考查算术平方根的定义.解题的关键是掌握算术平方根的定义.【变式3-5】(2022春•老河口市月考)设x=﹣22,y=(−3)2,那么xy等于()A.12B.﹣12C.6D.﹣6【分析】根据算术平方根以及有理数乘方的定义求出x、y的值,再代入计算即可.【解答】解:∵x=﹣22,y=(−3)2,∴x=﹣4,y=3,∴xy=﹣4×3=﹣12,故选:B.【点评】本题考查算术平方根,有理数的乘方,理解算术平方根的定义以及有理数乘方的计算方法是正确解答的前提.【变式3-6】求下列各式的值:(1)144;(2(3)10000;(4)0.0049.【分析】根据算术平方根的定义计算即可.注意:2=|U.【解答】解:(1)原式=122=12;(2)原式=57)=57;(3)原式=1002=100;(4)原式=0.072=0.07.【点评】本题主要考查了算术平方根,熟记定义是解答本题的关键.【例题4】(2022秋•崇川区校级月考)已知a,b满足(a﹣1)2++2=0,则a+b的值是()A.﹣2B.2C.﹣1D.0【分析】先根据平方和算术平方根的非负性求出a,b的值,再将a,b的值代入a+b中即可求解.【解答】解:∵(a﹣1)2++2=0,(a﹣1)2≥0,+2≥0,∴a﹣1=0,b+2=0,∴a=1,b=﹣2,则a+b=1+(﹣2)=﹣1.故选:C.【点评】本题主要考查了平方和算术平方根的非负性以及有理数的加法,掌握平方和算术平方根的非负性以及有理数的加法法则是解题的关键.【变式4-1】(2022秋•桂平市期末)若+2+(−3)2=0,则m n的值是.【分析】根据算术平方根、偶次方的非负性求出m、n的值,再代入计算即可.【解答】解:∵+2+(n﹣3)2=0,,+2≥0,(n﹣3)2≥0,∴m+2=0,n﹣3=0,解得m=﹣2,n=3,∴m n=(﹣2)3=﹣8,故答案为:﹣8.【点评】本题考查算术平方根、偶次方的非负性,掌握算术平方根、偶次方的非负性是正确解答的前提.【变式4-2】(2023•濠江区模拟)若a,b为实数,且|−1|++2=0,则(a+b)2023=.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:∵|a﹣1|++2=0,∴a﹣1=0,b+2=0,∴a=1,b=﹣2,∴(a+b)2023=(1﹣2)2023=﹣1,故答案为:﹣1.【点评】此题主要考查了非负数的性质,能够根据非负数的性质正确得出a,b的值是解题关键.非负数的性质:几个非负数的和为0时,这几个非负数都为0.【变式4-3】已知a,b为实数,且1++1−=0,则a2022﹣b2023=.【分析】依据非负数的性质可求得a、b的值,然后再利用有理数的运算法则进行计算即可.【解答】解:∵1++1−=0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2022﹣b2023=(﹣1)2018﹣12019=1﹣1=0.故答案为:0.【点评】本题主要考查的是算术平方根的性质,依据非负数的性质求得a、b的值是解题的关键.【变式4-4】(2023春•江源区期末)已知(a﹣1)2+|b+1|++−=0,则a+b+c=.【分析】先依据非负数的性质求得a、b、c的值,然后再代入计算即可.【解答】解:(a﹣1)2+|b+1|++−=0,∴a=1,b=﹣1,c=2.∴a+b+c=1+(﹣1)+2=2.故答案为:2.【点评】本题主要考查的是非负数的性质,依据非负数的性质求得a、b、c的值是解题的关键.【变式4-5】(2022春•蜀山区校级期中)若−1与|b+2|互为相反数,则a+b的绝对值为()A.1−2B.2−1C.2+1D.2【分析】根据题意可得−1+|b+2|=0,从而可得a﹣1=0,b+2=0,然后求出a,b的值,再根据绝对值的意义进行计算即可解答.【解答】解:由题意得:−1+|b+2|=0,∴a﹣1=0,b+2=0,∴a=1,b=−2,∴|a+b|=|1−2|=2−1,故选:B.【点评】本题考查了绝对值,算术平方根和绝对值的非负性,熟练掌握算术平方根和绝对值的非负性是解题的关键.【变式4-6】(2022秋•迎泽区校级月考)若x,y满足(−5)2++2=0,则x y的算术平方根为.【分析】直接利用非负数的性质得出x,y的值,再利用负整数指数幂的性质、算术平方根的定义分析得出答案.【解答】解:∵(−5)2++2=0,∴x﹣5=0,y+2=0,解得:x=5,y=﹣2,故x y=5﹣2=125,则x y的算术平方根为:15.故答案为:15.【点评】此题主要考查了非负数的性质以及负整数指数幂的性质,正确得出x,y的值是解题关键.【变式4-7】(2022秋•靖江市校级期中)已知a,b,c都是实数,且满足(2﹣a)2+2+++|c+8|=0,且ax2+bx+c=0,求代数式3x2+6x+200的值.【分析】根据偶次方的非负性、算术平方根的非负性、绝对值的非负性解决此题.【解答】解:∵(2﹣a)2≥0,2++≥0,|c+8|≥0,∴当(2﹣a)2+2+++|c+8|=0,则2﹣a=0,a2+b+c=0,c+8=0.∴a=2,c=﹣8,b=4.∵ax2+bx+c=0,∴2x2+4x﹣8=0.∴x2+2x=4.∴3x2+6x+200=3(x2+2x)+200=12+200=212.【点评】本题主要考查偶次方的非负性、算术平方根、绝对值,熟练掌握偶次方的非负性、算术平方根的非负性、绝对值的非负性是解决本题的关键.【变式4-8】已知a,b为实数,且满足−2+b2﹣6b+9=0.(1)求a,b的值;(2)若a,b为△ABC的两边,第三边c=13,求△ABC的面积.【分析】(1)利用完全平方公式整理,再根据非负数的性质列方程求解即可;(2)利用勾股定理逆定理判断出△ABC是直角三角形,再根据直角三角形的面积等于两直角边的乘积的一半列式计算即可得解.【解答】解:(1)整理得,−2+(b﹣3)2=0,所以,a﹣2=0,b﹣3=0,解得a=2,b=3;(2)∵a2+b2=22+32=13,c2=(13)2=13,∴a2+b2=c2,∴△ABC是直角三角形,∠C=90°,∴△ABC的面积=12ab=12×2×3=3.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了勾股定理逆定理.【例题5】(2022春•建安区期中)若a是(﹣4)2的平方根,b的一个平方根是2,则代数式a+b的值为()A.8B.0C.8或0D.4或﹣4【分析】先依据平方根的定义和性质求得a、b的值,然后依据有理数的加法法则求解即可.【解答】解:∵a是(﹣4)2的平方根,∴a=±4.∵b的一个平方根是2,∴b=4.∴当a=4,b=4时,a+b=8;当a=﹣4,b=4时,a+b=0.故选:C.【点评】本题主要考查的是平方根的定义,依据平方根的定义求得a、b的值是解题的关键.【变式5-1】(2023春•长顺县期末)若2m﹣5与4m﹣9是某一个正数的平方根,则m的值是()A.73B.﹣1C.73或2D.2【分析】依据平方根的性质列出关于m的方程,可求得m的值.【解答】解:∵2m﹣5与4m﹣9是某一个正数的平方根,∴2m﹣5=4m﹣9或2m﹣5+4m﹣9=0.解得:m=2或m=73.故选:C.【点评】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.【变式5-2】(2022•游仙区校级二模)若﹣3x m y和5x3y n的和是单项式,则(m+n)3的平方根是()A.8B.﹣8C.±4D.±8【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.【解答】解:∵﹣3x m y和5x3y n的和是单项式,∴﹣3x m y和5x3y n是同类项,∴m=3,n=1,∴(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.【点评】本题考查了平方根,同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.【变式5-3】(2022秋•高新区校级月考)已知2a﹣1的平方根是±3,b,c满足|b﹣1|++4=0,求a+3b+c的算术平方根.【分析】根据算术平方根的概念列方程确定a的值,利用绝对值和算术平方根的非负性确定b和c的值,然后代入代数式,最后利用算术平方根的概念求解.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,解得:a=5,∵|b﹣1|++4=0,且|b﹣1|≥0,+4≥0,∴b﹣1=0,c+4=0,解得:b=1,c=﹣4,∴a+3b+c=5+3×1+(﹣4)=5+3﹣4=4,4=2,∴a+3b+c的算术平方根是2.【点评】本题考查平方根,算术平方根,理解平方根,算术平方根的概念以及绝对值和算术平方根的非负性是解题关键.【变式5-4】(2021春•饶平县校级期中)若x,y均为实数,且−1+1−+2y﹣1=0,求15+2的平方根.【分析】根据被开方数是非负数且它们互为相反数,可得被开方数为0,据此可求x,进一步求出y,再代入计算即可求出答案.【解答】解:∵−1+1−+2y﹣1=0,∴x﹣1≥0,1﹣x≥0,解得x=1,∴2y﹣1=0,∴y=12,∴15+2=15+1=16=4,∴15+2的平方根为±2.【点评】本题考查了算术平方根以及平方根,解题时注意:一个正数的两个平方根互为相反数.【变式5-5】(2022春•横县期中)已知3b+3的平方根为±3,3a+b的算术平方根为5.(1)求a,b的值;(2)求4a﹣6b的平方根.【分析】(1)根据平方根的定义列出方程求出b,再根据算术平方根的定义求出a,然后相加求出a+b,再根据平方根的定义解答.(2)根据平方根的定义计算即可.【解答】解:(1)∵3b+3的平方根为±3,∴3b+3=9,解得b=2,∵3a+b的算术平方根为5,∴3a+b=25,∵b=2,∴a=233,(2)∵a=233,b=2,∴4a﹣6b=563,∴4a﹣6b的平方根为【点评】本题考查了平方根和算术平方根的定义,熟记概念是解题的关键.【变式5-6】(2022春•芜湖期末)已知a+b﹣2的平方根是±17,3a+b﹣1的算术平方根是6,求a+4b 的平方根.【分析】先根据平方根和算术平方根的定义得出a+b﹣2=17,3a+b﹣1=36,解出a和b的值,代入a+4b 值求值,再求平方根即可.【解答】解:根据题意,得a+b﹣2=17,3a+b﹣1=36,解得a=9,b=10,∴a+4b=9+4×10=9+40=49,∴a+4b的平方根是±7.【点评】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a、b的值是解题的关键.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.【变式5-7】(2023春•恩施州期中)(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b 的平方根;(2)若2a﹣4与3a+1是同一个正数的平方根,求a的值.【分析】(1)直接利用平方根的定义得出a,b的值,进而得出答案;(2)直接利用平方根的定义得出a的值.【解答】解:(1)依题意,得2a﹣1=9且3a+b﹣1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b的平方根为±3,即±+2=±3;(2)∵2a﹣4与3a+1是同一个正数的平方根,∴2a﹣4+3a+1=0或2a﹣4=3a+1,∴解得:a=35或a=﹣5.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.【例题6】(2022春•岳麓区校级月考)求下列各式中x的值.(1)169x2=100;(2)(x+1)2=81.【分析】(1)两边都除以169,再根据平方根的定义求解可得;(2)先根据平方根的定义得出x+1的值,再解方程可得.【解答】解:(1)169x2=100,2=100169,=±169∴=±1013;(2)(x+1)2=81,+1=±81,x+1=±9,x=8或﹣10.【点评】本题主要考查的是平方根的定义,熟练掌握相关概念是解题的关键.【变式6-1】(2022秋•新城区校级期中)求下列式子中的x:(1)25(x−35)2=49;(2)12(x+1)2=32.【分析】(1)根据平方根的概念解方程;(2)根据平方根的概念解方程.【解答】解:(1)25(x−35)2=49,(x−35)2=4925,x−35=±75,x−35=75或x−35=−75,解得:x1=2,x2=−45;(2)12(x+1)2=32,(x+1)2=32÷12,(x+1)2=32×2,(x+1)2=64,x+1=±8,x+1=8或x+1=﹣8,解得:x1=7,x2=﹣9.【点评】本题考查平方根,注意一个正数有两个平方根,且它们互为相反数是解题关键.【变式6-2】(2022秋•滕州市校级月考)求满足下列各式x的值(1)169x2﹣100=0(2)(2x﹣1)2=(﹣5)2.【分析】(1)先求出x2的值,然后根据平方根的定义解答;(2)先求出(2x﹣1)2的值,然后根据平方根的定义解答.【解答】解:(1)由169x2﹣100=0,可得:x=±1013;(2)由(2x﹣1)2=(﹣5)2.可得:2x﹣1=±5,解得:x=3或x=﹣2.【点评】本题考查了利用平方根的定义求未知数的值,是基础题,熟记概念是解题的关键.【变式6-3】(2022春•武侯区月考)求下列各式中的x的值:(1)9x2﹣25=0;(2)(x﹣1)2+8=72;(3)3(x+2)2﹣27=0;(4)12(x﹣5)2=8.【分析】根据等式的性质和平方根的定义进行计算即可.【解答】解:(1)移项得,9x2=25,两边都除以9得,x2=259,由平方根的定义得,x=±53;(2)(x﹣1)2+8=72,移项得,(x﹣1)2=72﹣8,合并同类项得,(x﹣1)2=64,由平方根的定义得,x﹣1=±8,即x=9或x=﹣7;(3)移项得,3(x+2)2=27,两边都除以3得,(x+2)2=9,由平方根的定义得,x+2=±3,即x=1或x=﹣5;(4)两边都乘以2得,(x﹣5)2=16,由平方根的定义得,x﹣5=±4,即x=9或x=1.【点评】本题考查平方根,理解平方根的定义,掌握等式的性质是正确解答的前提.【变式6-4】已知a,b满足|a﹣4|+−7=0,解关于x的方程(a﹣3)x2﹣1=5b.【分析】直接利用绝对值和二次根式的性质得出a,b的值,进而代入解方程即可.【解答】解:由题意得:a﹣4=0,b﹣7=0,∴a=4,b=7,将a=4,b=7代入(a﹣3)x2﹣1=5b,得(4﹣3)x2﹣1=5×7∴x2=36,解得:x=±6.【点评】此题主要考查了算术平方根以及绝对值,正确得出a,b的值是解题关键.【变式6-5】(2023春•澄海区期末)已知|2a+b﹣4|与3+12互为相反数.(1)求5a﹣4b的平方根;(2)解关于x的方程ax2+5b﹣5=0.【分析】(1)依据非负数的性质可求得a、b的值,然后再求得5a﹣4b的值,最后依据平方根的定义求解即可;(2)将a、b的值代入得到关于x的方程,然后解方程即可.【解答】解:(1)由题意,得|2+−4|+3+12=0,∴2a+b﹣4=0,3b+12=0,解得:a=4,b=﹣4,∴5a﹣4b=5×4﹣4×(﹣4)=36,∴5a﹣4b的平方根为±6;(2)将a=4,b=﹣4代入ax2+5b﹣5=0,得4x2﹣25=0,解得:=±52.【点评】本题主要考查的是平方根的定义、非负数的性质,熟练掌握平方根的定义、非负数的性质是解题的关键.【例题7】(2022春•渝中区校级月考)若51.11≈7.149,511.1≈22.608,则511100的值约为()A.71.49B.226.08C.714.9D.2260.8【分析】将511100转化为51.11×10000,进而得出51.11×100即可.【解答】解:511100=51.11×10000=51.11×100≈7.149×100=714.9,故选:C.【点评】本题考查算术平方根,理解“一个数扩大(或缩小)100倍,10000倍,其算术平方根就随着扩大(或缩小)10倍,100倍”是解决问题的关键.【变式7-1】(2023•宁津县校级开学)若25.36≈5.036,253.6≈15.906,则253600≈.【分析】根据算术平方根的定义,被开方数的小数点向左或向右移动两位,它的算术平方根的小数点就相应地向左或向右移动1位,进行解答即可.【解答】解:∵25.36≈5.036,∴则253600≈503.6.故答案为503.6:【点评】此题考查了算术平方根的定义,掌握算术平方根的定义是本题的关键.【变式7-2】(2022春•顺德区校级期中)若169=13,则16900为130.【分析】根据算术平方根的性质,将∴16900转化为169×100即可.【解答】解:∵169=13,∴16900=169×100=169×100=13×10=130,故答案为:130.【点评】本题考查算术平方根,掌握“被开方数扩大100倍,其算术平方根就随着扩大10倍”是解决问题的关键.【变式7-3】(2021春•淮南月考)已知2021≈44.96,202.1≈14.22,则20.21≈()A.4.496B.1.422C.449.6D.142.2【分析】直接利用算术平方根的性质化简得出答案.【解答】解:∵2021≈44.96,∴20.21≈4.496.故选:A.【点评】此题主要考查了算术平方根,正确理解算术平方根的定义是解题的关键.算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.【变式7-4】(2022秋•衡阳县期中)已知 4.3≈2.0736,43≈6.5574,下列运算正确的是()A.0.43≈0.65574B.430≈65.574C.4300≈20.736D.43000≈2073.6【分析】根据题目意思,找出题中规律即可求解.【解答】解:∵ 4.3≈2.0736,43≈6.5574,A.0.43≈1100≈43×1100≈6.5574×110≈0.65574,选项A符合题意;B.430≈ 4.3×100≈ 4.3×100≈2.0736×10≈20.736,选项B不符合题意;C.4300≈43×100≈43×100≈6.5574×10≈65.574,选项C不符合题意;D.43000= 4.3×10000= 4.3×10000≈2.0736×100≈207.36,选项D不符合题意;故选:A.【点评】本题主要考查了算术平方根,掌握算术平方根的性质是解题的关键.【变式7-5】(2022春•潍坊期中)(1)观察各式:0.03≈0.1732,3≈1.732,300≈17.32…发现规律:被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(2)应用:已知5≈2.236,则0.05≈,500≈;(3)拓展:已知6≈2.449,60≈7.746,计算240和0.54的值.【分析】(1)观察规律即可得出答案;(2)根据(1)中的规律进行计算即可得出答案;(3)由240=4×60=4×60代入计算即可得出答案,由0.54=9×0.06=9×0.06根据(1)中的规律代入计算即可得答案.【解答】解:(1)观察各式:0.03≈0.1732,3≈1.732,300≈17.32…发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2)应用:已知5≈2.236,则0.05≈0.2236,500≈22.36;故答案为:0.2236,22.36;(3)240=4×60=4×60≈2×7.746≈15.492,0.54=9×0.06=9×0.06≈3×0.2449≈0.7347.【点评】本题主要考查了算术平方根,熟练掌握算术平方根的定义进行求解是解决本题的关键.【变式7-6】根据下表回答下列问题:x1616.116.216.316.416.516.616.716.816.917x2256259.21262.44265.69268.96272.25275.56278.89282.24285.61289(1)289的算术平方根是,268.96=;(2)±256=,275.56的平方根是;(3) 1.5921=,28224=;(4)若=(x>0),则100=(用含a的式子表示).【分析】(1)根据图表和算术平方根的定义即可得出答案;(2)根据图表和平方根的定义即可得出答案;(3)根据被开方数与算术平方根的关系可得答案;(4)根据被开方数扩大100倍,算术平方根随之扩大10倍可得答案.【解答】解:(1)由表中的数据可得,289的算术平方根是17,268.96=16.4,故答案为:17,16.4;(2)由表中的数据可得,±256=±16,275.56的平方根是±16.6,故答案为:±16,±16.6;(3)由表中的数据可得,159.21的算术平方根是16.1,282.24的算术平方根是16.8,∴ 1.5921=1.61,28224=168,故答案为:1.61,168;(4)由(3)可得被开方数扩大100倍,算术平方根随之扩大10倍,若=(x>0),则100=10a(用含a的式子表示).故答案为:10a.【点评】本题考查算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题关键.【例题8】(2022春•连江县期末)某学校有一块长、宽分别为38m和16m的长方形空地,计划沿边建造一个长宽之比为5:3且面积为540m2的长方形标准篮球场,请判断该学校能否用这块长方形空地建造符合要求的篮球场?并说明理由.【分析】通过用同一未知数表示出篮球场的长和宽,列方程进行求解.【解答】解:不能,理由如下:设长方形标准篮球场的长为5xm.宽为3xm,由题意得:5x×3x=540,解得:x=﹣6(舍去)或6,即长方形标准篮球场的长为30m,宽为18m,∵18m>16m,∴该学校不能用这块长方形空地建造符合要求的篮球场.【点评】此题主要考查了算术平方根,正确得出x的值是解题的关键.【变式8-1】(2023春•桥西区期末)射击时,子弹射出枪口时的速度可用公式=2a进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105米/秒2,s=0.81米,那么子弹射出枪口时的速度(用科学记数法表示)为()A.0.9×103米/秒B.0.8×103米/秒C.8×102米/秒D.9×102米/秒【分析】首先根据题意求出速度,然后根据科学记数法的表示方法求解即可.【解答】解:∵a=5×105米/秒2,s=0.81米,∴=2a=2×5×105×0.81=900=9×102米/秒.故选:D.【点评】本题主要考查算术平方根和科学记数法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.【变式8-2】(2023春•巩义市期末)电流通过导线时会产生热量,满足Q=I2Rt,其中Q为产生的热量(单位:J),I为电流(单位:A),R为导线电阻(单位:Ω),t为通电时间(单位:s).若导线电阻为5Ω,1s时间导线产生30J的热量,则通过的电流I为()。
第一节:算术平方根1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ;3 已知042=++-y x ,求x y 的值.(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0. (2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.第二节:平方根一个正数的平方根有2个,它们互为相反数。
一个正数a 的正的平方根,记作“a ”,正数a 的负的平方根记作“a -”。
这两个平方根合起来记作“a ±”,读作“正,负根号a ”.例1 求下列各数的平方根:25;(2)8116(3)15;(4)()22-。
(1)1214的平方根是_________;(2)(-41)2的算术平方根是_________; (3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________; (4)4的值等于____,4的平方根为______; (7)(-4)2的平方根是_________,算术平方根是______. (8)2)2(-的化简结果是 ( ) A.2B.-2 C.2或-2 D.4 (9)9的算术平方根是A.±3 B.3 C.±3 D. 3 (11)下列式子中,正确的是 ( ) A.55-=-B.-6.3=-0.6C.2)13(-=13D.36=± 6第15讲实 数 的 技 巧CBA第三节:立方根果一个数x 的立方等于a ,即a x =3,那么x 叫做a 的立方根。
记作“3a x =”。
2任意实数都只有一个立方根。
3正数的立方根是正数,0的立方根是0,负数的立方根是负数。
求下列各数的立方根_____ (1)-64 (2)-1258(3)9 (4)0问题一 根据计算结果,与平方根作比较有什么不同?1、下列说法正确的是( )A任意数a 的平方根有2个,它们互为相反数 B任意数a 的立方根有1个C-3是27的负的立方根 D(-1)2的立方根是-12.下列说法中,不正确的是( )A 、-1的立方是-1 B 、-1的立方根是-1 C 、-1的平方是1 D 、-1的平方根是-1 3、下列判断正确的是( )A64的立方根是±4 B(-1)1-的立方根是1C64的立方根是2D如果3a =a ,则a =04()337-的正确结果是 ( ) A 、7 B 、-7C 、±7D 、无意义5.某数的立方根是它本身,这样的数有 ( ) A 、1个B 、2个C 、3个D 、4个考点四:根式化简),0(),0(22≥≥=a a a a a ).0(2≤-=a a a (二)思考提升()25-的平方根是 ,2== ,= 。
七年级数学《平方根》典型例题及练习 【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:、算术平方根:3、平方根的性质:、平方根的性质:(1)一个正数有)一个正数有 个平方根,它们个平方根,它们 ;(2)0 平方根,它是平方根,它是 ;(3) 没有平方根.没有平方根. 4、重要公式:、重要公式: (1)=2)(a ((2){==a a 25、平方表:、平方表:1.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________. 2.一个正方体的棱长扩大3倍,则它的体积扩大_____________. 3.若一个数的立方根等于数的算术平方根,则这个数是_____________. 4. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________. 5. 312726-=____________.【典型例题】例1、判断下列说法正确的个数为(判断下列说法正确的个数为( )) ① -5是-25的算术平方根;的算术平方根; ② 6是()26-的算术平方根;的算术平方根; ③ 0的算术平方根是0; ④ 0.01是0.1的算术平方根;的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是(的平方根是( )A 、6 B B、、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?下列各式中,哪些有意义? (1)5((2)2-((3)4- ((4))3(- ((5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是(,则下一个自然数的算术平方根是( )) A A..()1+a B B..()1+±a C C..12+a D D..12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】12= 62= 112= 162= 212= 22= 72= 122= 172= 222= 32= 82= 132= 182= 232= 42= 92= 142= 192= 242= 52= 102= 152= 202= 252= 一、选择题1. 9的算术平方根是(的算术平方根是( ))A A..-3B -3 B..3C 3 C.±.±.±3D 3 D 3 D..81 2.下列计算正确的是(.下列计算正确的是( )) A .4=±2 B 2 B..2(9)81-==9 C.636=±D.992-=-3.下列说法中正确的是(.下列说法中正确的是( )) A A..9的平方根是3 B 3 B..16的算术平方根是±的算术平方根是±2 C. 2 C.16的算术平方根是4 D.16的平方根是±的平方根是±2 24. 64的平方根是(的平方根是( ))A A.±.±.±8B 8 B 8 B.±.±.±4C 4 C 4 C.±.±.±2D 2 D 2 D.±.±2 5. 4的平方的倒数的算术平方根是(的平方的倒数的算术平方根是( )) A A..4 B 4 B..18 C C..-14D D..146.下列结论正确的是(.下列结论正确的是( )A 6)6(2-=--B 9)3(2=- C 16)16(2±=- D251625162=÷÷øöççèæ--7.以下语句及写成式子正确的是(.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是(.下列语句中正确的是( )A 、9-的平方根是3-B B、、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:.下列说法:(1)(1)3±是9的平方根;的平方根;(2)9(2)9的平方根是3±;(3)3是9的平方根;的平方根;(4)9(4)9的平方根是3,其中正确的有( )) A A..3个 B B..2个C .1个D D..4个10.下列语句中正确的是(.下列语句中正确的是( )A 、任意算术平方根是正数、任意算术平方根是正数B 、只有正数才有算术平方根、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3 D 、1-是1的平方根的平方根 1111.下列说法正确的是(.下列说法正确的是(.下列说法正确的是( )) A A.任何数的平方根都有两个.任何数的平方根都有两个.任何数的平方根都有两个 B B B.只有正数才有平方根.只有正数才有平方根.只有正数才有平方根 C C.一个正数的平方根的平方仍是这个数.一个正数的平方根的平方仍是这个数.一个正数的平方根的平方仍是这个数 D D D..2a 的平方根是a±1212.下列叙述中正确的是(.下列叙述中正确的是(.下列叙述中正确的是( ))A A..(-11-11))2的算术平方根是±的算术平方根是±11 B 11 B 11 B.大于零而小于.大于零而小于1的数的算术平方根比原数大的数的算术平方根比原数大 C C.大于零而小于.大于零而小于1的数的平方根比原数大的数的平方根比原数大 D D D.任何一个非负数的平方根都是非负数.任何一个非负数的平方根都是非负数.任何一个非负数的平方根都是非负数 1313..25的平方根是(的平方根是( ))A 、5B B、、5-C C、、5±D D、、5±14.36的平方根是(的平方根是( )A 、6 B B、、6±C 、 6D 、 6±1515.当.当³m 0时,m表示(表示( ))A A..m 的平方根的平方根B .一个有理数.一个有理数C .m 的算术平方根的算术平方根D .一个正数.一个正数1616.用数学式子表示“.用数学式子表示“169的平方根是43±”应是(”应是( )A A..43169±= B B..43169±=±C C..43169=D D..43169-=-17.算术平方根等于它本身的数是(.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D D、、 1±和0.如果一个数的平方根与立方根是同一个数,那么这个偶数是( ) A. 8 B. 4 C. 0 D. 16 1818..0196.0的算术平方根是(的算术平方根是( ))A A、、14.0B B、、014.0C C、、14.0±D 、014.0± 19.2)6(-的平方根是(的平方根是( ))A 、-、-6B 6 B 6 B、、36C 36 C、、±6D 6 D、、±62020.下列各数有平方根的个数是(.下列各数有平方根的个数是(.下列各数有平方根的个数是( ))((1)5; ((2)(-4-4))2; ((3)-22; ((4)0; (5)-a 2; (6)π; ((7)-a 2-1 A A..3个 B B..4个 C .5个 D D..6个21.2)5(-的平方根是(的平方根是( )A 、 5±B B、、 5 C 、5-D D、、5±2222.下列说法错误的是(.下列说法错误的是(.下列说法错误的是( )A. 1的平方根是1 B. –1的立方根是-1 C. 2是2的平方根的平方根D. –3是2)3(-的平方根的平方根2323.下列命题正确的是(.下列命题正确的是(.下列命题正确的是( )) A A..49.0的平方根是0.7 B 0.7 B..0.7是49.0的平方根的平方根 C C C..0.7是49.0的算术平方根的算术平方根 D D D..0.7是49.0的运算结果的运算结果2424.若数.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是(在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )) A A..a B B..a- C .2a- D D..3a2626.下列各式中,正确的是(.下列各式中,正确的是(.下列各式中,正确的是( )) A.2)2(-=- B. 9)3(2=-C. 39±=±D. 393-=-2727.下列各式中正确的是(.下列各式中正确的是(.下列各式中正确的是( )) A A..12)12(2-=- B .6218=´C C..12)12(2±=- D D..12)12(2=-±28.若a 、b 为实数,且471122++-+-=a aab ,则b a +的值为(的值为( )(A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为的值为 ( ) (A) 2- (B) 5± (C) 5 (D) 5-3030.已知一个正方形的边长为.已知一个正方形的边长为a ,面积为S ,则(,则( )) A.a S =B.S 的平方根是aC.a 是S 的算术平方根的算术平方根D. D.S a ±=31. 31. 若若a 和a -都有意义,则a 的值是(的值是( ))A.0³aB.0£aC.0=aD.0¹a 32.22)4(+x 的算术平方根是(的算术平方根是( )A 、 42)4(+xB B、、22)4(+xC 、42+xD D、、42+x33.2)5(-的平方根是(的平方根是( ) A 、 5± B B、、 5 C 、5- D D、、5±34.下列各式中,正确的是(下列各式中,正确的是( )) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-3535.下列各式中正确的是(.下列各式中正确的是(.下列各式中正确的是( ))A A..12)12(2-=-B .6218=´C C..12)12(2±=- D .12)12(2=-±36.36.下列各组数中互为相反数的是(下列各组数中互为相反数的是(下列各组数中互为相反数的是( ))A A、、2)2(2--与 B B、、382--与 C C、、2)2(2-与 D D、、22与-二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是,所以的平方根是,所以的平方根是 2.非负数a 的平方根表示为的平方根表示为3.因为没有什么数的平方会等于.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是,所以负数没有平方根,因此被开方数一定是,所以负数没有平方根,因此被开方数一定是 4.1681的平方根是的平方根是_____________________;;9的平方根是的平方根是_____________________..5.16的平方根是的平方根是 ,,25的平方根记作的平方根记作 ,结果是,结果是,结果是 6.非负的平方根叫.非负的平方根叫 平方根平方根平方根7.2)8(-= = ,, 2)8(= = 。
13.1.平方根1教学目标:知识与技能目标:4、能用夹值法求一个数的算术平方根的近似值.过程与方法目标:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。
情感与态度目标:通过对实际问题的解决,让学生体验数学与生活实际是紧密联系着的。
教学重点和难点:重点:1.算术平方根的概念。
2. 夹值法及估计一个(无理)数的大小的思想。
难点:1.根据算术平方根的概念正确求出非负数的算术平方根。
2. 夹值法估计一个(无理)数的大小。
教学过程:一 导入新课(2分钟)学校要举行美术作品比赛,小欧很高兴。
他想裁出一块面积为25平方分米的正方形画布,画上自己的参赛作品,这块正方形画布的边长应取多少?说说,你是怎样算出来的?如果面积分别为1、9、16 、36、254、7呢? 二 自学提纲(8分钟)探究1:请认真看课本P68-69的内容,并回答下列问题:1、算术平方根以及有关概念: 一般地,如果一个______x 的平方等于a,即________,那么这个_____x 叫做a 的算术平方根.a 的算术平方根记为______.读作______,a 叫做_______.规定:______________________________________________2、为什么规定:0的算术平方根为0。
3、49表示的意义是什么?它的值是多少?用等式怎样表示?4、7 有意义吗?一般形式中的被开方数a 有什么范围限制?5、a 表示什么意思?它的值是怎样的数?探究2: 请认真看课本P69-72的内容,并回答下列问题:1、估计2的大小∵12=1,22=4 ∴_____________________∵1.42=1.96, 1.52=2.25 ∴_____________________∵1.412=1.9881, 1.422=2.0164 ∴____________________……2、无限不循环小数是指小数位数_________,且小数部分_________的小数。
平方根在物流管理中的应用有哪些关键信息项1、平方根的定义与基本原理数学表达式计算方法2、物流管理中的关键指标库存水平运输成本配送时间3、平方根在库存管理中的应用经济订货量(EOQ)模型安全库存的计算4、平方根在运输规划中的应用车辆调度优化运输路线选择5、平方根在配送时间预测中的应用服务水平与时间的关系基于平方根的时间预测模型6、平方根在物流成本控制中的应用成本与数量的关系分析优化成本的策略7、案例分析成功应用平方根的物流企业案例具体的应用效果和数据8、局限性与挑战数据准确性的影响模型假设的限制9、未来发展趋势与新技术的结合可能性潜在的应用拓展领域11 平方根的定义与基本原理平方根,若一个非负数 x 的平方等于 a,即 x²= a,则这个数 x 叫做 a 的算术平方根,记作√a 。
平方根的计算方法有多种,常见的如牛顿迭代法等。
111 数学表达式对于正数 a ,其平方根可以表示为±√a 。
112 计算方法例如,计算√2 ,可以使用逐步逼近的方法。
12 物流管理中的关键指标在物流管理中,有多个关键指标影响着运营效率和成本。
121 库存水平过高的库存会增加存储成本,过低则可能导致缺货。
122 运输成本包括车辆运营成本、燃料费用等。
123 配送时间及时的配送对于客户满意度至关重要。
13 平方根在库存管理中的应用经济订货量(EOQ)模型是库存管理中的重要工具。
131 经济订货量(EOQ)模型EOQ =√(2DS / H) ,其中 D 是年需求量,S 是每次订货成本,H 是单位库存持有成本。
平方根在此模型中用于平衡订货成本和持有成本。
132 安全库存的计算安全库存的确定也可能涉及平方根的应用,以应对需求的不确定性。
14 平方根在运输规划中的应用车辆调度和运输路线选择直接影响运输效率和成本。
141 车辆调度优化通过考虑车辆容量、运输距离等因素,利用平方根来优化车辆的调配。
142 运输路线选择基于运输量和距离等参数,运用平方根算法选择最优路线。
13.1平方根(1)
吴忠二中刘莹
教学任务分析
教学目标
1、了解算术平方根的概念,会用根号表示正数的算术平方根,并
了解算术平方根的非负性。
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算
术平方根。
3、通过对实际生活中问题的解决,让学生体验数学与生活实际是
紧密联系着的,通过探究活动培养学生动手能力和激发学生学习数学的兴趣。
教学重点:理解算术平方根的概念。
教学难点:根据算术平方根的概念正确求出非负数的算术平方根。
教学流程。