传质过程概述
- 格式:pdf
- 大小:664.84 KB
- 文档页数:31
第六章 精馏§1 传质过程概述 6-1由卫生球挥发引出传质传质过程的定义——物质以扩散的方式,从一相转移到另一相的相界面的转移过程,称为物质的传递过程,简称传质过程。
日常生活中的冰糖溶解于水,樟脑丸挥发到空气中,都有相界面上物质的转移过程。
例如某焦化厂里,用水吸收焦炉气中的氨。
OH NH O H NH 423®+。
如图6-1所示。
图6-1 吸收传质示意图再如某酒精厂里,酒精的增浓与提纯。
即利用乙醇与水的沸点不同,或挥发度不同,使乙醇与水分离的过程。
如图6-2所示。
图6-2 精馏传质示意图这两个例子说明,有物质()O H OH H C NH 2523 , , 在相界面的转移过程,都称为传质过程。
6-2 传质过程举例焦化厂的例子,是吸收操作。
——利用组成混合气体的各组分在溶剂中溶解度不同来分离气体混合物的操作,称为吸收操作。
焦炉气中不仅含有3NH ,还有242 , , , H CH CO CO 等气体,利用3NH 易溶于水,以水为吸收剂,使3NH 从焦炉气中分离出来。
吸收主要用来分离气体混合物,所以有的教NH称为溶质,炉气中其他气体称为材称吸收为气体吸收。
如图6-3所示。
水称为溶剂,3(HCl,制备盐酸,也是一种吸收操作。
惰性组分。
用水吸收氯化氢气体)图6-3吸收塔局部示意图酒精厂的例子,是精馏操作。
——利用液体混合物各组分沸点(或挥发度)的不同,将物质多次部分汽化与部分冷凝,从而使液体混合物分离与提纯的过程,称为精馏操作。
精馏主要用来分离液体混合物,所以有的教材称精馏为液体精馏。
传质过程还有,萃取——利用混合物各组分对某溶剂具有不同的溶解度,从而使混合物各组分得到分离与提纯的操作过程。
例如用醋酸乙酯萃取醋酸水溶液中的醋酸。
如图6-4所示。
此例中醋酸乙酯称为萃取剂(A,水称为稀释剂)(B。
萃取操作能够进行的必要条件是:溶质在萃(S,醋酸称为溶质))取剂中有较大的溶解度,萃取剂与稀释剂要有密度差。
化工传递过程基础总结化工传递过程是化学工程学科的基础,它是研究化学物质在不同状态下的传递现象的学科。
化工传递过程包括物质的传质、热传、动量传递等。
在化学工程中,化工传递过程是实现化学反应和物料加工的关键环节。
本文将介绍化工传递过程的基础知识,包括传质、热传和动量传递。
一、传质传质是指物质在不同相之间的传递现象,包括气体、液体、固体之间的传递。
传质过程是化学反应、物料加工等过程中的重要环节。
传质的速率取决于传质物质的性质、传质界面的性质、传质系统的温度、压力、浓度等因素。
1. 传质的基本概念传质过程可以分为扩散、对流和传递过程的组合。
扩散是指物质通过分子扩散的方式在不同相之间传递,其速率与浓度梯度成正比。
对流是指物质在流体中的传递,其速率与流体速度成正比。
传递过程是扩散和对流的组合,其速率取决于扩散和对流的贡献。
2. 传质的速率传质速率可以用传质通量来表示,传质通量是单位时间内通过传质界面的物质量。
传质通量可以用菲克定律来计算,菲克定律是指在扩散过程中,单位时间内通过单位面积传递物质的量与浓度梯度成正比,与传质物质的性质和传质界面的性质有关。
传质速率还可以用对流传质公式来计算,对流传质公式是指在对流过程中,传质通量与速度梯度成正比,与流体的性质和传质界面的性质有关。
3. 传质的机理传质的机理包括分子扩散、对流传递和物理吸附等。
分子扩散是指物质通过分子间的碰撞在不同相之间传递。
对流传递是指物质在流体中的传递,其速率受到流体的速度、流动方式、物质的性质等因素的影响。
物理吸附是指物质在传质界面上的吸附现象,吸附物质的性质、传质界面的性质等因素会影响吸附的速率。
二、热传热传是指热量在不同相之间的传递现象,包括传导、对流和辐射三种方式。
热传过程是化学反应、物料加工等过程中的重要环节。
热传的速率取决于热传物质的性质、热传界面的性质、热传系统的温度、压力等因素。
1. 热传的基本概念热传过程可以分为传导、对流和辐射三种方式。
第八章传质过程导论第一节概述8-1 物质传递过程(传质过程)传质过程• 相内传质过程• 相际传质过程相内传质过程:物质在一个物相内部从浓度(化学位)高的地方向浓度(化学位)高的地方转移的过程。
实例:煤气、氨气在空气中的扩散,食盐在水中的溶解等等。
相际传质过程:物质由一个相向另一个相转移的过程。
相际传质过程是分离均相混合物必须经历的过程,其作为化工单元操作在工业生产中广泛应用,如蒸馏、吸收、萃取等等。
几种典型的相际传质过程●吸收:物质由气相向液相转移,如图8-1所示A图8-1 吸收传质过程●蒸馏:不同物质在汽液两相间的相互转移,如图8-2所示。
相界面AB图8-2 蒸馏传质过程●萃取,包括液-液萃取和液-固萃取液-液萃取:物质从一个相向另一个相转移。
例如用四氯化碳从水溶液中萃取碘。
液-固萃取:物质从固相向液相转移。
●干燥:液体(通常为水)由固相向气相转移其它相际传质过程:如结晶、吸附、气体的增湿、减湿等等。
传质过程与动量传递、热量传递过程比较有相似之处,但比后二者复杂。
例如与传热过程比较,主要差别为: (1)平衡差别传热过程的推动力为两物体(或流体)的温度差,平衡时两物体的温度相等;传质过程的推动力为两相的浓度差,平衡时两相的浓度不相等。
例如1atm,20ºC 下用水吸收空气中的氨,平衡时液相的浓度为0.582 kmol/m3 ,气相的浓度为3.28×10 - 4kmol/m3 ,两者相差5个数量级。
(2)推动力差别传热推动力为温度差,单位为ºC ,推动力的数值和单位单一;而传质过程推动力浓度有多种表示方法无(例如可用气相分压、摩尔浓度、摩尔分数等等表示),不同的表示方法推动力的数值和单位均不相同。
8-2浓度及相组成的表示方法1. 质量分数和摩尔分数● 质量分数:用w 表示。
以A 、B 二组分混合物为例,有w A = (8-1)● 质量分数:用x 或y 表示。
以A 、B 二组分混合物为例,有x A = (8-2)2. 质量比与摩尔比 ● 质量比:混合物中一个组分的质量对另一个组分的质量之比,用w 表示。
传质过程名词解释
传质过程是指物质在不同相之间传递、传递和混合的过程。
这种过程可以发生在气体、液体或固体之间,使得物质从一个区域向另一个区域移动或分散。
传质过程通常受到浓度差异、温度差异或压力差异的驱动。
在传质过程中,物质可以通过扩散、对流或反应来传递。
扩散是指物质自高浓度区域向低浓度区域的随机运动,而对流是指物质通过流动介质(如气体或液体)的流动传递。
在反应中,物质可以通过化学反应或生物转化等方式进行转化或传递。
传质过程在生物、环境和工程领域都具有重要的应用价值,例如气体交换、溶解、扩散和过滤等。
精馏塔的传质过程
精馏塔是一种用于分离液体混合物的装置,通常由塔体、塔板和填料等组成。
在精馏塔中,传质过程主要包括汽液平衡、传质和相互作用。
首先,在精馏塔中的液体混合物被加热至其沸点,转化为蒸汽。
这些蒸汽进入塔体中,在塔板上与下流的液体接触,达到汽液平衡。
在此过程中,高沸点组分被留在液相中,低沸点组分以蒸汽形式进入上部。
接下来,塔板和填料提供了大量的表面积,以提高气液接触的效果。
当蒸汽通过塔板或填料层时,与下流的液相发生传质作用。
传质过程中,高沸点组分会逐渐从液相传递至气相,低沸点组分则会从气相传递至液相。
最后,相互作用是指在精馏塔中,多个组分之间的相互影响。
这些相互作用可以是物理上的吸附和解吸附,也可以是化学上的反应。
相互作用可以影响组分的分离效果和传质速率,因此在设计和操作精馏塔时需要考虑这些因素。
总的来说,精馏塔的传质过程是一个复杂的过程,涉及到汽液平衡、传质和相互作用等多个方面。
合理设计和操作精馏塔可以实现有效的分离液体混合物。
锂离子固相传质过程
锂离子固相传质过程是锂离子电池中一个重要的过程,涉及到离子在固体材料中的传递和扩散。
这个过程对于电池的性能和输出能量有显著影响。
以下是锂离子固相传质过程的具体描述:
1.电荷转移:在锂离子电池中,电荷转移主要发生在电极与电解质之间的界
面。
当锂离子从正极穿过电解质向负极移动时,会伴随着电子的转移,这就是所谓的电荷转移。
这个过程对电池的效率和使用寿命具有关键作用。
2.相变:在固体材料中,离子可能会在不同的相之间转移。
例如,在正负电
极和电解质中,锂离子可能会在不同的晶格结构或化学状态之间转移。
这种相变对于锂离子的传递和扩散有重要影响。
3.新相生成:在新电池充电或放电过程中,锂离子可能与固体电极或电解质
发生化学反应,生成新的化合物或相。
这种新相的形成可能会影响锂离子的传递和扩散。
4.带电粒子的输送传递:在锂离子电池中,带电粒子(如锂离子)在正极和
负极之间的输送传递是实现电能存储和释放的关键环节。
这个过程涉及到离子的扩散和迁移,对于电池的输出能量和充放电速度具有重要影响。
总的来说,锂离子固相传质过程是一个复杂的物理化学过程,涉及到电荷转移、相变、新相生成以及带电粒子的输送传递等多个方面。
这个过程对于锂离子电池的性能和可靠性至关重要,是研究电池性能和应用的关键因素之一。