对于选项A,因为发芽与不发芽的概率不同,所以不是古典概型;
对于选项
B,因为摸到白球与黑球的概率都是
1 2
,
所以是古典概
型;
对于选项C,因为基本事件有无限个,所以不是古典概型;
对于选项D,因为命中10环,命中9环,……,命中0环的概率不相同,
所以不是古典概型.
答案:B
题型一
题型二
题型三
题型四
古典概型的概率计算 【例3】 某商场举行购物抽奖促销活动,规定每位顾客从装有编 号为0,1,2,3四个相同小球的抽奖箱中,每次取出一个球记下编号后 放回,连续取两次.若取出的两个小球号码相加之和等于6,则中一等 奖;若等于5,则中二等奖;若等于4或3,则中三等奖. (1)求中三等奖的概率; (2)求中奖的概率. 分析:分别写出所有基本事件,利用古典概型的概率计算公式求 出概率.
【做一做2-1】 袋中有2个红球,2个白球,2个黑球,从里面任意摸 出2个小球,下列事件不是基本事件的是( )
A.{正好2个红球} B.{正好2个黑球} C.{正好2个白球} D.{至少1个红球} 解析:至少1个红球包含:一红一白或一红一黑或2个红球,所以{至 少1个红球}不是基本事件,其他事件都是基本事件. 答案:D
【做一做2-2】 已知一个家庭有两个小孩,则所有的基本事件是
() A.(男,女),(男,男),(女,女) B.(男,女),(女,男) C.(男,男),(男,女),(女,男),(女,女) D.(男,男),(女,女) 解析:用坐标法表示:将第一个小孩的性别放在横坐标位置,第二
个小孩的性别放在纵坐标位置,可得4个基本事件(男,男),(男,女),(女, 男),(女,女).
【做一做1】 下列试验中,是古典概型的有( ) A.抛掷一枚图钉,发现钉尖朝上 B.某人到达路口看到绿灯 C.抛掷一粒均匀的正方体骰子,观察向上的点数 D.从10 cm3水中任取1滴,检查有无细菌 答案:C