高考精华总结---高考数学(理科)知识点总结
- 格式:doc
- 大小:2.25 MB
- 文档页数:42
高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
高考数学理科知识点总结归纳一、代数与函数1.1 基本代数运算法则1.1.1 加法与减法法则1.1.2 乘法与除法法则1.1.3 幂运算法则1.1.4 开方与根号法则1.2 一次函数与二次函数1.2.1 一次函数的定义与性质1.2.2 二次函数的定义与性质1.2.3 一次函数与二次函数的图像特征1.2.4 一次函数与二次函数的应用1.3 指数与对数1.3.1 指数的定义与性质1.3.2 对数的定义与性质1.3.3 指数方程与对数方程的解法1.3.4 指数模型与对数模型的应用1.4 不等式与绝对值1.4.1 不等式的定义与性质1.4.2 一元一次不等式的解法1.4.3 一元一次绝对值不等式的解法1.4.4 二次不等式与绝对值不等式的解法二、几何与空间2.1 平面几何2.1.1 直线、线段与射线的定义与性质 2.1.2 角的定义与性质2.1.3 三角形的性质与判定定理2.1.4 一些重要的平面几何定理与问题2.2 空间几何2.2.1 基本空间几何对象的定义与性质 2.2.2 直线与平面的关系2.2.3 空间中的角与面的性质2.2.4 空间几何的应用2.3 立体几何2.3.1 立体图形的分类与性质2.3.2 体积与表面积的计算2.3.3 空间向量与几何问题的解决2.3.4 立体几何的应用三、概率与统计3.1 随机事件与概率3.1.1 随机事件的定义与性质3.1.2 概率的基本性质与计算方法3.1.3 互斥事件与相关事件的概率计算 3.1.4 概率模型与概率分布的应用3.2 统计与统计图3.2.1 数据的收集与处理3.2.2 统计图的绘制与分析3.2.3 随机变量与概率分布的描述3.2.4 统计与概率的应用于问题的解决3.3 抽样与推断3.3.1 抽样与抽样误差的定义与性质3.3.2 点估计与区间估计的方法与应用3.3.3 假设检验与均值差的检验3.3.4 统计推断在现实问题中的应用结语:通过对高考数学理科知识点的总结与归纳,我们可以清晰地掌握重点知识,提高解题能力。
理科高三数学知识点总结等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:(1)a>bb(2)a>b,b>ca>c(传递性)(3)a>ba+c>b+c(c∈R)(4)c>0时,a>bac>bcc<0时,a>bac运算性质有:(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。
一般地,证明不等式就是从条件出发施行一系列的推出变换。
解不等式就是施行一系列的等价变换。
因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
高中数学集合复习知识点任一A,B,记做ABAB,BA,A=BAB={|A|,且|B|}AB={|A|,或|B|}Card(AB)=card(A)+card(B)-card(AB)(1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)AB,A是B成立的充分条件BA,A是B成立的必要条件AB,A是B成立的充要条件1.集合元素具有①确定性;②互异性;③无序性2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法(3)集合的运算①A∩(B∪C)=(A∩B)∪(A∩C)②Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB(4)集合的性质n元集合的字集数:2n真子集数:2n-1;非空真子集数:2n-2高中数学集合知识点归纳1、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。
高考数学知识点和公式总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高考数学知识点和公式总结高考数学知识点和公式总结(归纳)高中数学理科是10本书,其中的数学公式非常多,如果基础知识不扎实,平时做题查阅公式就要浪费很多时间。
高三理科数学知识点总结数学知识在高中阶段,是大家的一道坎,理科数学更是。
那么关于高三理科数学完整的知识点总结,同学们知道吗?如果不知道,赶快来小编这里阅读?下面是由小编为大家整理的“高三理科数学知识点总结”,仅供参考,欢迎大家阅读。
高三理科数学知识点总结符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
直译法:求动点轨迹方程的一般步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高考理科数学必考知识内容(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高考理科数学必考知识内容高考理科数学必考知识内容大全高考数学作为高考考试中的一个大科目,也是难倒众人的一门科目,高考中数学必考哪些内容呢?下面是本店铺为大家整理的关于高考理科数学必考知识内容,欢迎大家来阅读。
高考数学公式理科总结高考数学公式理科总结数学作为高考的一门科目,深受大多数理科生的青睐。
因为无论是数学的思维锻炼还是需要掌握的数学公式,都是高考备考不可或缺的一部分。
今天,我们就来总结一下理科数学中常用的数学公式及其应用。
一、代数部分1.一元二次方程公式:ax²+bx+c=0,求根公式为x=(-b±√b²-4ac)/2a。
应用:用于求解一元二次方程,例如求解公路修建所需要的材料和成本等。
2.等比数列公式:an=a1q^(n-1)(其中a1为首项,q为公比,an为第n项)。
应用:用于解决各种与成长或增长相关的问题,如人口增长、利润的增长等。
3.排列组合公式:排列公式为A(n,m)=n!/(n-m)!,组合公式为C(n,m)=n!/m!(n-m)!。
应用:用于处理不同的复杂问题,例如排列组合问题、选择问题、不重复随机抽样问题等。
二、几何部分1.三角函数公式:sinθ=对边/斜边,cosθ=邻边/斜边,tanθ=对边/邻边。
应用:用于三角函数问题,例如角度求解、三角函数值等。
2.圆公式:圆的面积公式为A=πr²,圆的周长公式为C=2πr。
应用:用于解决圆形问题,例如圆周运动、圆的切线、圆的切点等。
3.立体几何公式:三棱锥表面积公式为S=ab+a√(a²+b²+c²-2abcosA),三棱锥体积公式为V=1/3abh。
应用:用于解决空间几何问题,例如三棱锥表面积和体积的计算等。
三、概率统计部分1.样本调查公式:样本调查中常用的统计量有平均数、中位数、众数、方差、标准差、相关系数、回归方程等。
应用:用于处理随机事件、样本调查、统计数据等问题。
2.基本概率公式:P(A)=m/n,其中m表示事件A的样本点个数,n表示整个样本点个数。
应用:用于基本的统计概率问题,例如计算事件发生的概率等。
3.正态分布公式:正态分布的概率密度函数为f(x)=1/σ√2πexp(-(x-μ)²/(2σ²))。
理科高考知识点归纳一、数学1. 数与式1.1 自然数与整数1.2 有理数1.3 实数1.4 数的运算1.5 数的性质与运算法则2. 代数式与方程2.1 代数式2.2 简单方程与方程解法2.3 一元二次方程2.4 二次函数3. 坐标系与函数3.1 直角坐标系3.2 函数及其图象3.3 幂函数、指数函数与对数函数4. 图形的性质与变换4.1 基本图形的性质4.2 三角形与四边形4.3 平面向量4.4 图形的平移、旋转和对称5. 平面几何与立体几何5.1 平面几何的基本概念与定理5.2 立体几何的基本概念与定理6. 概率与统计6.1 概率的基本概念与性质6.2 统计的基本概念与方法二、物理1. 力学1.1 运动的描述与研究方法1.2 物体的力学性质1.3 牛顿运动定律与万有引力定律1.4 动量与能量2. 热学2.1 热现象与内能2.2 理想气体状态方程2.3 热力学第一定律与第二定律3. 光学3.1 光的传播与光现象3.2 镜子与透镜3.3 光的衍射与干涉4. 电学4.1 电荷与电场4.2 电流与电路4.3 电磁感应与电磁波5. 声学5.1 声的传播与声源5.2 声的特性与听觉三、化学1. 物质的组成与性质1.1 原子结构和元素周期表1.2 化学键与化合物1.3 溶液与氧化还原反应2. 化学反应与化学方程式2.1 反应速率与平衡常数2.2 酸、碱与盐2.3 酸碱中和与滴定3. 金属与非金属3.1 金属与合金3.2 非金属元素与化合物3.3 化学能与化学电池4. 有机化学基础4.1 有机化合物与石油化学4.2 有机物的常见性质和反应以上是理科高考知识点的归纳,不同科目有着各自的重点和难点,学生在备考过程中需要合理安排时间,深入理解和掌握这些知识点。
同时,多做真题、模拟题和练习题,加强对知识的运用和理解能力。
通过系统复习和巩固,提高解决问题的能力,取得理科高考的优异成绩。
高考常考数学知识点理科高考是每个学生所面临的一场考试,而其中数学是让许多理科生感到头疼的科目之一。
为了帮助同学们更好地应对高考数学考试,本文将针对高考常考的数学知识点进行详细论述和解析,不仅涵盖基础知识,还包括一些难度稍微较高的题型。
一、函数与方程在高考数学中,函数与方程是数学的基础,也是常考的知识点之一。
函数的概念被广泛运用于各个领域,从图像的绘制到实际问题的解决。
1. 一次函数一次函数是最简单的一种函数形式,其表达式为y=ax+b,其中a 和b分别为常数,a不为0。
在考试中,经常会涉及到根据给定的一次函数方程绘制图像、求解方程或者求函数的性质等问题。
2. 二次函数二次函数是高考中的重点和难点,其表达式为y=ax²+bx+c,其中a不为0。
二次函数的图像是一个抛物线,通过抛物线的开口方向和顶点位置,我们可以判断出二次函数的性态和其他特征。
3. 反函数反函数是一个十分重要的概念,它与原函数的输入输出相反。
在考试中,我们可以通过求解反函数来确定函数的对称轴和奇偶性。
二、数列与数学归纳法数列与数学归纳法也是高考中经常出现的知识点。
数列是一系列按照规律排列的数的集合,而数学归纳法则是解决数列问题非常有效的方法。
1. 等差数列与等差中项等差数列是一个常数项之间的差值相等的数列,我们可以通过求解等差数列的公差和首项来确定数列的性质和规律。
而等差中项则是等差数列中两个给定项的中间项。
2. 等比数列与等比中项等比数列是一个常数项之间的比值相等的数列,求解等比数列的公比和首项可以确定数列的规律和性质。
而等比中项则是等比数列中两个给定项的中间项。
3. 数学归纳法数学归纳法是解决数列问题的重要方法之一,它通过验证当某个条件成立时,我们可以推断出此条件对于另一个数也成立。
在高考中,经常会考察学生对于数学归纳法的理解和应用。
三、概率与统计概率与统计是高考数学中另一个重要的知识点,它们与我们的日常生活息息相关,涉及到数据的收集、处理和分析。
高中数学第一章-集合(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用2. 集合的表示法:列举法、描述法、图形表示法 集合元素的特征:确定性、互异性、无序性 集合的性质: ① 任何一个集合是它本身的子集,记为 A A ;② 空集是任何集合的子集,记为 A ;③ 空集是任何非空集合的真子集; 如果A B ,同时B A ,那么A = B. 如果A B ,B C ,那么A C . [注]:①Z= {整数} (V)Z ={全体整数} (X)② 已知集合S 中A 的补集是一个有限集,贝燦合A 也是有限集.(X)(例:S=N ; A= N ,则CA= {0}) ③ 空集的补集是全集. ④ 若集合 A=集合 B ,贝UC A = ,(A B =C S(C A B ) =D (注:C A B =).3. ①{ (x , y ) |xy =0, x € R , y € R}坐标轴上的点集. ②{ (x , y ) |xy < 0, x € R , y € R 二、四象限的点集. ③{ (x , y ) |xy >0, x € R , y € R} 一、三象限的点集 [注]:①对方程组解的集合应是点集4.①n 个元素的子集有2n 个•②n 个元素的真子集有2n —1个. ③n 个元素的非空真子集有 2n - 2个. 5•⑴①一个命题的否命题为真,它的逆命题一定为真 .否命题 逆命题.②一个命题为真,则它的逆否命题一定为真 .原命题逆否命题.例:①若a b 5,则a 2或b 3应是真命题.解:逆否:a = 2且b = 3,则a+b = 5,成立,所以此命题为真. ② x 1且y 2,二_ x y 3.解:逆否:x + y =3 =,x = 1 或 y = 2.x 但y 2='x y 3,故x y 3是x 1且y 2的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围 3. 例:若 x 5, x 5或x 2. 4. 集合运算:交、并、补.交:AI B {x|x 代且x B} 并:AU B {x|x A 或x B} 补:(A {x U,且x A} 5. 主要性质和运算律例:x y 3 2x 3y 1解的集合{(2 , 1)}.②点集与数集的交集是(例:A ={( x , y)| y =x+1}B={ y|y =x 2+1}则 A n B =)(1)包含关系 A• A代 B,B A, A C U ,C L AU,AC;AI B A, AI B B; AU B代 AU B B⑵ 等价关系 :A BAI BAAU B BQjAUB U⑶集合的运算律:交换律: A BB A; A B B A.结合律:(A B) C A (BC);(A B) C A (B C)分配律:. A (BC ) (A B) (AC );A (BC) (A B)(A C)0-1 律:I A 7U A 代U 1 AAU U A U等幂律: A A A, A A A.求补律:A n QA=O A U C U A=UC U L=^ C U ^ =U反演律:C U (A n B )= (C L A ) U (C U B ) C U (A U B )= (C U AA n (GB )6.有限集的元素个数 定义:有限集 A 的元素的个数叫做集合 A 的基数,记为card( A)规定card( $ ) =0.基本公式:(1) card (AU B) card (A) card (B) card (AI B) (2) card (AU B U C) card (A) card (B) card (C)card (AI B) card (B I C) card (C I A) card (A I BI C)(3) card ( U A )= card(U)- card(A)(二) 含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法根轴法(零点分段法)① 将不等式化为a o (x-x i )(x-x 2)…(x-x 初>0(<0)形式,并将各因式 x 的系数化"+”;(为了统一方便)② 求根,并在数轴上表示出来;③ 由右上方穿线,经过数轴上表示各根的点(为什么?);④ 若不等式(x 的系数化“ +”后)是“ >0” ,则找“线”在 x 轴上方的区间;若不等式是“ <0”则找“线”在x 轴下方的区间.a n 0( 0)(a ° 0)的解可以根据各区间的符号确定特例①一元一次不等式ax>b 解的讨论;② 一元二次不等式 ax 2+box>0(a>0)解的讨论.则不等式 a 0x na 1xn 1a 2xn 2互逆二次函数\U 1y ax 2 bx c(a 0)的图象 trv JVL一兀二次方程ax 2 bx c 0 a 0的根有两相异实根X 1,X 2(X 1 X 2)有两相等实根b x1 x22a无实根ax 2 bx c 0 (a 0)的解集xx 为或x x 2b x x—— 2aRax 2 bx c 0 (a 0)的解集xx x x 22. 分式不等式的解法f (x )>o (或 f (x )<o ); f(x)》o (或 f (x) W 0)的形式, g(x) g(x) g(x) g(x)(2)定义法:用“零点分区间法”分类讨论 . (3 )几何法:根据绝对值的几何意义用数形结合思想方法解题 .4. 一元二次方程根的分布 一元二次方程 ax 2+bx+c=0(a 丰 0)(1) 根的“零分布”:根据判别式和韦达定理分析列式解之(2 )根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之 (三) 简易逻辑1、 命题的定义:可以判断真假的语句叫做命题。
高考数学知识点总结及公式高考数学知识点总结及公式大全高考是为普通高等学校招生设置的全国性统一考试,每年6月7日-10日实施,是一种大型选拔形式。
以下是小编准备的高考数学知识点总结及公式,欢迎借鉴参考。
高考数学知识点总结专题一:集合考点1:集合的基本运算考点2:集合之间的关系专题二:函数考点3:函数及其表示考点4:函数的基本性质考点5:一次函数与二次函数.考点6:指数与指数函数考点7:对数与对数函数考点8:幂函数考点9:函数的图像考点10:函数的值域与最值考点11:函数的应用专题三:立体几何初步考点12:空间几何体的结构、三视图和直视图考点13:空间几何体的表面积和体积考点14:点、线、面的`位置关系考点15:直线、平面平行的性质与判定考点16:直线、平面垂直的判定及其性质考点17:空间中的角考点18:空间向量专题四:直线与圆考点19:直线方程和两条直线的关系考点20:圆的方程考点21:直线与圆、圆与圆的位置关系专题五:算法初步与框图考点22:算法初步与框图专题六:三角函数考点23:任意角的三角函数、同三角函数和诱导公式考点24:三角函数的图像和性质考点25:三角函数的最值与综合运用考点26:三角恒等变换考点27:解三角形专题七:平面向量考点28:平面向量的概念与运算考点29:向量的运用专题八:数列考点30:数列的概念及其表示考点31:等差数列考点32:等比数列考点33:数列的综合运用专题九:不等式考点34:不等关系与不等式考点35:不等式的解法考点36:线性规划考点37:不等式的综合运用高考数学公式总结必背常用的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高考数学知识点总结(最新11篇)高考数学知识点总结篇一1.“集合”与“常用逻辑用语”:强调了集合在表述数学问题时的工具性作用,突出了“韦恩图”在表示集合之间的关系和运算中的作用。
需要特别注意能够对含有一个量词的全称命题进行否定。
2.函数:对分段函数提出了明确的要求,要求能够简单应用;反函数问题只涉及指数函数和对数函数;注意函数零点的概念及其应用。
3.立体几何:第一部分强调对各种图形的识别、理解和运用,尤其是新课标高考新增加的三视图一定会重点考查。
第二部分的位置关系侧重于利用空间向量来进行证明和计算。
4.解析几何:初步了解用代数方法处理几何问题的思想,加强对椭圆和抛物线的理解和综合应用,重点掌握椭圆和抛物线与其他知识相结合的解答题。
5.三角函数:本部分的重点是“基本三角函数关系”、“三角函数的图象和性质”和“正、余弦定理的应用”。
6.平面向量:掌握向量的四种运算及其几何意义,理解平面向量数量积的物理意义以及会用向量方法解决某些简单的平面几何问题。
我们应注意平面向量与平面几何、解析几何、三角函数等知识的综合。
7.数列:了解数列是自变量为正整数的一类函数和等差数列与一次函数、等比数列与指数函数的关系。
能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。
8.不等式:要求会解一元二次不等式,用二元一次不等式组表示平面区域,会解决简单的线性规划问题。
会用基本不等式解决简单的最大(小)值问题。
9.导数:理解导数的几何意义,要求关注曲线的切线问题;能利用导数求函数的'单调性、单调区间;函数的极值;闭区间上函数的最大值、最小值。
10.算法:侧重“算法”的三种基本逻辑结构与“程序框图”的复习。
11.计数原理:强调对计数原理的“理解”,避免抽象地讨论计数原理,而且强调计数原理在实际中的应用,尤其是要注意与概率的综合。
要想成功就必须付出汗水。
12.概率与统计:高考对概率与统计的考查越来越趋向综合型、交汇型。
高考数学知识点总结高考数学知识点总结精选15篇总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以促使我们思考,因此我们需要回头归纳,写一份总结了。
总结怎么写才不会千篇一律呢?以下是小编收集整理的高考数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
高考数学知识点总结1易错点1 遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B 高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
易错点2 忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3 四种命题的结构不明致误错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
易错点4 充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。
⾼中数学知识点全总结最全版⾼中数学知识点全总结最全版有哪些?⾼中数学⼩题⼀般是信息量少、运算量⼩,易于把握,不要轻易放过,应争取在⼤题之前尽快解决,⼀起来看看⾼中数学知识点全总结最全版,欢迎查阅!⾼中数学重点知识点1.有理数:(1)凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不⼀定是负数,+a也不⼀定是正数;?不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有⾃⼰的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有⾃⼰的特性;(4)⾃然数?0和正整数;a>0?a是正数;a<0?a是负数;a≥0?a是正数或0?a是⾮负数;a≤0?a是负数或0?a是⾮正数.2.数轴:数轴是规定了原点、正⽅向、单位长度的⼀条直线.3.相反数:(1)只有符号不同的两个数,我们说其中⼀个是另⼀个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0?a+b=0?a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本⾝,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表⽰某数的点离开原点的距离;(2)绝对值可表⽰为:或;(3);;(4)|a|是重要的⾮负数,即|a|≥0;5.有理数⽐⼤⼩:(1)正数永远⽐0⼤,负数永远⽐0⼩;(2)正数⼤于⼀切负数;(3)两个负数⽐较,绝对值⼤的反⽽⼩;(4)数轴上的两个数,右边的数总⽐左边的数⼤;(5)-1,-2,+1,+4,-0.5,以上数据表⽰与标准质量的差,绝对值越⼩,越接近标准。
6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若ab=1?a、b互为倒数;若ab=-1?a、b互为负倒数.等于本⾝的数汇总:相反数等于本⾝的数:0倒数等于本⾝的数:1,-1绝对值等于本⾝的数:正数和0平⽅等于本⾝的数:0,1⽴⽅等于本⾝的数:0,1,-1.7.有理数加法法则:(1)同号两数相加,取相同的`符号,并把绝对值相加;(2)异号两数相加,取绝对值较⼤加数的符号,并⽤较⼤的绝对值减去较⼩的绝对值;(3)⼀个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去⼀个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)⼏个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
高考数学必备知识点理科高考数学是理科生的必修科目之一,是考生们进入大学的重要一关。
为了顺利应对数学考试,掌握一些必备的知识点是非常重要的。
本文将为大家介绍一些高考数学必备知识点,以帮助理科生们更好地备考和应对考试。
1. 代数与函数代数与函数是数学中的基础内容,也是高考数学的重点之一。
其中包括以下几个方面的知识点:- 线性方程组与矩阵:了解线性方程组的解法和矩阵的基本运算规则;- 二次函数与一元二次方程:掌握一元二次方程的解法和二次函数的性质;- 指数与对数:了解指数和对数函数的性质,掌握其基本运算法则;- 函数的概念与性质:了解函数的定义、分类和基本性质。
2. 三角函数三角函数是高考数学中的另一个重要知识点。
在三角函数的学习中,需要掌握以下内容:- 不同角度的三角函数值:熟练掌握各种特殊角的三角函数值;- 三角函数的性质:了解正弦、余弦、正切等函数的基本性质;- 三角函数的图像与变换:掌握三角函数的图像及其在平面坐标系中的变换。
3. 解析几何解析几何在高考数学中占据重要的地位,考察的内容也比较广泛。
解析几何的重点包括以下方面:- 坐标系与直线:了解不同坐标系下的直线方程表示方法;- 圆与圆方程:掌握圆的性质、方程以及与直线的交点等知识;- 曲线的方程:了解抛物线、椭圆、双曲线等曲线的方程和性质。
4. 排列组合与概率排列组合与概率是高考数学中的难点,但也是重点内容之一。
了解以下几个方面的知识点将有助于解决相应的题目:- 排列与组合:熟练掌握排列和组合的计算方法和应用;- 概率初步:了解基本概率模型和计算公式,掌握事件的概率计算方法。
5. 数列与数列极限数列与数列极限是高考数学的重点考点,包括以下内容:- 等差数列与等比数列:了解数列的概念和性质,熟练掌握等差数列和等比数列的通项公式和求和公式;- 数列极限初步:理解数列极限的概念、性质和计算方法。
总结通过学习和掌握上述的高考数学必备知识点,理科生们可以提高数学考试的得分率,更好地应对高考数学科目。
2013高考数学(理科)知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔==I Y (3)德摩根定律: ()()()()()()C C C C C C U UUUUUA B A B A B A B Y I I Y ==,4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa Y5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝ 若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。
) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)022334Y Y 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。
[](答:,)a a -11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? ()如:,求f x e x f x x +=+1(). 令,则t x t =+≥10∴x t =-21 ∴f t e t t ()=+--2121 ()∴f x ex x x ()=+-≥-2121012. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗?(①反解x ;②互换x 、y ;③注明定义域)()()如:求函数的反函数f x xx xx ()=+≥-<⎧⎨⎪⎩⎪1002()()(答:)f x x x x x -=->--<⎧⎨⎪⎩⎪1110() 13. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;③设的定义域为,值域为,,,则y f(x)A C a A b C f(a)=b f 1=∈∈⇔=-()b a [][]∴====---f f a f b a f f b f a b 111()()()(), 14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性?[](,,则(外层)(内层)y f u u x y f x ===()()()ϕϕ[][]当内、外层函数单调性相同时为增函数,否则为减函数。
)f x f x ϕϕ()() ()如:求的单调区间y x x =-+log 1222(设,由则u x x u x =-+><<22002 ()且,,如图:log 12211u u x ↓=--+uO 1 2 x当,时,,又,∴x u u y ∈↑↓↓(]log 0112当,时,,又,∴x u u y ∈↓↓↑[)log 1212∴……)15. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。
(在个别点上导数等于a b f x f x '()()≥0 零,不影响函数的单调性),反之也对,若呢?f x '()≤0[)如:已知,函数在,上是单调增函数,则的最大a f x x ax a >=-+∞013() 值是( ) A. 0B. 1C. 2D. 3(令f x x a x a x a '()=-=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪≥333302则或x ax a ≤-≥33由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤ ∴a 的最大值为3)16. 函数f (x )具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔ 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔ 注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
()若是奇函数且定义域中有原点,则。
2f(x)f(0)0=如:若·为奇函数,则实数f x a a a x x ()=+-+=2221(∵为奇函数,,又,∴f x x R R f ()()∈∈=000即·,∴)a a a 22210100+-+==又如:为定义在,上的奇函数,当,时,,f x x f x xx()()()()-∈=+1101241()求在,上的解析式。
f x ()-11()()(令,,则,,x x f x xx ∈--∈-=+--1001241()又为奇函数,∴f x f x x x xx()()=-+=-+--241214()又,∴,,)f f x x x x xxxx ()()()0024110024101==-+∈-=+∈⎧⎨⎪⎪⎩⎪⎪17. 你熟悉周期函数的定义吗?()(若存在实数(),在定义域内总有,则为周期T T f x T f x f x ≠+=0()() 函数,T 是一个周期。
)()如:若,则f x a f x +=-()(答:是周期函数,为的一个周期)f x T a f x ()()=2 ()又如:若图象有两条对称轴,f x x a x b ()==⇔ 即,f a x f a x f b x f b x ()()()()+=-+=- 则是周期函数,为一个周期f x a b ()2- 如:18. 你掌握常用的图象变换了吗?f x f x y ()()与的图象关于轴对称- f x f x x ()()与的图象关于轴对称- f x f x ()()与的图象关于原点对称-- f x f x y x ()()与的图象关于直线对称-=1 f x f a x x a ()()与的图象关于直线对称2-= f x f a x a ()()()与的图象关于点,对称--20将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00 上移个单位下移个单位b b b b y f x a b y f x a b()()()()>−→−−−−−−−−>=++=+-00 注意如下“翻折”变换:f x f x f x f x ()()()(||)−→−−→−()如:f x x ()log =+21()作出及的图象y x y x =+=+log log 2211yy=log 2xO 1 x19. 你熟练掌握常用函数的图象和性质了吗?(k<0) y (k>0)y=bO’(a,b)Ox=a()()一次函数:10y kx b k =+≠()()()反比例函数:推广为是中心,200y k x k y b k x ak O a b =≠=+-≠'()的双曲线。
()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a=++≠=+⎛⎝ ⎫⎭⎪+- 顶点坐标为,,对称轴--⎛⎝ ⎫⎭⎪=-b aac b a x ba 24422开口方向:,向上,函数a y ac b a>=-0442mina y acb a<=-0442,向下,max应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程ax bx c x x y ax bx c x 212200++=>=++,时,两根、为二次函数的图象与轴∆ 的两个交点,也是二次不等式解集的端点值。
ax bx c 200++><()②求闭区间[m ,n ]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
如:二次方程的两根都大于ax bx c k b a k f k 20020++=⇔≥->>⎧⎨⎪⎪⎩⎪⎪∆()y(a>0)O k x 1 x 2 x一根大于,一根小于k k f k ⇔<()0 ()()指数函数:,401y a a a x =>≠ ()()对数函数,501y x a a a =>≠log 由图象记性质! (注意底数的限定!)yy=a x (a>1)(0<a<1) y=log a x(a>1) 1O 1(0<a<1)()()“对勾函数”60y x k xk =+>利用它的单调性求最值与利用均值不等式求最值的区别是什么?yO x-k k20. 你在基本运算上常出现错误吗? 指数运算:,a a aaa pp 01010=≠=≠-(())aaa aaa m nmn m nmn=≥=>-((010)),()对数运算:·,log log log a a a M N M N M N =+>>00 log log log log log aa a a n a M N M N M nM =-=,1对数恒等式:a x a xlog =对数换底公式:log log log log log a c c a n a b b a b nmb m =⇒=21. 如何解抽象函数问题? (赋值法、结构变换法)如:(),满足,证明为奇函数。