最新六年级数学圆柱与圆锥复习讲义(教师版).docx
- 格式:docx
- 大小:59.86 KB
- 文档页数:3
个性化辅导讲义圆柱和圆锥一:圆柱和圆锥的认识知识点一探索圆柱的特征例题一(1)圆柱的底面圆柱的上、下两个面叫做圆柱的底面。
圆柱的底面是两个完全相同的圆形。
(2)圆柱的侧面围成圆柱的曲面叫做圆柱的侧面。
(3)圆柱的高圆柱两个底面之间的距离叫做圆柱的高。
圆柱有无数条高,每条高都相等。
(4)圆柱的透视图如果把圆柱形实物画在平面上,它的透视图如上图。
练习一填空1、圆柱的两个圆面叫做(),它们是()的圆形;周围的面叫做();圆柱两个底面之间的距离叫做()。
一个圆柱有()条高。
二判断1、上下两个底面相等的物体一定是圆柱体。
()2、圆柱的侧面沿着高展开后会得到一个长方形或者正方形。
()3、同一个圆柱底面之间的距离处处相等。
()4、一个圆柱,底面周长是12.56厘米,高是12.56厘米。
这个圆柱的侧面沿着高展开,得到一个长方形。
()知识点二探索圆锥的特征例题一(1)圆锥的顶点圆锥有一个顶点(2)圆锥的底面圆锥的底面是一个圆形,圆锥有一个底面。
(3)圆锥的高从圆锥的顶点到底面圆心的距离是圆锥的高。
(4)圆锥的侧面圆锥的侧面是一个曲面。
如果把圆锥形实物画在平面上,它的透视图如上图。
练习一填空1、圆锥有()个顶点,圆锥有()个底面,它的底面是一个()形,从圆锥的顶点到底面圆心的距离叫做圆锥的(),圆锥的侧面是一个()图形。
二判断(1)圆锥的底面是一个椭圆()(2)圆锥的侧面是一个曲面,展开后是一个扇形()(3)从圆锥的顶点到底面上任意一点的连线叫做圆锥的高()(4)圆锥从正面或侧面看,都是一个等腰三角形。
()知识点三圆柱和圆锥的特征的异同例题一形体相同点不同点底面形状侧面底面个数侧面展开高圆柱圆形曲面 2 长方形无数条圆锥圆形曲面 1 扇形1条练习,辨别上面六个图形哪些是圆柱?哪些是圆锥?练习1:一填空1、把一张长方形的纸的一条边固定贴在一根木棒上,然后快速转动,得到一个()。
2、一个圆柱的侧面展开后得到一个长方形,长是12.56厘米,宽是3厘米。
六年级下册数学教案《第3单元圆柱与圆锥整理和复习》人教版一. 教材分析本节课为人教版六年级下册数学第3单元“圆柱与圆锥”的整理和复习。
本单元的主要内容是圆柱和圆锥的特征、体积计算以及应用。
教材通过复习和整理,使学生对圆柱和圆锥的概念、性质、计算方法等有一个清晰、系统的认识,提高学生的空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经学习了圆柱和圆锥的基本知识,对圆柱和圆锥的特征、体积计算有一定的了解。
但部分学生对一些概念和公式的理解不够深入,应用能力有待提高。
此外,学生的空间想象能力和解决问题的能力参差不齐,需要在教学中加以关注和培养。
三. 教学目标1.知识与技能:通过对圆柱和圆锥的复习,使学生掌握圆柱和圆锥的基本概念、性质和体积计算方法,提高空间想象能力和解决问题的能力。
2.过程与方法:通过自主学习、合作交流、探究发现等方法,培养学生的动手操作能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和团队协作精神,使学生感受到数学与生活的密切联系。
四. 教学重难点1.重点:圆柱和圆锥的基本概念、性质和体积计算方法的掌握。
2.难点:对圆柱和圆锥体积公式的理解与应用,以及空间想象能力的培养。
五. 教学方法1.自主学习:引导学生独立思考,自主探究,发现和总结圆柱和圆锥的特点和规律。
2.合作交流:鼓励学生与他人分享学习心得,互相讨论,共同解决问题。
3.探究发现:引导学生动手操作,观察分析,发现圆柱和圆锥的体积计算方法。
4.启发引导:教师通过提问、设疑,引导学生思考,激发学生的学习兴趣。
六. 教学准备1.教具:圆柱和圆锥模型、图片、课件等。
2.学具:学生每人准备一个圆柱和圆锥模型,以及相关计算工具。
七. 教学过程1.导入(5分钟)利用课件展示生活中的圆柱和圆锥物体,引导学生回顾已学的知识,为新课的复习打下基础。
2.呈现(10分钟)教师通过讲解和示范,呈现圆柱和圆锥的基本概念、性质和体积计算方法。
人教版六年级下册数学期末复习专题讲义-3.圆柱和圆锥【知识点归纳】一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:(1)以长方形的长为底面周长,宽为高;(2)以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果2r,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=2πr 侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh 体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积4、圆柱与圆锥等底等高 ,体积相差32 四、温馨提示: (1)已知圆锥的底面半径和高,可以直接利用公式:πr 2h ÷3来求圆锥的体积;(2)已知圆锥的底面直径和高,可以直接利用公式:π(d ÷2)2h ÷3求圆锥的V;(3)已知圆锥的底面周长和高,可以直接利用公式:π(C ÷2÷π)2h ÷3求出圆锥的体积。
期末备考—北师大版六年级下册数学优选题单元复习讲义第一单元《圆柱和圆锥》1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r 表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
最新六年级数学圆柱与圆锥复习讲义(教师版 )知教学:
一、柱的特征及表面
(一)柱的特征.
1、柱的.
同学出生活中柱形状的物.
2、柱各部分的名称.
柱的上、下两个面叫做底面,它是面相等的两个.两底面之的距离叫做高.
柱的两个底面面相等,柱有无数条高.
(二)柱的面和算公式.
1、柱的面.
柱的面=底面的周×高
字母表示:S= Ch
2、面公式的用.
例 1. 一段柱形的材 ,底面周是 0.28 米 ,高是 2.4 米.它的面是多少平方米?(得数保留两位小数):制作个薯片筒的面,需要多大面的?
(三)柱的表面.
柱的面与两个底面的和,就是柱的表面.
但是生活中往往只求面和一个底面的面的和,比如
例 2. 一个没有盖的柱形状的皮水桶 ,高是 45 厘米 ,底面直径是 34 厘米.做个水桶需要多少皮?(得数保留整数)
例 3. 一个柱的高增加 4 厘米 ,表面增加 50.24 平方厘米 ,求柱体的底面.
1:一个柱形水池 ,水池内壁和底面都要上瓷 ,水池底面直径 6 米 ,池深 1.2 米 . 瓷的面是多少平方米?
二、柱、的体
(一)的
像蛋卷、草帽⋯⋯的形体都是,是由哪几部分成的呢?各有什么特点?
顶点
侧面
高h
底面
圆柱体有高 ,而且有无数条;圆锥体有高吗?有多少条?有,只有一条.
(二)圆柱的体积
圆柱的体积=底面积×高
用字母表示:V圆柱体Sh
下面应用公式做一道题.
例 4. 有一根圆柱形状的塑料棒 ,它的横截面的面积是 24 平方厘米 ,长是 0.9 米.这根塑料棒的体
积是多少立方厘米?
例 5. 如图所示 , 一块长方形铁皮 ,利用图中的阴影部分刚好做一个油桶(接头处忽略不
计).求这个油桶的容积.
例 6. 一只装水的圆柱形玻璃杯,底面积是80 平方厘米 ,水深 8 厘米.现将一个底面积是16平方厘米的长方体铁块竖放在水中后,仍有一部分铁块露在外面.现有水深多少厘米?
练习 1:把一个长8 厘米、宽 6 厘米、高 4 厘米的长方体木块削成一个最大的圆柱体积木,这个圆柱体积木的体积是多少立方厘米?
练习 2:一个饮料瓶的瓶身呈圆柱形, 容积为 250 毫升 . 当瓶子正放时饮料高16 厘米;当瓶
子倒放时空余部分高 4 厘米(如右图). 请你算一算瓶内饮料为多少毫升?
(三)圆锥的体积
圆锥体的体积=1底面积高
3
用字母表示:V圆锥体 1 h S
3
例 7. 一个圆锥形状的零件,底面积是 12.3 平方厘米 ,
高是 5 厘米.这个零件的体积是多少立方厘米?
练习 1. 一个近似于圆锥形状的沙堆,测得底面直径 4 米 ,高 1.5 米 .每立方米沙大约重 1.7吨,这堆沙约重多少吨?(得数保留整吨数)
练习 2. 如图 ,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高?(单位:厘米)
思考题:
一个直角三角形(如下图) ,分别以两条直角边所在的直线为轴 ,旋转成两个圆锥体 ,哪个圆锥体的体积大?为什么?(单位:厘米)。