丰田普锐斯混合动力汽车_图文.ppt
- 格式:ppt
- 大小:4.17 MB
- 文档页数:68
丰⽥hybrid系统的详细介绍1 特点2 低油耗3 低油耗:⼯作原理4 ⼯作原理8 Prius普锐斯9 Highlander 混合动⼒车低油耗10 Camry混合动⼒车的燃油效率11 低尾⽓排放12 低尾⽓排放:⼯作原理13 Prius普锐斯低尾⽓排放14 Highlander 混合动⼒车低尾⽓排放15 Camry混合动⼒车低排放16 加速17 加速:⼯作原理18 驱动辅助的⼯作原理19 电动机TRC20 爬坡动⼒辅助21 坡道启动控制22 强劲加速的⼯作原理23 扭矩分配系统控制24 Prius 普锐斯的加速25 Highlander混合动⼒车的加速26 Camry混合动⼒车的加速27 超群的静谧性28 静谧性:⼯作原理29 EV驱动模式30 Prius普锐斯的静谧性技术31 Highlander 混合动⼒车的静谧性技术32 Camry混合动⼒车的静谧性技术33 技术34 技术:综述35 混联式混合动⼒36 HV(镍氢)蓄电池37 ⾼输出功率电动机38 再⽣制动39 动⼒控制单元40 汽油发动机41 动⼒分离装置42 发电机43 电⼦控制系统44 Highlander 混合动⼒车 HV(镍氢)蓄电池45 后电动机46 减速机47 Camry混合动⼒车的电池48 Camry混合动⼒车的电动马达49 Camry混合动⼒车的发动机50 串联式混合动⼒系统51 并联式混合动⼒系统52 混合动⼒车:联合国定义53 系统阵容54 开发56 TOYOTA油电混合动⼒系统开发的历史57 主要的TOYOTA油电混合动⼒车开发历史59 TOYOTA油电混合动⼒系统核⼼技术开发的历史62 混合动⼒车的开发历史63 混合动⼒车开发的前景64 混合动⼒车的电⼒65 家⽤电器的电源66 概念车简介67 概念车CS&S68 概念车 Future Truck Concept69 概念车 MTRC70 实践71 丰⽥的汽车⽣产⽅式72 TOYOTA油电混合动⼒系统的⽣产⼯序 (⾃动化<Jidoka>)73 TOYOTA油电混合动⼒系统的⽣产⼯序 (准时化⽣产⽅式 Just-in-Time)74 混合动⼒车的累积销售数量75 引进混合动⼒车的国家特点低油耗、低尾⽓排放量、良好的加速、运⾏安静的传动系统TOYOTA油电混合动⼒系统是综合了电动机和发动机两⼤动⼒优点的新⼀代动⼒系统。
丰田普锐斯混合动力工作原理
1.汽油发动机:丰田普锐斯搭载一台1.8升汽油发动机,用于提供传统的汽车动力。
2.电动机发电机:电动机发电机能够利用汽油发动机的动力来产生电力,并将其储存在电池组中。
3.电池组:电池组用于储存电能,由铅酸蓄电池或镍氢电池组成。
4.电动机:电动机是由电池组提供电能,用于提供额外的动力驱动汽车。
5.转变装置:转变装置包括变速器和力分配装置,用于确保汽车在不同工况下的动力转化和合理利用。
普锐斯在行驶过程中,根据驾驶条件和动力需要,会自动选择使用汽油发动机、电动机或者两者同时驱动。
以下是普锐斯在不同工况下的工作原理:
1.启动和低速行驶:
当车辆启动时,普锐斯会首先使用电池组中的电能来发动电动机,驱动车辆。
在低速行驶或停车等情况下,汽油发动机会关闭,全部动力都由电动机提供。
这样可以减少油耗和排放。
2.高速巡航:
在高速巡航过程中,当车辆需要更大的动力时,汽油发动机会启动并提供动力,同时电动机也会提供动力,两者协同工作。
变速器会根据车速和转速的不同调整传动比例,以提供最佳的动力输出效果。
3.减速和制动:
当车辆减速或制动时,电动机会变成发电机,利用惯性和制动时产生的能量来发电,并将电能储存到电池组中。
这样可以减少能源的浪费,并延长电池组的寿命。
总的来说,丰田普锐斯混合动力系统的工作原理就是根据驾驶条件和动力需求合理分配汽油发动机和电动机的工作任务,以实现最佳的燃油效率和减少排放。
通过优化动力系统的配合和能量的回收利用,普锐斯的燃油效率得到了显著提高,同时也符合环保要求。
2、电子制动力分配(EBD)控制电子制动力分配(EBD)控制包括以下两个方面:一是在制动时根据行驶条件在前后轮间分配合适的制动力.二是在转向时控制左右车轮的制动力,以保持车辆平稳行驶。
2.1前后轮制动力分配(直线制动)如果车辆直线行驶时制动.后轮的载荷会减小,前轮的载荷增大。
速度传感器将检测到的这种情况以电信号的形式传给制动防滑控制Ecu.Ecu控制制动执行器调节后轮制动力的分配.达到最优控制。
例如:当车辆载荷不同、制动减速度不同时.后轮制动力的大小也不同.通过EBD对制动力进行合理的分配达到最优。
2.2左右轮制动力分配(转向制动)如果车辆转向行驶时制动,内侧车轮的载荷减小,外侧车轮的载荷增大。
速度传感器将检测到的这种情况以电信号的形式传给制动防滑控制Ecu,Ecu控制制动执行器调节内侧车轮和外侧车轮的制动力分配.达到最优控制。
3、制动助力系统制动助力系统有两个功能:一是紧急制动时.如果制动踏板力不足,可以增大制动力;二是当需要强大的制动力时.增大制动力。
3.1紧急制动时紧急制动情况下,驾驶员往往会惊慌失措而不能用力踩制动踏板。
根据总泵压力传感器和制动踏板行程传感器的信号,制动防滑控制Ecu计算制动踏板作用的速度和程度.然后判定驾驶员紧急制动的意图。
如果Ecu判定驾驶员确实想紧急制动.则系统就会启动制动执行器来增大制动液压。
也就是说,制动助力系统将急踩制动踏板视为紧急制动,此时,如果驾驶员踩制动踏板的力不足,系统也会产生制动力。
3.2满载制动时车辆满载时.即使不提供快速制动.也需要很强的制动力。
因此,也要使用制动助力系统。
4、车辆稳定性控制系统(Vsc+)车辆稳定·性控制系统(Vsc+)有两个功能:一是可以防止转向时前轮或后轮急速滑动产生的车辆侧滑;二是和EPsEcu一起进行联合控制,以便根据车辆的行驶条件提供助力转向。
4.1阻止前后轮滑动当车轮侧向力大于车轮横向附着力时就会产生侧滑,如图5所示为前轮有滑动趋势和后轮有滑动趋势的情况。
丰田普锐斯混动车型的结构特点及工作原理引言:在当今汽车市场中,混动车型已成为一种受到广泛关注的汽车动力技术,其兼顾了燃油动力与电动动力的优势,具有节能环保、减少排放等优点,在其中丰田普锐斯混动车型是混动车型中的佼佼者之一。
本文将就丰田普锐斯混动车型的结构特点及工作原理进行详细介绍。
一、结构特点:1.双引擎构架丰田普锐斯混动车型采用了双引擎构架,即包括了一个内燃引擎和一个电动引擎。
内燃引擎通常为汽油发动机,而电动引擎则是由电池供电的电动机。
两者共同协同工作,以实现不同速度下的动力输出,从而提高车辆的性能和燃油经济性。
2.电池组和电机丰田普锐斯混动车型使用了高性能的镍氢电池组和电动机。
电池组一般安装在车辆后部,用于储存来自内燃引擎和制动再生能量的电能,并通过电机将电能转化为动力。
这种配置使得车辆在低速行驶、起步和加速时更加顺畅。
3.智能能量管理系统车辆配备了智能能量管理系统,它能够根据车辆速度、功率需求和电池状态等信息,动态地调整内燃引擎和电动引擎的工作模式,从而最大程度地利用混合动力系统的优势,提高燃油经济性和动力输出的效率。
二、工作原理:1.起步和低速行驶当车辆起步或者低速行驶时,电动引擎会优先工作,从电池组中提取电能,驱动车辆前进。
这样不仅能够减少燃油消耗,还能减少排放,提高车辆的环保性能。
2.中速和高速行驶当车辆需要进行中速或者高速行驶时,内燃引擎会开始启动工作,以提供额外的动力输出。
同时电动引擎也会协同工作,以保证车辆的加速性能和燃油经济性。
这种双引擎的工作模式有效地平衡了车辆的性能和燃油消耗。
3.制动再生在制动时,电动引擎会自动切换为发电机状态,将制动能量转化为电能并存储到电池组中,起到了能量再生的作用。
这样不仅能够提高车辆的能量利用率,还能减少制动时的换挡和损耗,延长汽车零部件的使用寿命。
总结:丰田普锐斯混动车型以其独特的双引擎构架和智能能量管理系统,在性能、节能环保等方面展现出了优异的特点。