高考试题汇编---常用逻辑用语
- 格式:docx
- 大小:319.09 KB
- 文档页数:3
常用逻辑用语1.(2012·湖南高考卷·T2·5分)命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1[来~@源%:*中&国教育出版网] C. 若tan α≠1,则α≠4π D. 若tan α≠1,则α=4π【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”的逆否命题是 “若tan α≠1,则α≠4π”. 【点评】本题考查了“若p ,则q”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.2.(2012·四川高考卷· T6 · 5分)下列命题正确的是( ) A 、若两条直线和同一个平面所成的角相等,则这两条直线平行 B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D 、若两个平面都垂直于第三个平面,则这两个平面平行 [答案]C[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.3.(2012·四川高考卷· T7 · 5分)设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b = [答案]D[解析]若使||||a ba b =成立,则方向相同,与b a 选项中只有D 能保证,故选D. [点评]本题考查的是向量相等条件⇔模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.4.(2012·陕西高考卷· T3· 5分)设,R a b ∈,i 是虚数单位,则“0ab =”是“复数iba +为纯虚数”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件 【答案】 B【解析】当0ab =时,00a b ==或,b a i +不一定为纯虚数,反之,当ba i+为纯虚数时,0,0,0a b ab =≠=,因此B 正确。
2016年高考数学文试题分类汇编—常用逻辑用语1、(2016年山东高考)已知直线a ,b 分别在两个不同的平面α,内,则“直线a 和直线b 相交”是“平面α和平面相交”的 (A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件2、(2016年上海高考)设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件(B )必要非充分条件(C )充要条件(D )既非充分也非必要条件4、(2016年四川高考)设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的(A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件5、(2016年天津高考)设0>x ,R y ∈,则“y x >”是“||y x >”的( )(A )充要条件 (B )充分而不必要条件(C )必要而不充分条件(D )既不充分也不必要条件6、(2016年浙江高考)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2016年高考数学理试题分类汇编—常用逻辑用语1、(北京理数4).设a ,b 是向量,则“||||a b =”是“||||a b a b +=-”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2、(山东文理数6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件3、(上海文理数15)设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件4、(四川理数7)设p :实数x ,y 满足(x –1)2–(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的(A )必要不充分条件 (B )充分不必要条件 (C )充要条件(D )既不充分也不必要条件5、(四川文数5) 设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的(A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6、(天津理数)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件7、(天津文数5)设0>x ,R y ∈,则“y x >”是“||y x >”的( )(A )充要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件8、(浙江理数4)命题“*x n ∀∈∃∈,R N ,使得2n x >”的定义形式是 A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <9、(浙江文数6) 已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2015年高考数学文试题分类汇编—常用逻辑用语3.【2015高考浙江,文3】设a ,b 是实数,则“0a b +>”是“0ab >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.【2015高考重庆,文2】“x 1”是“2x 210x ”的( )(A) 充要条件 (B) 充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件7.【2015高考天津,文4】设x R ,则“12x ”是“|2|1x ”的( )(A) 充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件10.【2015高考四川,文4】设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件14.【2015高考山东,文5】设m R ∈,命题“若0m>,则方程20x x m +-=有实根”的逆否命题是( ) (A )若方程20xx m +-=有实根,则0m >(B) 若方程20x x m +-=有实根,则0m ≤ (C) 若方程20x x m +-=没有实根,则0m >(D) 若方程20x x m +-=没有实根,则0m ≤15.【2015高考湖南,文3】设x∈R ,则“x >1”是“2x >1”的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件 D 、既不充分也不必要条件17.【2015高考湖北,文3】命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-19.【2015高考安徽,文3】设p :x <3,q :-1<x <3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【2015高考上海,文15】设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ).A. 充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件2015年高考数学理试题分类汇编—常用逻辑用语1.(15北京理科)设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(15年安徽文科)设p :x<3,q :-1<x<3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件3.(15年新课标1理科)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n4.(15年陕西理科)“sin cos αα=”是“cos20α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 5.(15年陕西文科)“sin cos αα=”是“cos20α=”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要6.(15年天津理科)设x R ∈ ,则“21x -< ”是“220x x +-> ”的(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 8.(15年湖南理科)设A,B 是两个集合,则”A B A =”是“A B ⊆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.(15年山东理科)若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 .2014年高考数学文试题分类汇编—常用逻辑用语9. (2014安徽文2)命题“x ∀∈R ,20x x +≥”的否定..是( ) A.x ∀∈R ,20x x +< B.x ∀∈R ,20x x +≤C.0x ∃∈R ,2000x x +<D. 0x ∃∈R ,2000x x +≥11.(2014北京文5)设a ,b 是实数,则“a b >”是“22a b >”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.(2014浙江文2)设四边形ABCD 的两条对角线,AC BD ,则“四边形ABCD 为菱形”是“AC BD ⊥”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 13.(2014大纲文1)设集合{12468}{123567}M N ==,,,,,,,,,,,则M N 中元素的个数为( ).A .2B .3C .5D .715.(2014福建文5)命题“[)0,x ∀∈+∞,30x x +≥”的否定是 ( ) A.()0x ∀∈-∞,,30x x +< B.(),0x ∀∈-∞,30x x +≥C.[)00,x ∃∈+∞,3000x x +<D. [)00,x ∃∈+∞,3000x x +≥17.(2014重庆文6)已知命题::p 对任意x ∈R ,总有||0x ≥;:1q x =是方程20x +=的根.则下列命题为真命题的是( ).18.(2014广东文7)在ABC △中,角,,A B C 所对应的边分别为,,a b c 则“a b ”是“sin sin A B ”的( ).A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件19.(2014新课标Ⅱ文3)函数()f x 在0x x =处导数存在,若0:()0p f x '=;0:q x x =是()f x 的极值点,则( )A.p 是q 的充分必要条件 B.p 是q 的充分条件,但不是q 的必要条件 C.p 是q 的必要条件,但不是q 的充分条件 D.p 既不是q 的充分条件,也不是q 的必要条件21.(2014湖南文1)设命题:p x ∀∈R ,210x +>,则p ⌝为( ).A.20010x x ∃∈+>R ,B.20010x x ∃∈+R ,≤C.20010x x ∃∈+<R ,D.210x x ∀∈+R ,≤23.(2014江西文6)下列叙述中正确的是( )A. 若,,a b c ∈R ,则“20ax bx c ++≥”的充分条件是“240b ac -≤”;B. 若,,a b c ∈R ,则“22ab cb >”的充要条件是“ac >”; C. 命题“对任意x ∈R ,有20x ≥”的否定是“存在x ∈R ,有20x ≥”;D. l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则αβ∥.24.(2014辽宁文5)设,,a b c 是非零向量,已知命题p :若0⋅=a b ,0⋅=b c ,则0⋅=a c ;命题q :若∥a b ,∥b c ,则∥a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝25.(2014天津文3)已知命题:0,p x ∀>总有()1e 1,x x +>则p ⌝为( ).A.00,x ∃使得()001e 1x x + B.00,x ∃>使得()001e 1x x + C.0,x ∀> 总有()1e 1x x + D.0,x ∀总有()1e 1x x +2013年高考数学文试题分类汇编—常用逻辑用语1 .(2013年高考重庆卷(文))命题“对任意x R ∈,都有20x ≥”的否定为 ( )A .对任意x R ∈,使得20x <B .不存在x R ∈,使得20x <C .存在0x R ∈,都有200x ≥D .存在0x R ∈,都有200x <2 .(2013年高考四川卷(文))设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) A .:,2p x A x B ⌝∃∈∈ B .:,2p x A x B ⌝∃∉∈C .:,2p x A x B ⌝∃∈∉D .:,2p x A x B ⌝∀∉∉3 .(2013年高考湖南(文))“1<x<2”是“x<2”成立的______( ) A .充分不必要条件B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4 .(2013年高考天津卷(文))设,a b ∈R , 则 “2()0a b a -<”是“a b <”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5 .(2013年高考山东卷(文))给定两个命题q p ,,p q ⌝是的必要而不充分条件,则p q ⌝是( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件6 .(2013年高考安徽(文))“(21)0x x -=”是“0x =”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7 .(2013年高考陕西卷(文))设z 是复数, 则下列命题中的假命题是( ) A .若20z ≥, 则z 是实数 B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <8 .(2013年高考福建卷(文))设点),(y x P ,则“2=x 且1-=y ”是“点P 在直线01:=++y x l 上”的( ) A .充分而不必要条件B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9 .(2013年上海高考数学试题(文科))钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( ) A .充分条件B .必要条件C .充分必要条件D .既非充分又非必要条件10.(2013年高考课标Ⅰ卷(文))已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝11.(2013年高考湖北卷(文))在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为() A .()p ⌝∨()q ⌝ B .p ∨()q ⌝ C .()p ⌝∧()q ⌝ D .p ∨q12.(2013年高考浙江卷(文))设a,b ∈R,定义运算“∧”和“∨”如下: 若正数,c+d≤4,则( ) A .a∧b≥2,c∧d≤2 B .a∧b≥2,c∨d≥2 C .a∨b≥2,c∧d≤2 D .a∨b≥2,c∨d≥213.(2013年高考浙江卷(文))若α∈R,则“α=0”是“sinα<cosα”的( ) A .充分不必要条件B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2013年高考数学理试题分类汇编—常用逻辑用语14 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( ) A .充分而不必要条件B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件15 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))命题“对任意x R ∈,都有20x ≥”的否定为( ) A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x <16 .(2013年高考四川卷(理))设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) A .:,2p x A x B ⌝∀∃∈∉ B .:,2p x A x B ⌝∀∉∉C .:,2p x A x B ⌝∃∉∈D .:,2p x A x B ⌝∃∈∈17 .(2013年高考湖北卷(理))在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A .()()p q ⌝∨⌝ B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .p q ∨18 .(2013年高考上海卷(理))钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( ) A .充分条件 B .必要条件 C .充分必要条件 D .既非充分也非必要条件19 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18;②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切.其中真命题的序号是:( ) A .①②③ B .①② C .②③ D .②③20 .(2013年高考陕西卷(理))设z 1, z 2是复数, 则下列命题中的假命题是() A .若12||0z z -=, 则12z z = B .若12z z =, 则12z z =C .若||||21z z =, 则2112··z z z z =D .若12||||z z =, 则2122z z = 21 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))给定两个命题p ,q .若p ⌝是q 的必要而不充分条件,则p 是q ⌝的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件 (D ) 既不充分也不必要条件 22 .(2013年高考陕西卷(理))设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件23.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的 ( ) A .充分不必要条件B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件24.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件25.(2013年高考北京卷(理))“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”( ) A .充分而不必要条件B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件26.(2013年上海市春季高考数学试卷(含答案))已知 a b c R ∈、、,“240b ac -<”是“函数2()f x ax bx c =++的图像恒在x 轴上方”的( ) A .充分非必要条件B .必要非充分条件 C .充要条件D .既非充分又非必要条件。
历年(2020‐2023)全国高考数学真题分类(集合与常用逻辑用语)汇编【2023年真题】1.(2023·新课标I 卷 第1题) 已知集合{2,1,0,1,2}M =--,2{|60}N x x x =--…,则M N ⋂=( ) A. {2,1,0,1}--B. {0,1,2}C. {2}-D. {2}2. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件3.(2023·新课标II 卷 第2题)设集合{0,}A a =-,{1,2,22}B a a =--,若A B ⊆,则a =( ) A. 2B. 1C.23D. 1-【2022年真题】4.(2022·新高考I 卷 第1题)若集合{4}M x =<,{|31}N x x =…,则M N ⋂=( ) A. {|02}x x <…B. 1{|2}3x x <…C. {|316}x x <…D. 1{|16}3x x <…5.(2022·新高考II 卷 第1题)已知集合{1,1,2,4}A =-,{||1|1}B x x =-…,则A B ⋂=( ) A. {1,2}-B. {1,2}C. {1,4}D. {1,4}-【2021年真题】6.(2021·新高考I 卷 第1题)设集合{|24}A x x =-<<,{2,3,4,5}B =,则A B ⋂=( ) A. {2}B. {2,3}C. {3,4}D. {2,3,4}7.(2021·新高考II 卷 第2题)设集合{1,2,3,4,5,6},U = {1,3,6},{2,3,4}A B ==,则()U A B ⋂=ð( ) A. {3}B. {1,6}C. {5,6}D. {1,3}【2020年真题】8.(2020·新高考I 卷 第1题)设集合{|13}A x x =剟,{|24}B x x =<<,则A B ⋃=( ) A. {|23}x x <…B. {|23}x x 剟C. {|14}x x <…D. {|14}x x <<9.(2020·新高考II 卷 第2题)设集合{2,3,5,7}A =,{1,2,3,5,8}B =,则A B ⋂=( ) A. {1,3,5,7} B. {2,3} C. {2,3,5} D. {1,2,3,5,7,8}参考答案1.(2023·新课标I 卷 第1题)解:(,2][3,)N =-∞-⋃+∞,所以{2};M N ⋂=-故选.C 2. (2023·新课标I 卷 第7题) 解:方法1:为等差数列,设其首项为1a ,公差为d ,则1(1)2n n n S na d -=+,111222n S n d da d n a n -=+=+-,112n n S S dn n +-=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n …两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n -=+=+-,故{}n S n为等差数列,即甲是乙的充分条件. 反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n …时,11(1)(1)(2).n S n S n n D -=-+-- 上两式相减得:112(1)n n n a S S S n D -=-=+-, 所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C3.(2023·新课标II 卷 第2题)解:A B ⊆,则220a -=,1a =,{0,1}A =-,{1,1,0}B =-,满足,选.B 4.(2022·新高考I 卷 第1题)解:因为{|016}M x x =<…,1{|}3N x x =…, 故1{|16}.3M N x x ⋂=<… 5.(2022·新高考II 卷 第1题)解:方法一:通过解不等式可得集合{|02}B x x =剟,则{1,2}A B ⋂=,故B 正确. 法二:代入排除法.1x =-代入集合{||1|1}B x x =-…,可得|1||11|21x -=--=>,1x =-,不满足,排除A 、;4D x =代入集合{||1|1}B x x =-…,可得|1||41|31x -=-=>,4x =,不满足,排除 C ,故B 正确.6.(2021·新高考I 卷 第1题)解:因为集合{}{}24,2,3,4,5A x x B =-<<=,所以{2,3}.A B ⋂= 故选.B7.(2021·新高考II 卷 第2题) 解:由题设可得U {1,5,6}B =ð, 故U (){1,6}.A B ⋂=ð 故选.B8.(2020·新高考I 卷 第1题)解:因为集合{|13}A x x =剟,{|24}B x x =<<, ={|14}.A B x x ⋃<…故选.C9.(2020·新高考II 卷 第2题)解:因为集合A ,B 的公共元素为:2,3,5 故{2,3,5}.A B ⋂= 故选:.C。
中小学教学参考资料教学设计试卷随堂检测近3年(2016——2018)《常用逻辑用语》部分高考真题一.选择题(共22小题)1.(2018•天津)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.(2018•天津)设x∈R,则“|x ﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件4.(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(2018•北京)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.(2018•北京)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.(2016•四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.(2017•天津)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9.(2017•天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10.(2017•北京)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件11.(2017•浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(2017•山东)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q13.(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x215.(2016•北京)设,是向量,则“||=||”是“|+|=|﹣|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件16.(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件17.(2016•天津)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件18.(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件19.(2016•天津)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件20.(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h (x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题近3年(2016——2018)《常用逻辑用语》部分高考真题参考答案与试题解析一.选择题(共22小题)1.(2018•天津)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】由x3>8得到|x|>2,由|x|>2不一定得到x3>8,然后结合查充分条件、必要条件的判定方法得答案.【解答】解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.【点评】本题考查充分条件、必要条件及其判定方法,是基础题.2.(2018•天津)设x∈R,则“|x﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】先解不等式,再根据充分条件和必要条件的定义即可求出.【解答】解:由|x﹣|<可得﹣<x﹣<,解得0<x<1,由x3<1,解得x<1,故“|x﹣|<”是“x3<1”的充分不必要条件,故选:A.【点评】本题考查了不等式的解法和充分必要条件,属于基础题.3.(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.5.(2018•北京)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义结合等比数列的性质进行判断即可.【解答】解:若a,b,c,d成等比数列,则ad=bc,反之数列﹣1,﹣1,1,1.满足﹣1×1=﹣1×1,但数列﹣1,﹣1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,结合等比数列的性质是解决本题的关键.6.(2018•北京)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据向量数量积的应用,结合充分条件和必要条件的对应进行判断即可.【解答】解:∵“|﹣3|=|3+|”∴平方得||2+9||2﹣6•=9||2+||2+6•,即1+9﹣6•=9+1+6•,即12•=0,则•=0,即⊥,则“|﹣3|=|3+|”是“⊥”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,结合向量数量积的公式进行转化是解决本题的关键.7.(2017•上海)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0B.b≤0C.c=0D.a﹣2b+c=0【分析】由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+k x300+k,代入化简即可得出.【解答】解:存在k∈N*,使得x100+k、x200+k、x300+k成等差数列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0.∴使得x100+k,x200+k,x300+k成等差数列的必要条件是a≥0.故选:A.【点评】本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(2017•天津)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:由2﹣x≥0得x≤2,由|x﹣1|≤1得﹣1≤x﹣1≤1,得0≤x≤2.则“2﹣x≥0”是“|x﹣1|≤1”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,结合充分条件和必要条件的定义以及不等式的性质是解决本题的关键.9.(2017•天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】运用绝对值不等式的解法和正弦函数的图象和性质,化简两已知不等式,结合充分必要条件的定义,即可得到结论.【解答】解:|θ﹣|<⇔﹣<θ﹣<⇔0<θ<,sinθ<⇔﹣+2kπ<θ<+2kπ,k∈Z,则(0,)⊊(﹣+2kπ,+2kπ),k∈Z,可得“|θ﹣|<”是“sinθ<”的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查正弦函数的图象和性质,运用定义法和正确解不等式是解题的关键,属于基础题.10.(2017•北京)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.11.(2017•浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题12.(2017•山东)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】先判断命题p,q的真假,进而根据复合命题真假的真值表,可得答案.【解答】解:命题p:∃x=0∈R,使x2﹣x+1≥0成立.故命题p为真命题;当a=1,b=﹣2时,a2<b2成立,但a<b不成立,故命题q为假命题,故命题p∧q,¬p∧q,¬p∧¬q均为假命题;命题p∧¬q为真命题,故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,难度中档.13.(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.【解答】解:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.∴“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选:A.【点评】本题考查了空间位置关系、简易逻辑的判定方法,考查了推理能力,属于基础题.14.(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2【分析】特称命题的否定是全称命题,全称命题的否定是特称命题,依据规则写出结论即可【解答】解:“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是“∃x∈R,∀n∈N*,使得n<x2“故选:D.【点评】本题考查命题的否定,解本题的关键是掌握住特称命题的否定是全称命题,书写答案是注意量词的变化.15.(2016•浙江)已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100【分析】本题可根据选项特点对a,b,c设定特定值,采用排除法解答.【解答】解:A.设a=b=10,c=﹣110,则|a2+b+c|+|a+b2+c|=0≤1,a2+b2+c2>100;B.设a=10,b=﹣100,c=0,则|a2+b+c|+|a2+b﹣c|=0≤1,a2+b2+c2>100;C.设a=100,b=﹣100,c=0,则|a+b+c2|+|a+b﹣c2|=0≤1,a2+b2+c2>100;故选:D.【点评】本题主要考查命题的真假判断,由于正面证明比较复杂,故利用特殊值法进行排除是解决本题的关键.16.(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f (x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】求出f(x)的最小值及极小值点,分别把“b<0”和“f(f(x))的最小值与f(x)的最小值相等”当做条件,看能否推出另一结论即可判断.【解答】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)设f(x)=t,则f(f(x))=f(t),∴f(t)在(﹣,﹣)上单调递减,在(﹣,+∞)上单调递增,若f(f(x))=f(t)的最小值与f(x)的最小值相等,则﹣≤﹣,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选:A.【点评】本题考查了二次函数的性质,简易逻辑关系的推导,属于基础题.17.(2016•天津)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.18.(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.19.(2016•四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由x>1且y>1,可得:x+y>2,反之不成立,例如取x=3,y=.【解答】解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.20.(2016•北京)设,是向量,则“||=||”是“|+|=|﹣|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据向量模相等的几何意义,结合充要条件的定义,可得答案.【解答】解:若“||=||”,则以,为邻边的平行四边形是菱形;若“|+|=|﹣|”,则以,为邻边的平行四边形是矩形;故“||=||”是“|+|=|﹣|”的既不充分也不必要条件;故选:D.【点评】本题考查的知识点是充要条件,向量的模,分析出“||=||”与“|+|=|﹣|”表示的几何意义,是解答的关键.21.(2016•天津)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n+a2n<0”的()﹣1A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】利用必要、充分及充要条件的定义判断即可.【解答】解:{a n}是首项为正数的等比数列,公比为q,+a2n<0”不一定成立,若“q<0”是“对任意的正整数n,a2n﹣1例如:当首项为2,q=﹣时,各项为2,﹣1,,﹣,…,此时2+(﹣1)=1>0,+(﹣)=>0;+a2n<0”,前提是“q<0”,而“对任意的正整数n,a2n﹣1+a2n<0”的必要而不充分条件,则“q<0”是“对任意的正整数n,a2n﹣1故选:C.【点评】此题考查了必要条件、充分条件与充要条件的判断,熟练掌握各自的定义是解本题的关键.22.(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h (x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①不成立.可举反例:f(x)=.g(x)=,h(x)=.②由题意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),可得:g(x)=g(x+T),h (x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:①不成立.可举反例:f(x)=.g(x)=,h(x)=.②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g (x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),因此②正确.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二.填空题(共2小题)23.(2018•北京)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f (x)在[0,2]上是增函数”为假命题的一个函数是f(x)=sinx.【分析】本题答案不唯一,符合要求即可.【解答】解:例如f(x)=sinx,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sinx.【点评】本题考查了函数的单调性,属于基础题.24.(2018•北京)能说明“若a>b,则<”为假命题的一组a,b的值依次为a=1,b=﹣1.【分析】根据不等式的性质,利用特殊值法进行求解即可.【解答】解:当a>0,b<0时,满足a>b,但<为假命题,故答案可以是a=1,b=﹣1,故答案为:a=1,b=﹣1.【点评】本题主要考查命题的真假的应用,根据不等式的性质是解决本题的关键.比较基础.。
集合与常用逻辑用语--高考真题汇编第一章第一节集合1.(2023全国甲卷理科1)设集合{}31,A x x k k ==+∈Z ,{}32,B x x k k ==+∈Z ,U 为整数集,则()U A B = ð()A.{}3,x x k k =∈ZB.{}31,x x k k =-∈ZC.{}32,x x k k =-∈Z D.∅【分析】根据整数集的分类,以及补集的运算即可解出.【解析】因为整数集{}{}{}3,3+1,3+2,x x k k x x k k x x k k ==∈=∈=∈Z Z Z Z ,=U Z ,所以(){}3,U A B x x k k ==∈Z ð.故选A .2.(2023全国甲卷文科1)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}2,5N =,则U N M = ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【分析】利用集合的交并补运算即可得解.【解析】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð.故选A.3.(2023全国乙卷理科2)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x =()A.()U M N ð B.U N Mð C.()U M N ð D.U M Nð【分析】由题意逐一考查所给的选项运算结果是否为{}2x x 即可.【解析】由题意可得{}2M N x x =< ,则(){}2U M N x x = ð,选项A 正确;{}1U M x x =ð,则{}1U N M x x =>- ð,选项B 错误;{}11M N x x =-<< ,则(){}11U M N x x x =- 或ð,选项C 错误;{}12U N x x x =-或ð,则{}12U M N x x x =< 或ð,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集{}0,1,2,4,6,8U =,集合{}0,4,6M =,{}0,1,6N =,则U M N = ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U【分析】由题意可得U N ð的值,然后计算U M N ð即可.【解析】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选A.5.(2023新高考I 卷1)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =()A.{}2,1,0,1--B.{}0,1,2 C.{}2- D.{}2【解析】{}(][)260,23,N x x x =--≥=-∞-+∞ ,所以{}2M N =- ,故选C.6.(2023新高考II 卷2)2.设集合{}{}0,,1,2,22A a B a a =-=--,若A B ⊆,则a =()A.2 B.1 C.23D.1-【解析】因为A B ⊆,所以必有20a -=或220a -=,解得2a =或1a =.当2a =时,{}{}0,2,1,0,2A B =-=,不满足A B ⊆;当1a =时,{}{}0,1,1,1,0A B =-=-,符合题意.所以1a =.故选B.7.(2023北京卷1)已知集合{}20M x x =+,{}10N x x =-<,则M N = ()A.{}21x x -<B.{}21x x -<C.{}2x x - D.{}1x x <【分析】先化简集合,M N ,然后根据交集的定义计算.【解析】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣,根据交集的运算可知,{|21}M N x x =-≤< .故选A.8.(2023天津卷1)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A = ð()A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【分析】对集合B 求补集,应用集合的并运算求结果;【解析】由{3,5}U B =ð,而{1,3}A =,所以{1,3,5}U B A = ð.故选A.第二节充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023新高考I 卷7)已记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ≠,则“0x y +=”是“2x yy x+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解法一:证明充分性可由0x y +=得到x y =-,代入x yy x+化简即可,证明必要性可由2x y y x +=-去分母,再用完全平方公式即可;解法二:由x y y x+通分后用配凑法得到完全平方公式,证明充分性可把0x y +=代入即可;证明必要性把2x yy x+=-代入,解方程即可.【解析】解法一:充分性:因为0xy ≠,且0x y +=,所以x y =-,所以112x y y y y x y y-+=+=--=--,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.解法二:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+-+++--+===-,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-,所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.4.(2023天津卷2)“22a b =”是“222a b ab +=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【解析】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立;所以22a b =是222a b ab +=的必要不充分条件.故选B.。
常用逻辑用语—(2018-2022)高考真题汇编一、单选题(共23题;共115分)1.(5分)(2022·浙江)设x∈R,则“ sinx=1”是“ cosx=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【解答】sinx=1,则x=π2+2kπ,k∈Z;cosx=0,则x=π2+kπ,k∈Z,若sinx=1可推出cosx=0,充分性成立;反之不成立,必要性不成立,故充分部必要条件.故答案为:A【分析】利用同角三角函数间的基本关系,充要条件的定义判定即可.2.(5分)(2022·北京)设{a n}是公差不为0的无穷等差数列,则“ {a n}为递增数列”是“存在正整数N0,当n>N0时,a n>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】【解答】充分性证明:若{a n}为递增数列,则有对∀n∈N+,a n+1>a n,公差d=a n+1−a n>0,取正整数N=0[−a1d]+2(其中[−a1d]不大于−a1d的最大正整数),则当n>N0时,只要a n>0,都有a n=a1+(n−1)d>a1+([−a1d]+1)d>0;必要性证明:若存在正整数N0,当n>N0时,a n>0,因为a n=a1+(n−1)d,所以d>d−a1 n ,对∀n>N0,n∈N+都成立,因为limn→+∞d−a1n=0,且d≠0,所以d>0,对∀n∈N+,都有a n+1−a n=d>0,a n+1>a n,即{a n}为递增数列,所以{a n}为递增数列是“存在正整数N0,当n>N0时,a n>0”的充要条件.故答案为:C【分析】先证明充分性:若{a n}为递增数列,则a n+1>a n,公差d>0,取正整数N=0[−a1d]+2,则当n>N0时,只要a n>0,都有a n>a1+([−a1d]+1)d>0;再证明必要性:若存在正整数N0,当a n>0,有d>d−a1n,因为limn→+∞d−a1n=0,结合已知条件得d>0,a n+1>a n,即{a n}为递增数列,综上即可判断.3.(5分)(2021·北京)已知f(x)是定义在上[0,1]的函数,那么“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【解答】解:①【充分性】若函数f(x)在[0, 1]上单调递增,根据函数的单调性可知:函数f(x)在[0, 1]的最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”为“函数f(x)在[0, 1]的最大值为f(1)“的充分条件;②【必要性】若函数f(x)在[0, 1]的最大值为f(1),函数f(x)在[0, 1]上可能先递减再递增,且最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”不是“函数f(x)在[0, 1]的最大值为f(1)“的必要条件,所以“函数f(x)在[0, 1]上单调递增”是“函数f(x)在[0, 1]的最大值为f(1)“的充分而不必要条件.故答案为:A【分析】根据充分条件与必要条件的判定直接求解即可.4.(5分)(2021·浙江)已知非零向量a⃗,b⃗,c⃗,则“ a⃗⋅c⃗=b⃗⋅c⃗”是“ a⃗=b⃗”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】B【解析】【解答】若a⇀⊥b⇀且,c⇀⊥b⇀,则a⇀·c⇀=b⇀·c⇀=0,但a→= b→不一定成立, 故充分性不成立;若a⃗=b⃗时,a⇀·c⇀=b⇀·c⇀一定成立,故必要性成立,故“ a⃗⋅c⃗=b⃗⋅c⃗”是“ a⃗=b⃗”的必要不充分条件故答案为:B.【分析】先将条件等式变形,可能得到条件不充分,后者显然成立。
福建省高三最新模拟数学理试题分类汇编一、选择题1、(福建省安溪八中).下列命题中,真命题是 A .00,0x x R e∃∈≤ B . 1,1a b >>是1ab >的充要条件C .{}{}24010(2,1)x x x x ->-<=- D . 命题2,2x x R x ∀∈>的否定是真命题答案:D2、(福建省四地六校高三12月第三次月考)“22a b>”是“22log log a b >”的( )A .充分不必要条件B .既不充分也不必要条件C .充要条件 D. 必要不充分条件 答案:D3、(福建省长乐二中等五校)“Z k k ∈+=,2βπα”是“βαsin sin =”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案:A4、(福建省东山第二中学)已知:1431p x -≤-≤2:(21)(1)0q x a x a a -+++=,若p Ø是q Ø的必要不充分条件,则实数a 的取值范围是( ).A 1[0,]2; .B 1[,1]2; .C 11[,]32; .D 1(,1]3;答案:A5、(福建省福州市第八中学)“p 或q 是假命题”是“非p 为真命题”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案:A6、(福建省俊民中学、梧桐中学联考)已知向量2(,4),(1,1)a b ==m ,则“2=-m ”是“a//b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案:A7、(福建省龙岩一中高三上学期第三次月考)“关于x 的不等式220x ax a -+>的解集为R ”是“01a ≤≤”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 答案:A8、(福建省俊民中学、梧桐中学联考)下列说法错误的是( )常用逻辑用语A.命题“若2430x x -+=则x=3”的逆否命题是“若x ≠3则2430x x -+≠” B.“x>1”是“|x |>0”的充分不必要条件 C.若p 且q 为假命题,则p 、q 均为假命题D.命题p :“∃x ∈R 使得210x x ++<”,则⌝p :“∀x ∈R 均有210x x ++≥” 答案:C9、(福建省莆田四中考试)下列命题中,真命题是( ) A .00,0x x R e∃∈≤ B . 1,1a b >>是1ab >的充要条件C .{}{}24010(2,1)x x x x ->-<=- D . 命题2,2x x R x ∀∈>的否定是真命题答案:D10、(福建省莆田一中考试)已知a 为常数,则使得成立的一个充分而不必要条件是( ) A .0>aB .0<aC .e >aD .e <a答案:A11、(福建省清流一中考试)已知命题02,:2≤++∈∃a ax x R x p ,若p 是假命题,则实数a 的取值范围是( )A. [)+∞,1 B .[]1,0 C. ()1,0 D .(]1,0 答案:C12、(福建省泉州一中考试)下列说法错误..的是( A ) A .已知函数()xxf x e e-=+,则()f x 是奇函数B .若非零向量a ,b 的夹角为θ,则“0a b ⋅>”是“θ为锐角”的必要非充分条件C .若命题2:,10p x R x x ∃∈-+=,则 2:,10p x R x x ⌝∀∈-+≠ D .ABC ∆的三个内角A 、B 、C 的对边的长分别为a 、b 、c , 若 a 、b 、c 成等差数列,则30π≤<B答案:A13、(福建省厦门一中考试)已知命题:p x R ∀∈,22x x ≥;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是 A .p q ∧ B .()p q ⌝∧ C .()p q ∨⌝ D .()()p q ⌝∧⌝ 答案:B14、(福建省仙游一中考试)下列命题错误的是 ( B )A .命题“若0232=+-x x ,则1=x ”的逆否命题为“若1≠x ,则0232≠+-x x ”B .若q p ∧为假命题,则p 、q 均为假命题C .命题p :存在R x ∈0,使得01020<++x x ,则p ⌝:任意R x ∈,都有012≥++x x D .“2>x ”是“0232>+-x x ”的充分不必要条件 答案:B15、(福建省莆田四中考试)已知直线01)2(:,02)2(:21=-+-=--+ay x a l y a x l ,则“1-=a ”是“21l l ⊥的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A16、(福建省清流一中考试)“2a =” 是“函数()f x x a =-在区间[2,)+∞上为增函数”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 答案:A17、(福建省厦门一中考试)已知向量)2,1(-=→x a ,)1,2(=→b ,则“0x >”是“a 与b夹角为锐角”的A .必要而不充分条件 B.充分而不必要条件C .充分必要条件 D .既不充分也不必要条件 答案:A二、填空题1、(福建省清流一中考试)已知命题:p 不等式m x >-|1|的解集是R ,命题xmx f q -=2)(:在区间),0(+∞ 上是减函数,若命题“p 或q ”为真,命题“p 且q ”为假,则实数m 的范围是______.答案:[)0,2 三、解答题1、(福建省长乐二中等五校)设命题p :实数x 满足0)3)((<--a x a x ,其中0a >,命题:q 实数x 满足023≤--x x . (Ⅰ)若1,a =且p q ∧为真,求实数x 的取值范围; (Ⅱ)若p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围.2、(福建省福州市第八中学)已知集合A={y|y=x2-32x+1,x∈[34,2]},B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.【解析】y=x2-错误!未找到引用源。
高三数学常用逻辑用语试题答案及解析1.若“”是“”的充分不必要条件,则实数的取值范围是( )A.B.C.D.【答案】A【解析】依题意,∴,∴.【考点】充分必要条件.2.下列给出的四个命题中,说法正确的是()A.命题“若,则”的否命题是“若,则”;B.“”是“”的必要不充分条件;C.命题“存在,使得”的否定是“对任意,均有”;D.命题“若,则”的逆否命题为真.【答案】D【解析】本题考查命题的相关概念. 选项,“若,则”的否命题为:“若,则”;可以推出,反之不成立,故“”是“”的充分不必要条件,故选项错;命题“存在,使得”的否定应为:“对任意,均有”,故选项错,正确答案为.【考点】1.四种命题及其关系;2.充分与必要条件;3.全程量词与存在量词.3.已知命题:函数的最小正周期为;命题:若函数为偶函数,则关于对称.则下列命题是真命题的是()A.B.C.D.【答案】B【解析】函数的最小正周期为知命题为假命题;若函数为偶函数,则,所以关于对称,据此可知命题为真命题,根据真值表可得为真命题.【考点】真值表等基础知识.4.下列命题中,真命题的个数有()①;②;③“”是“”的充要条件;④是奇函数.A.1个B.2个C.3个D.4个【答案】C【解析】由知①是真命题;当时,知②是真命题;若则,而若且则知“”是“”的必要不充分条件,所以③是假命题;令,显然,则知“是奇函数”是真命题.【考点】真假命题的判断.5.已知命题函数在上单调递增;命题不等式的解集是.若且为真命题,则实数的取值范围是______.【答案】【解析】为真命题是真命题, 是真命题,是真命题, ②是真命题所以为真命题【考点】命题,基本逻辑联结词,一次函数单调性,二次不等式.6.下列命题中,是的充要条件的是()①或;有两个不同的零点;②是偶函数;③;④。
A.①②B.②③C.③④D.①④【答案】D【解析】①有两个不同的零点,由得或.因此①正确;②是偶函数,则不成立;③,但是无意义;④;所以④正确,因此是的充要条件的是①④.【考点】1.充要条件;2.函数的零点;3.奇偶函数的定义等.7.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【答案】A【解析】若p⇒q为真命题,则命题p是命题q的充分条件;“好货不便宜”,其条件是:此货是好货,结论是此货不便宜,由条件⇒结论.故“好货”是“不便宜”的充分条件.【考点】必要条件、充分条件与充要条件的判断点评:本题考查了必要条件、充分条件与充要条件的判断,属于基础题8.若集合,集合,则是“”( )A充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】若,则,,即“”;若,则,即“”,所以是“” 必要不充分条件。
全国高考理科数学试题分类汇编13:经常使用逻辑用语一、选择题1 .( 一般高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而没必要要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A2 .( 一般高等学校招生统一考试重庆数学(理)试题(含答案))命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x <【答案】D3 .( 高考四川卷(理))设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )A .:,2p x A xB ⌝∀∃∈∉ B .:,2p x A x B ⌝∀∉∉C .:,2p x A x B ⌝∃∉∈D .:,2p x A x B ⌝∃∈∈【答案】D 4 .( 高考湖北卷(理))在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一名学员没有降落在指定范围”可表示为 ( )A .()()p q ⌝∨⌝B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨【答案】A 5 .( 高考上海卷(理))钱大姐常说“廉价没好货”,她这句话的意思是:“不廉价”是“好货”的 ( )A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件【答案】 B . 6 .( 一般高等学校招生统一考试天津数学(理)试题(含答案))已知下列三个命题:① 若一个球的半径缩小到原先的12, 则其体积缩小到原先的18; ② ②若两组数据的平均数相等, 则它们的标准差也相等; ③ ③直线x + y + 1 = 0与圆2212x y +=相切. ④ 其中真命题的序号是: ( ) A .①②③ B .①② C .②③ D .②③ 【答案】C 7 .( 高考陕西卷(理))设z 1, z 2是复数, 则下列命题中的假命题是( )A .若12||0z z -=, 则12z z =B .若12z z =, 则12z z =C .若||||21z z =, 则2112··z z z z =D .若12||||z z =, 则2122z z =【答案】D8 .( 一般高等学校招生统一考试山东数学(理)试题(含答案))给定两个命题p ,q .若p ⌝是q 的必要而不充分条件,则p 是q ⌝的( )A .充分而没必要要条件B .必要而不充分条件C .充要条件 (D ) 既不充分也没必要要条件 【答案】A9 .( 高考陕西卷(理))设a , b 为向量, 则“||||||=a a b b ·”是“a ),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω)(x f 2πϕ="0"a ≤()=(-1)f x ax x (0,+)∞ a b c R∈、、240b ac -<2()f x ax bx c =++x0,01,ln ln ,1,x x x x +<<⎧=⎨≥⎩0,0a b >>ln ()ln b a b a ++=0,0a b >>ln ()ln ln ab a b +++=+0,0a b >>ln ()ln ln aa bb+++≥-0,0a b >>ln ()ln ln ln 2a b a b ++++≤++写出所有真命题的编号) 【答案】①③④。
☆注:请用Microsoft Word2016以上版本打开文件进行编辑,用WPS等其他软件可能会出现乱码等现象.第一章集合与常用逻辑用语1.2 常用逻辑用语1.命题能判断真假的语句叫做命题.2.量词(1)全称量词与全称命题①全称量词:短语“所有的”“任意一个”在逻辑中通常叫作全称量词.②全称命题:含有全称量词的命题.③全称命题的符号表示:形如“对M中的任意一个x,有p(x)成立”的命题,用符号简记为∀x∈M,p(x).(2)存在量词与特称命题①存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在量词.②特称命题:含有存在量词的命题.③特称命题的符号表示:形如“存在M中的元素x0,使p(x0)成立”的命题,用符号简记为∃x0∈M,p(x0).(3)命题的否定①条件不变,改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.②否定结论:对原命题的结论进行否定.【注】原命题与命题的否定真假性相反3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.【注】集合中,子集可以推出另一个集合.题型一. 真假命题的判定1.关于x 的方程x 2+ax +b =0,有下列四个命题: 甲:该方程两根之和为2; 乙:该方程两根异号; 丙:x =1是方程的根; 丁:x =3是方程的根.如果只有一个假命题,则该命题是( ) A .甲B .乙C .丙D .丁2.下列命题中正确的是( ) A .若x ∈C ,x 2+1=0,则x =iB .若复数z 1,z 2满足z 12+z 22=0,则z 1=z 2=0C .若复数z 为纯虚数,则|z |2=z 2D .若复数z 满足z (2+i )=|3﹣4i |,则复数z 的虚部为﹣1 3.给出下列命题:①若空间向量a →,b →满足|a →|=|b →|,则a →=b →; ②空间任意两个单位向量必相等;③对于非零向量c →,由a →⋅c →=b →⋅c →,则a →=b →; ④在向量的数量积运算中(a →⋅b →)⋅c →=a →⋅(b →⋅c →). 其中假命题的个数是( ) A .1B .2C .3D .44.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是( ) A .若m ⊥α,n ⊥β,且α⊥β,则m ⊥nB .若m ∥α,n ∥α,且m ⊂β,n ⊂β,则α∥βC .若m ∥α,n ∥α,则m ∥nD .若α⊥γ,β⊥γ,则α∥β题型二.量词与命题的否定1.命题“∀n ∈N *,f (n )∉N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N ∗,f(n 0)∉N ∗且f (n 0)>n 0 D .∃n 0∈N ∗,f(n 0)∈N ∗或f (n 0)>n 02.已知f (x )=sin x ﹣x ,命题P :∀x ∈(0,π2),f (x )<0,则( )A .P 是假命题,¬P :∀x ∈(0,π2),f(x)≥0B .P 是假命题,¬P :∃x 0∈(0,π2),f(x 0)≥0C .P 是真命题,¬P :∀x ∈(0,π2),f(x)>0D .P 是真命题,¬P :∃x 0∈(0,π2),f(x 0)≥03.对于下列四个命题,其中的真命题是( )p 1:∃x 0∈(0,+∞),(12)x 0<(13)x 0;p 2:∃x 0∈(0,1),log 12x 0>log 13x 0;p 3:∀x ∈(0,+∞),(12)x >log 12x ;p 4:∀x ∈(0,13),(12)x <log 12x .A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 44.若命题“∃x ∈R ,使得x 2﹣(a +1)x +4≤0”为假命题,则实数a 的取值范围为 . 5.已知p :存在x ∈R ,使mx 2+1≤0;q :对任意x ∈R ,恒有x 2+mx +1>0.若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤﹣2C .m ≤﹣2,或m ≥2D .﹣2≤m ≤2题型三.充分必要条件1.(2015•福建)若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2020•天津)设a ∈R ,则“a >1”是“a 2>a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.设a ,b 都是不等于1的正数,则“log a 3>log b 3>1”是“3a <3b ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件 4.设a ,b 是实数,则“a >0,b >0”是“ba +a b≥2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.在△ABC 中,设命题p :a sinC=b sinA=c sinB,命题q :△ABC 是等边三角形,那么命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.(2019•北京)设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.已知“x 2﹣x ﹣2>0”是“2x +p >0”的必要条件,则实数p 的取值范围是 . 8.设命题p :|4x ﹣3|≤1;命题q :x 2﹣(2a +1)x +a (a +1)≤0.若¬p 是¬q 的必要而不充分条件,则实数a 的取值范围是 .题型四.存在问题、恒成立问题1.不等式mx 2﹣mx ﹣2<0对任意x ∈R 恒成立的充要条件是m ∈ . 2.若“对任意实数x ∈[0,π2],sin x ≤m ”是真命题,则实数m 的最小值为 .3.已知命题p :∃x ∈R ,使得e x ≤2x +a 为假命题,则实数a 的取值范围是 . 4.已知函数f (x )=log 2x ,g (x )=2x +a ,若存在x 1,x 2∈[12,2],使得f (x 1)=g (x 2),则a 的取值范围是( ) A .[﹣5,0] B .(﹣∞,﹣5]∪[0,+∞) C .(﹣5,0)D .(﹣∞,﹣5)∪(0,+∞)1.设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列四个命题: ①如果m ∥α,n ⊂α,那么m ∥n ;②如果m ⊥α,n ⊥α,那么m ∥n ; ③如果α∥β,m ⊂α,那么m ∥β;④如果α⊥β,m ⊂α,那么m ⊥β. 其中正确的命题是( ) A .①②B .②③C .③④D .①④2.不等式2x 2﹣5x ﹣3≥0成立的一个必要不充分条件是( ) A .x <0或x >2B .x ≥0或x ≤﹣2C .x <﹣1或x >4D .x ≤−12或x ≥33.已知α∈R ,则“tanα=2”是“tan2α=45”( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知a ,b ,c ∈R ,在下列条件中,使得a <b 成立的一个充分而不必要条件是( ) A .a 3<b 3B .ac 2<bc 2C .1a>1bD .a 2<b 25.等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件6.已知函数f(x)=32sin x,x∈[a,b],则“存在x1,x2∈[a,b]使得f(x1)﹣f(x2)=3”是“b﹣a≥π”的()A.充分不必要条件B.充分必要条件C.必要不充分条件D.既不充分也不必要条件。
高考真题和模拟题分类汇编数 学专题02 常用逻辑用语一、选择题部分1.(2021•高考全国乙卷•文T3)已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A. p q ∧B. p q ⌝∧C. p q ∧⌝D. ()p q ⌝∨ 【答案】A .【解析】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选A .2.(2021•山东聊城三模•T 4.)已知直线l:(a −1)x +y −3=0,圆C:(x −1)2+y 2=5.则“ a =−1 ”是“ l 与C 相切”的().A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】B .【考点】必要条件、充分条件与充要条件的判断,直线与圆的位置关系【解析】圆C:(x −1)2+y 2=5的圆心为(1,0),半径r =√5,由直线l 和C 相切可得:圆心到直线的距离d =√(a−1)2+1=√5,解得2a 2−a −3=0,解得a =−1或a =32,故a =−1是a =−1或a =32的充分不必要条件,故答案为:B. 【分析】根据直线与圆相切的性质解得a =−1或a =32,再由充分必要条件即可判断B 正确。
3.(2021•安徽蚌埠三模•文T 3.)下面四个条件中,使a >b 成立的必要不充分条件是( )A .a ﹣2>bB .a +2>bC .|a |>|b |D .【答案】B .【解析】a >b 无法推出a ﹣2>b ,故A 错误;“a >b ”能推出“a +2>b ”,故选项B 是“a >b ”的必要条件,但“a +2>b ”不能推出“a >b ”,不是充分条件,满足题意,故B 正确;“a >b ”不能推出“|a |>|b |”即a 2>b 2,故选项C 不是“a >b ”的必要条件,故C 错误;a >b 无法推出>,如a >b >1时,故D 错误.b >4.(2021•上海嘉定三模•T13.)已知直角坐标平面上两条直线方程分别为l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0,那么“=0是“两直线l1,l2平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】若“=0则a1b2﹣a2b1=0,若a1c2﹣a2c1=0,则l1不平行于l2,若“l1∥l2”,则a1b2﹣a2b1=0,∴=0,故“=0是“两直线l1,l2平行的必要不充分条件.5.(2021•河南济源平顶山许昌三模•文T11.)下列结论中正确的是()①设m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,m∥n,n∥β,则α⊥β;②x=是函数y=sin x+sin(β﹣x)取得最大值的充要条件;③已知命题p:∀x∈R,4x<5x;命题q:∃x>0,x2>2x,则¬p∧q为真命题;④等差数列{a n}中,前n项和为S n,公差d<0,若a8=|a9|,则当S n取得最大值时,n=15.A.①③B.①④C.②③D.③④【答案】A.【解析】对于①:设m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,m∥n,直线m相当于平面α的法向量,由于n∥β,则α⊥β,故①正确;对于②,函数f(x)=sin x+sin(﹣x)满足f(0)=f(),故x=不是取得最大值的充要条件,故②错误;③已知命题p:∀x∈R,4x<5x;当x=﹣1时,不成立,命题q:∃x>0,x2>2x,当x=3时,成立,则¬p∧q为真命题,故③正确;④等差数列{a n}中,前n项和为S n,公差d<0,若a8=|a9|,即a8=﹣a9,则当S n取得最大值时,n=8或9,故④错误.6.(2021•上海浦东新区三模•T14.)关于x、y的二元一次方程组的系数行列式D=0是该方程组有解的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D.【解析】系数行列式D≠0时,方程组有唯一的解,系数行列式D=0时,方程组有无数个解或无解.∴当系数行列式D=0,方程可能有无数个解,也有可能无解,反之,若方程组有解,可能有唯一解,也可能有无数解,则行列式D可能不为0,也可能为0.∴系数行列式D=0是方程有解的既不充分也不必要条件.7.(2021•福建宁德三模•T3) 不等式x2−2x−3<0成立的一个充分不必要条件是( )A. −1<x<3B. −1≤x<2C. −3<x<3D. 0≤x<3【答案】D.【解析】∵x2−2x−3<0,∴−1<x<3,∵[0,3)⊊(−1,3),∴不等式x2−2x−3<0成立的一个充分不必要条件是[0,3),故选:D.先解不等式x2−2x−3<0的解集,利用子集的包含关系,借助充分必要条件的定义即可.本题考查了充分必要条件的判定,一元二次不等式的解法,属于基础题.8.(2021•宁夏中卫三模•理T2.)命题“若a2+b2=0,则a=0且b=0”的否定是()A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2=0,则a≠0且b≠0C.若a2+b2≠0,则a≠0或b≠0D.若a2+b2=0,则a≠0或b≠0【答案】D.【解析】命题“若a2+b2=0,则a=0且b=0”的否定是“若a2+b2=0,则a≠0或b≠0”.8.(2021•江西南昌三模•理T7.)随机变量X服从正态分布,有下列四个命题:①P(X≥k)=0.5;②P(X<k)=0.5;③P(X>k+1)<P(X<k﹣2);④P(k﹣1<X<k)>P(k+1<X<k+2).若只有一个假命题,则该假命题是()A.①B.②C.③D.④【答案】C.【解析】因为4个命题中只有一个假命题,又①P(X≥k)=0.5;②P(X<k)=0.5,由正态分布的相知可知,①②均为真命题,所以μ=k,则P(X>k+1)>P(X>k+2)=P(X<k﹣2),故③错误;因为P(k﹣1<X<k)=P(k<X<k+1)>P(k+1<X<k+2),故④正确.9.(2021•江西上饶三模•理T 1.)设x∈R,则“﹣2<x<2”是“1<x<2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】∵(1,2)⊊(﹣2,2),∴﹣2<x<2是1<x<2的必要不充分条件.10.(2021•安徽马鞍山三模•理T5.)已知命题p:“∃x∈R,x2﹣x+1<0”,则¬p为()A.∃x∈R,x2﹣x+1≥0B.∃x∉R,x2﹣x+1≥0C.∀x∈R,x2﹣x+1≥0D.∀x∈R,x2﹣x+1<0【答案】C.【解析】由特称命题的否定为全称命题,可得命题p:∃x∈R,x2﹣x+1<0,则¬p是∀x∈R,x2﹣x+1≥0.11.(2021•浙江杭州二模•理T3.)设,是非零向量,则“⊥”是“函数f(x)=(x+)•(x﹣)为一次函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B.【解析】f(x)=(x)•(x﹣)=•x2+(﹣)x﹣•,若⊥,则•=0,如果同时有||=||,则函数恒为0,不是一次函数,故不充分;如果f(x)是一次函数,则•=0,故⊥,该条件必要.12.(2021•江西鹰潭二模•理T5.)下列命题中,真命题的是()A.函数y=sin|x|的周期是2πB.∀x∈R,2x>x2C.函数y=ln是奇函数D.a+b=0的充要条件是=﹣1【答案】C.【解析】对于A,函数y=sin|x|不是周期函数,故A是假命题;对于B,当x=2时2x=x2,故B是假命题;对于C,函数y=f(x)=ln的定义域(﹣2,2)关于原点对称,且满足f(﹣x)=﹣f(x),故函数f(x)是奇函数,故C是真命题;对于D,“a+b=0”的必要不充分条件是“=﹣1”,即D是假命题.13.(2021•北京门头沟二模•理T6)“sinα=cosα”是“α=π4+2kπ,(k∈Z)”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B.【解析】由“sinα=cosα”得:α=kπ+π4,k∈Z,故sinα=cosα是“α=π4+2kπ,(k∈Z)”的必要不充分条件,故选:B.根据充分必要条件的定义结合集合的包含关系判断即可.本题考查了充分必要条件,考查三角函数以及集合的包含关系,是一道基础题.14.(2021•天津南开二模•T2.)已知x∈R,则“”是“x2<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】由<0,解得x<1;由x2<1,解得﹣1<x<1,∵(﹣1,1)⊆(﹣∞,1)∴“”是“x2<1”的必要不充分条件.15.(2021•辽宁朝阳二模•T4.)已知x1,x2是一元二次方程ax2+bx+c=0的两个不同的实根x1,x2,则“x1>1且x2>1”是“x1+x2>2且x1•x2>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A.【解析】已知x1,x2是一元二次方程ax2+bx+c=0的两个不同的实根x1,x2,则当“x1>1且x2>1”时,整理得:“x1+x2>2且x1•x2>1”.当x1=0.99,x2=2,满足:“x1+x2>2且x1•x2>1”但是“x1>1且x2>1”不成立,故“x1>1且x2>1”是“x1+x2>2且x1•x2>1”的充分不必要条件.16.(2021•浙江丽水湖州衢州二模•T6.)“关于x的方程=|x﹣m|(m∈R)有解”的一个必要不充分条件是()A.m∈[﹣2,2]B.m∈[﹣,]C.m∈[﹣1,1]D.m∈[1,2]【答案】C.【解析】化简=|x﹣m|,得2x2﹣2mx+m2﹣1=0,关于x的方程=|x﹣m|有解的充要条件是△≥0,即4m2﹣8(m2﹣1)≥0,解得﹣≤m.因此关于x的方程=|x﹣m|,有解的必要不充分条件是﹣≤m的真子集.17.(2021•安徽淮北二模•文T5.)在△ABC中,“sin A>cos B”是“△ABC为锐角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】若B为钝角,A为锐角,则sin A>0,cos B<0,则满足sin A>cos B,但△ABC为锐角三角形不成立,若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cos B <cos(﹣A),即cos B<sin A,故“sin A>cos B”是“△ABC为锐角三角形”的必要不充分条件.18.(2021•宁夏银川二模•文T4.)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥α”是“m∥n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B.【解析】因为m⊄α,n⊂α,当m∥α时,m与n不一定平行,即充分性不成立;当m∥n时,满足线面平行的判定定理,m∥α成立,即必要性成立;所以“m∥α”是“m∥n”的必要不充分条件.19.(2021•新疆乌鲁木齐二模•文T3.)已知命题p:∀x∈R,cos x≤1,则()A.¬p:∃x0∈R,cos x0≥1B.¬p:∀x∈R,cos x≥1C.¬p:∀x∈R,cos x>1D.¬p:∃x0∈R,cos x0>1【答案】D.【解析】因为全称命题的否定是特称命题,所以命题p:∀x∈R,cos x≤1,¬p:∃x0∈R,cos x0>1.20.(2021•山西调研二模•文T3.)已知p:a∈(1,3),q:f(x)=log a x在(0,+∞)单调递增,则p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A.【解析】∵q:f(x)=log a x在(0,+∞)单调递增,∴a>1,∵(1,3)⊊(1,+∞),∴p是q的充分不必要条件,故选:A.根据对数函数单调性的性质,求出a的等价条件,利用充分条件和必要条件的定义进行判断即可得到结论.本题主要考查充分条件和必要条件的判断,根据对数函数的单调性是解决本题的关键.二、填空题部分21.(2021•安徽马鞍山三模•文T13.)已知命题“∃x0∈R,x02﹣x0+1<0”,写出这个命题的否定:.【答案】∀x∈R,x2﹣x+1≥0.【解析】因为特称命题的否定是全称命题,所以命题:∃x0∈R,x02﹣x0+1<0的否定:∀x∈R,x2﹣x+1≥0.22.(2021•贵州毕节三模•文T13.)命题“若sinα=sinβ,则α=β”的否命题为真命题.(填“真”或“假”)【答案】真.【解析】命题“若sinα=sinβ,则α=β”的否命题为若sinα≠sinβ,则α≠β”其否命题为真命题.23.(2021•福建宁德三模•T15) 能够说明“若ax >ay,a<0,则x>y”是假命题的一组整数x,y的值依次为______ .【答案】−1,1(满足x<0,y>0,x,y∈Z均可)【解析】当ax >ay,a<0,可得1x<1y,①当x,y同号时,可得x>y,②当x,y异号时,y>0>x。
2023届高考复习数学易错题专题(常用逻辑用语)汇编1.命题“∀a ,b >0,a +1b ≥2和b +1a ≥2至少有一个成立”的否定为( ) A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立 B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立 C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立 D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立 2.使“a b >”成立的一个充分不必要条件是()A.1a b >+ B.1a b > C.22a b > D.33a b >3.下列命题的否定是真命题的是( )A .a ∀∈R ,一元二次方程210x ax --=有实根B .每个正方形都是平行四边形C .m N N ∃∈D .存在一个四边形ABCD ,其内角和不等于360°4.“直线m 垂直于平面α内的无数条直线”是“m ⊥α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设x >0,y >0,则“x +y =1”是“xy ≤14”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(多选)下列命题的否定中,真命题的是( )A .x R ∃∈,2104x x -+<B .所有正方形既是矩形也是菱形C .0a ∃>,2220x x a +++=D .所有三角形都有外接圆 7.(多选)下列选项中p 是q 的充分不必要条件的是( )A.:12p x <<,:12q x ≤≤B.:1p xy >,:1q x >,1y > C.1:1p x >,:1q x < D.p :两直线平行,q :内错角相等8.已知命题p :x 2-3x +2≤0,命题q :x 2-4x +4-m 2≤0.若p 是q 的充分不必要条件,则m 的取值范围是( )A .(-∞,0]B .[1,+∞)C .{0}D .(-∞,-1]∪[1,+∞)9.已知:0p a ≥;:q x R ∀∈,20x ax a -+>,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(多选)已知命题:{11}p m mm ∃∈-≤≤∣,2532a a m -+<+,若p 是假命题,则实数a 的取值范围是( )A .a 0B .a 5C .a 0D .a 511.(多选)下列命题正确的是( )A .“a >1”是“1a <1”的充分不必要条件B .命题“∃x ∈(0,+∞),ln x =x -1”的否定是“∀x ∈(0,+∞),ln x ≠x -1”C .设x ,y ∈R,则“x ≥2且y ≥2”是“x 2+y 2≥4”的必要不充分条件D .设a ,b ∈R,则“a ≠0”是“ab ≠0”的必要不充分条件12.命题“0x ∀>11x+≥”的否定是___________. 13.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.14.已知():210110p x q m x m m -≤≤-≤≤+>,:,且q 是p 的必要不充分条件,则实数m 的取值范围是____________.15.命题“x ∃∈R ,210x x ++≤”的否定是______.16.已知命题“2,10x R ax ax ∀∈-+>”为真命题,则实数a 的取值范围是__________.17.设:12m x m α-≤≤,:24x β≤≤,m R ∈,α是β的必要条件,但α不是β的充分条件,则实数m 的取值范围为___________.18.若“∃x ∈[4,6],x 2-ax -1>0”为假命题,则实数a 的取值范围为________.19.在①x ∃∈R ,2220x ax a ++-=,②存在区间()2,4A =,(),3B a a =,使得A B =∅ ,这2个条件中任选一个,补充在下面问题中,并求解问题中的实数a .问题:求解实数a ,使得命题[]:1,2p x ∀∈,20x a -≥,命题:q ______,都是真命题.(若选择两个条件都解答,只按第一个解答计分.)答案解析1.命题“∀a ,b >0,a +1b ≥2和b +1a ≥2至少有一个成立”的否定为( ) A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立 B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立 C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立 D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立 【参考答案】D【答案解析】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0, a +1b ≥2和b +1a ≥2都不成立.2.使“a b >”成立的一个充分不必要条件是()A.1a b >+ B.1a b > C.22a b > D.33a b >【参考答案】A【答案解析】对于A 选项,若1a b >+,则a b >成立,即充分性成立,反之,若a b >,则 1a b >+不一定成立,所以1a b >+是“a b >”成立的一个充分不必要条件,对于B 选项,当0b <时,由1a b >得a b <,则a b >不成立,即1a b>不是充分条件,不满足条件;对于C 选项,由22a b >,若2a =-,1b =,则a b <,则a b >不一定成立,所以22a b >不是a b >的充分条件,不满足条件,对于D 选项,由33a b >可得a b >,则33a b >是a b >成立的充要条件,不满足题意。
高考数学常用逻辑用语(附答案)一、单选题1.“ ”是“ ”成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 不充分不必要条件2.命题“ ”的否定为()A. B.C. D.3.命题“ 且”的否定形式是()A. 且B. 或C. 且D. 或4.设,则“ ”是“ ”成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.函数的图象向右平移个单位长度得到的图象.命题的图象关于直线对称;命题是的一个单调增区间.则在命题和中,真命题是( )A. B. C. D.6.命题“ ,”的否定是()A. ,B. ,C. ,D. ,7.“ ”是“关于的不等式的解集为”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.若数列的前项和为,则“ ”是“数列是等差数列”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.已知函数,则在上不单调的一个充分不必要条件可以是()A. B. C. 或 D.10.已知函数,,其中.若的图象在点处的切线与的图象在点处的切线重合,则a的取值范围为()A. B. C. D.二、填空题11.命题“ ”的否定是________命题.(填“真”或“假”)12.若条件,条件,则是的________.(填充分不必要条件、必要不充分条件、充要条件或既不充分也不必要条件)13.若,则“ ”是“ ”的________条件14.下列四个命题中,真命题的序号有________.(写出所有真命题的序号)①若,则“ ”是“ ”成立的充分不必要条件;②命题“ 使得”的否定是“ 均有”;③命题“若,则或”的否命题是“若,则”;④函数在区间上有且仅有一个零点.15.若“ ,使得成立”是假命题,则实数的取值范围是________16.设函数,若恰有个零点,.则下述结论中:①若恒成立,则的值有且仅有个;② 在上单调递增;③存在和,使得对任意恒成立;④“ ”是“方程在恰有五个解”的必要条件.所有正确结论的编号是________;三、解答题17.已知,;,.(1)若为真命题,求实数的取值范围;(2)若与的真假性相同,求实数的取值范围.18.已知命题,不等式恒成立;命题:函数,;(1)若命题为真,求的取值范围;(2)若命题是真命题,求实数的取值范围.19.设命题:实数满足不等式,命题:函数无极值点.(1)若“ ”为假命题,“ ”为真命题,求实数的取值范围;(2)已知“ ”为真命题,并记为,且:,若是的必要不充分条件,求正整数的值.20.已知函数.(1)若,求不等式的解集;(2)若“ ,”为假命题,求的取值范围.答案一、单选题1. A2. C3. B4. C5. A6. B7. B8. C9. D 10. A二、填空题11. 真12. 必要不充分条件13. 充分不必要14. ①②③④15. 16. ①③④三、解答题17. (1)解:∵,∴且,解得.所以当为真命题时,实数的取值范围是.(2)解:,.又∵当时,,∴.∵与的真假性相同.当假假时,有,解得;当真真时,有,解得.∴当与的真假性相同时,可得或.18. (1)解:若为真,即,不等式恒成立;只需时,即可,易知:函数在递减,所以的最小值为,因此.(2)解:若为真命题,则,易知:在上单调递减,所以;因此,故或,因为命题是真命题,所以,均为真命题,故满足或解得:,因此实数的取值范围是.19. (1)解:因为,因为,所以解得得,即:.又因为,∵函数无极值点,∴恒成立,则,解得,即:.∵“ ”为假命题,“ ”为真命题,∴与只有一个命题是真命题.若为真命题,为假命题,则, .若为真命题,为假命题,则.故实数的取值范围为或(2)解:∵“ ”为真命题,∴.又,∴或,从而:.∵是的必要不充分条件,即是的充分不必要条件,∴,解得,∵,∴,故正整数的值为.20. (1)解:当时,由,得.故不等式的解集为(2)解:因为“ ,”为假命题,所以“ ,”为真命题,所以.因为,所以,则,所以,即,解得,即的取值范围为。
专题 02 常用逻辑用语年份题号 考点考查内容2011 课标卷 理 10 命题及其关系 平面向量模与夹角、命题真假推断 2023 新课标理 2 命题及其关系 复数的概念与运算、命题真假的判定卷 1 理 9 全称量词与特称量词 二元一次不等式表示的平面地域、全称命题与特称命题 真假的判定2023卷 2文 3 充分条件与必要条件 导数与极值的关系、充要条件的判定 2023 卷 1 理 3 全称量词与特称量词 特称命题的否认 2023卷 1 理 2 命题及其关系 复数的有关概念与运算卷 2 理 7充分条件与必要条件面面平行的判定与性质、充要条件判定2023卷 3文 11 1. 全称量词与特称量词 2. 简单逻辑联结词二元一次不等式表示的平面地域、全称命题与特称命题 真假推断、含逻辑联结词命题的判定 卷 2文理16 简单逻辑联结词 含逻辑联结词命题真假的推断2023 卷 3理 16命题及其关系命题真假的推断,三角函数图象及其性质考点出现频率2023 年预测考点 5 命题及其关系 4/10 考点 6 简单逻辑联结词 2/10 考点 7 全称量词与特称量词 3/10 考点 8 充分条件与必要条件 2/102023 年仍将与其他知识结合,考查命题及其关系、含简单逻辑连接词的敏体真假推断、特称命题与全称命题真假推断及其否认的书写、充要条件的判定,其中充要条件判定为重点.考点 5 命题及其关系1.(2023 新课标 III 理 16)关于函数 f ( x ) = sin x + 1.sin x① f ( x ) 的图像关于 y 轴对称;② f ( x ) 的图像关于原点对称; ③ f ( x ) 的图像关于 x = π对称;④ f ( x ) 的最小值为2 .2 其中全部真命题的序号是.12(答案)②③(解析)(分析)利用特别值法可推断命题①的正误;利用函数奇偶性的定义可推断命题②的正误;利用对称性的 定义可推断命题③的正误;取-π< x < 0 可推断命题④的正误.综合可得出结论.(详解)对于命题①, f ⎛ π⎫ = 1 + 2 = 5, f ⎛ - π⎫ = - 1 - 2 = - 5 ,则 f ⎛ - π⎫≠f ⎛ π⎫ ,6 ⎪ 2 26 ⎪ 2 2 6 ⎪ 6 ⎪ ⎝ ⎭⎝ ⎭ ⎝ ⎭ ⎝ ⎭∴函数 f ( x ) 的图象不关于 y 轴对称,命题①错误; 对于命题②,函数 f ( x ) 的定义域为{x x ≠ k π, k ∈ Z} ,定义域关于原点对称,f (-x ) = sin (-x )+ 1 = - sin x -1 = - ⎛sin x +1 ⎫= - f(x ) , sin (-x ) sin x sin x ⎪⎝ ⎭∴函数 f ( x ) 的图象关于原点对称,命题②正确;f ⎛ π- x ⎫ = sin ⎛ π- x ⎫ +1= cos x + 1对于命题③, 2⎪ 2⎪⎛ π⎫cosx , ⎝⎭⎝⎭ sin ⎝ - x ⎪⎭f⎛π+ x ⎫ = sin ⎛π+ x ⎫ +1= cos x + 1⎛π ⎫ ⎛π ⎫2 ⎪ 2⎪ ⎛π⎫cos x ,则 f - x = f+ x ,⎝ ⎭ ⎝⎭ sin + x2 ⎪ 2 ⎪ 2 ⎪ ⎝ ⎭ ⎝ ⎭⎝ ⎭∴函数 f ( x ) 的图象关于直线 x = π对称,命题③正确;对于命题④,当 -π< x < 0 时, sin x < 0 ,则2f ( x ) = sin x +1sin x< 0 < 2 ,命题④错误,故答案为:②③. 2.(2023 新课标Ⅰ)设有下面四个命题p 1 :假设复数 z 满足 z∈ R ,则 z ∈ R ;p :假设复数 z 满足 z 2∈ R ,则 z ∈ R ; p 3 :假设复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ; p 4 :假设复数 z ∈ R ,则 z ∈ R .其中的真命题为 A. p 1 , p 3B. p 1 , p 4C. p 2 , p 3D. p 2 , p 4(答案)B (解析)设 z = a + b i ( a , b ∈ R ),则 1= z 1 = (a + b i) a - b i a 2 + b 2∈ R ,得b = 0 ,所以 z ∈ R , p 1 正222⎭确;z 2 = (a + b i)2 = a 2 - b 2+ 2ab i ∈ R ,则 ab = 0 ,即 a = 0 或b = 0 ,不能确定 z ∈ R ,p 不正确;假设 z ∈ R ,则b = 0 ,此时 z = a - b i = a ∈ R , p 4 正确.选 B .3.(2011 新课标)已知a , b 均为单位向量,其夹角为θ,有以下四个命题p :| a + b |> 1 ⇔ θ∈0, 2π 13 p : | a + b |> 1 ⇔ θ∈ (2π,π] 23p 3 :| a - b |> 1 ⇔ θ∈ π0, )3p 4 : | a - b |> 1 ⇔ θ∈ π( ,π3其中真命题是 A. p 1, p 4B. p 1, p 3C. p 2 , p 3D. p 2 , p 4(答案)A (解析)由 a + b 1 得,cos θ> - 1, 2⇒θ∈ ⎡0, 2π⎫。
1.2常用逻辑用语
【必考内容要求】
(1) 理解命题的概念.
(2)了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.
(3) 理解必要条件、充分条件与充要条件的意义.
(4)了解逻辑联结词“或”、“且”、“非”的含义.
(5) 理解全称量词与存在量词的意义.
(6) 能正确地对含有一个量词的命题进行否定.
【高考试题汇编】
一、选择题(共7题)
1.【2007年海南宁夏理1文2】已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥
B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >
D.:p x ⌝∀∈R ,sin 1x >
【答案】:C
【分析】:p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x >
2.【2009年理海南宁夏文4】有四个关于三角函数的命题: 1p :∃x ∈R, 2sin 2x +2cos 2x =12 2p : ∃x 、y ∈R, sin(x-y)=sinx-siny
3p : ∀x ∈[]0,π 4p : sinx=cosy ⇒x+y=2
π 其中假命题的是 (A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,4p
解析:1p :∃x ∈R, 2sin 2x +2cos 2x =12
是假命题;2p 是真命题,如x=y=0时成立;3p 是
真命题,∀x ∈[]0,π,sin 0sin sin x x x ≥===,
=sinx ;4p 是假命题,22π
π
π≠如x=,y=2时,sinx=cosy,但x+y 。
选A.
3.【2010年新课标卷理5】已知命题
1p :函数22x x y -=-在R 为增函数,
2p :函数22x x y -=+在R 为减函数,
则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是
(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q
【答案】C
解析:易知1p 是真命题,而对2p :112ln 2ln 2ln 2(2)22
x x x x y '=-=-,当[0,)x ∈+∞时,122x x
≥,又ln 20>,所以0y '≥,函数单调递增;同理得当(,0)x ∈-∞时,函数单调递减,故2p 是假命题.由此可知,1q 真,2q 假,3q 假,4q 真.
另解:对2p 的真假可以取特殊值来判断,如取1212x x =<=,得1251724y y =
<=;取3412x x =->=-,得3451724
y y =<=即可得到2p 是假命题,下略. 4.【2011年新课标卷理10】已知a 与b 均为单位向量,其夹角为,有下列四个命题
其中的真命题是
(A ) (B ) (C ) (D )
解析:得, , 。
由得 。
选A 5.【2013年新课标卷1文】已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )
(A )p q ∧ (B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝
θ12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦
3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦
14,P P 13,P P 23,P P 24,P
P 1a b +==>1cos 2
θ>-20,3πθ⎡⎫⇒∈⎪⎢⎣
⎭
1a b -==>1cos 2θ<,3πθπ⎛⎤⇒∈ ⎥⎝
⎦
6. 【2014高考全国2卷文第3题】函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( )
A .p 是q 的充分必要条件
B. p 是q 的充分条件,但不是q 的必要条件
C. p 是q 的必要条件,但不是q 的充分条件
D. p 既不是q 的充分条件,也不是q 的必要条件
7. 【2015高考全国1卷理3】设命题P :∃n ∈N ,2n >2n ,则⌝P 为
(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n
(C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n
【答案】C
【解析】p ⌝:2,2n n N n ∀∈≤,故选C. 考点:特称命题的否定。