描述流体运动的两种方法(流体运动学)
- 格式:ppt
- 大小:506.00 KB
- 文档页数:10
第二章 流体运动学只研究流体运动, 不涉及力、质量等与动力学有关的物理量。
§2.1 流体运动的描述 两种研究方法:(1)拉格朗日(Lagrange)法: 以流场中质点或质点系为研究对象, 从而进一步研究整个流体。
理论力学中使用的质点系力学方法,难测量,不适用于实用理论研究。
(2)欧拉(Euler)法: 将流过空间的流体物理参数赋予各空间点(构成流场),以空间各点为研究对象,研究其物理参数随时间t ,位置(x ,y ,z )的变化规律。
易实验研究,流体力学的主要研究方法。
两种研究方法得到的结论形式不同,但结论的物理相同。
可通过一定公式转换。
1. 拉格朗日法有关结论质点: r=r (t ) dt d rV = dtd dt d V r a ==22x=x (t ) dt dxu = 22dtx d a x =y=y (t ) dtdyv = 22dt y d a y =p=p (t ) T=T (t ) .. .. .. .. .. .. .. .. 质点系:x=x (t,a,b,c ) p=p (t,a,b,c ) T=T (t,a,b,c ) .. .. .. .. .. .. .. ..(a, b, c)是质点系各质点在t =t 0时刻的坐标。
(a, b, c)不同值表不同质点2. 欧拉法物理量应是时间t 和空间点坐标x, y,z 的函数u =u(x, y, z, t) p =p(x, y, z, t) T =T(x, y, z, t) 3. 流体质点的随体导数!!流体质点的随体导数:流体质点物理参数对于时间的变化率。
简称为质点导数。
例:质点速度的随体导数(加速度)dt d V 质点分速度的随体导数dtdu质点压力的随体导数dtdp质点温度的随体导数dt dT.. .. .. .. .. .. 质点导数是拉格朗日法范畴的概念。
流体质点随体导数式---随体导数的欧拉表达式dt d V =z wy v x u t t∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V V V V V V Vdt du =z u w y u v x u u t u u tu∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂Vdt dT =z T w y T v x T u t T T tT∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V普遍形式: dt dF =z F w y F v x F u t F F tF∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂VF t )(∇⋅+∂∂=V证其一: dt d V =V V V∇⋅+∂∂t 由 dt d V=tt ∆-→∆V V 'lim 0因 V=V (x ,y , z,t )V ’=V (x+Δx ,y+Δy ,z+Δz,t+Δt )所以 V ’=V++∆∂∂x x V +∆∂∂y y V z z∆∂∂V t t ∆∂∂+V 代入上式得dt d V==∆∆∂∂+∂∂∆+∂∂∆+∂∂∆→∆tt z z y x xt tV V y V V lim 0V V V z V y V x V t V ∇⋅+∂∂=∂∂+∂∂+∂∂+∂∂=tw v u 可见, 在欧拉法中质点速度的随体导数(即加速度)由两部分组成。
工程流体力学复习题第一章流体的力学性质1、连续介质(概念)、假设(质量分布、运动、内应力连续))2、流体的主要物理性质(a)分类(固、液、气各自特点)(b)流动性(c)可压缩性和膨胀性(d)粘性(牛顿内摩擦定律、液体和气体(温度、压力))(e)表面张力(润湿和不润湿)3、牛顿流体和非牛顿流体第二章流体运动学基本概念1、流动分类(流体性质、流动状态、流动空间的坐标数目)2、描述流体运动的两种方法(a)拉格朗日法和欧拉法基本思路(b)质点导数(c)迹线和流线的意义及其求解(,)3、有旋流动和无旋流动(概念及其基本性质)涡量的连续性方程、速度场有势的充要条件是流动无旋等第三章流体静力学1、作用在流体上的力(质量力和表面力)2、流体静止时质量力必须满足的条件3、有势质量力场中静止流体的分界面上,既是等压面也是等势面。
4、静止的正压流场,其质量力必然有势;反之,质量力有势,非正压流场不可能处于静止状态,处于静止状态的必然是正压流场。
5、重力场静止液体的压力分布和物体受力(、)第四章流体流动基本原理1、系统和控制体的定义和区别2、输运公式定义及其表达式(系统质量、动量、能量变化率)3、质量守恒方程(a)定义(,质量流量、质量通量)(b)特殊形式的应用(,稳态、不可压缩)4、动量守恒方程(a)定义(,动量流量)(b)应用5、能量守恒方程(a)定义(b)伯努利方程(简化条件、公式(理想不可压缩流体稳态流动)第五章不可压缩流体的一维层流流动1、常见边界条件(固壁—流体、液体—气体、液体—液体)2、流动条件说明(稳态、不可压缩、一维、层流、充分发展流动)3、狭缝流动(概念、产生流动的因素——压差流、剪切流)4、管内流动分析(切应力和速度分布规律)5、降膜流动分析第六章流体流动微分方程——连续性方程和运动方程(了解)1、连续性方程不可压缩流体2、运动方程(以应力表示的运动方程→引入牛顿流体本构方程→N-S方程)第八章流体力学的实验研究方法1、流动相似(几何相似、运动相似、动力相似的定义和应用)2、相似准则(至少四个相似准数及其物理意义、计算应用)3、量纲分析(常见物理量的量纲、基本量纲(M、L、T)、量纲分析方法:瑞利(Rayleigh)方法和白金汉姆(Buckingham)方法)第九章管内流体流动1、流态的判定(指标、层流、过渡流、湍流)2、圆管内充分发展的层流流动(阻力损失、阻力系数)3、湍流的半经验理论(布辛聂斯克涡粘性假设、普朗特混合长度理论、壁面附近湍流的三个区域)4、圆管内充分发展的湍流流动(光滑管、粗糙管(水力光滑管、过渡型圆管、水力粗糙管)沿程阻力系数)5、圆管内流体流动的速度分布6、沿程阻力损失的计算7、圆管进口段流动分析8、非圆形截面管内的流体流动(水力当量直径的计算)参考公式哈密尔顿算子速度梯度流体的散度旋度。
流体力学标准化作业(三)——流体动力学本次作业知识点总结1.描述流体运动的两种方法 (1)拉格朗日法;(2)欧拉法。
2.流体流动的加速度、质点导数流场的速度分布与空间坐标(,,)x y z 和时间t 有关,即(,,,)u u x y z t =流体质点的加速度等于速度对时间的变化率,即Du u u dx u dy u dza Dt t x dt y dt z dt ∂∂∂∂==+++∂∂∂∂投影式为x x x x x x y z y y y y y x y z z z z z z x y z u u u u a u u u t x y z u u u u a u u u t x y z u u u ua u u u t x y z ∂∂∂∂⎧=+++⎪∂∂∂∂⎪∂∂∂∂⎪=+++⎨∂∂∂∂⎪⎪∂∂∂∂=+++⎪∂∂∂∂⎩或 ()du ua u u dt t∂==+⋅∇∂在欧拉法中质点的加速度du dt 由两部分组成, u t∂∂为固定空间点,由时间变化引起的加速度,称为当地加速度或时变加速度,由流场的不恒定性引起。
()u u ⋅∇v v 为同一时刻,由流场的空间位置变化引起的加速度,称为迁移加速度或位变加速度,由流场的不均匀性引起。
欧拉法描述流体运动,质点的物理量不论矢量还是标量,对时间的变化率称为该物理量的质点导数或随体导数。
例如不可压缩流体,密度的随体导数D D u t tρρρ∂=+⋅∇∂() 3.流体流动的分类 (1)恒定流和非恒定流 (2)一维、二维和三维流动 (3)均匀流和非均匀流 4.流体流动的基本概念 (1)流线和迹线流线微分方程x y zdx dy dzu u u ==迹线微分方程x y zdx dy dz dt u u u === (2)流管、流束与总流(3)过流断面、流量及断面平均流速体积流量 3(/)AQ udAm s =⎰质量流量 (/)m AQ udAkg s ρ=⎰断面平均流速 AudA Qv AA==⎰(4)渐变流与急变流 5. 连续性方程(1)不可压缩流体连续性微分方程0y x zu u u x y z∂∂∂++=∂∂∂ (2)元流的连续性方程121122dQ dQ u dA u dA =⎧⎨=⎩ (3)总流的连续性方程1122u dA u dA =6. 运动微分方程(1)理想流体的运动微分方程(欧拉运动微分方程)111xx x x x y z yy y y x y z zz z z x y z u u u u p X u u u x t x y zu u u u p Y u u u x t x y z u u u u p Z u u u x t x y z ρρρ∂∂∂∂∂⎫-=+++⎪∂∂∂∂∂⎪∂∂∂∂⎪∂-=+++⎬∂∂∂∂∂⎪⎪∂∂∂∂∂-=+++⎪∂∂∂∂∂⎭矢量表示式1()u f p u u tρ∂+∇=+⋅∇∂r r r r(2)粘性流体运动微分方程(N-S 方程)222111x x x x x x y z y y y y y x y z z z z z z x y z u u u u pX u u u u x t x y zu u u u pY u u u u x t x y z u u u u p Z u u u u x t x y z νρνρνρ∂∂∂∂∂⎫-+∇=+++⎪∂∂∂∂∂⎪∂∂∂∂⎪∂-+∇=+++⎬∂∂∂∂∂⎪⎪∂∂∂∂∂-+∇=+++⎪∂∂∂∂∂⎭矢量表示式 21()u f p u u u tνρ∂+∇+∇=+⋅∇∂r r r r r 7.理想流体的伯努利方 (1)理想流体元流的伯努利方程22p u z C g gρ++=(2)理想流体总流的伯努利方程221112221222p v p v z z g g g gααρρ++=++8.实际流体的伯努利方程(1)实际流体元流的伯努利方程2211221222w p u p u z z h g g g gρρ++=+++(2)实际流体总流的伯努利方程2211122212w 22p v p v z z h g g g gααρρ++=+++10.恒定总流的动量方程()2211F Q v v ρββ=-∑r r r投影分量形式()()()221122112211xx x y y y z z z F Q v v F Q v v FQ v v ρββρββρββ⎫=-⎪⎪=-⎬⎪=-⎪⎭∑∑∑标准化作业(5)——流体运动学选择题1. 用欧拉法表示流体质点的加速度a 等于( )。
第三章 流体运动学一、思考题1.描述流体运动有哪两种方法?这两种方法描述流体运动的主要区别是什么?2.在欧拉法中加速度的表达式是怎样的?什么是当地加速度和迁移加速度?3.什么是流线?什么是迹线?流线具有哪些性质?流线和迹线的微分方程有什么不同?在什么情况下流线与迹线重合?4.什么是流管?流管具有哪些性质?5.什么是有效过流断面?什么情况下效过流断面是平面?6.什么是恒定流?什么是非恒定流?各有什么特点?7.什么是均匀流?什么是非均匀流?其分类与过流断面上流速分布是否均匀有无关系?8.什么是一元流动、二元流动和三元流动?9.什么是流管、流束、流量?10.在运动流体中0=∇u 的物理含义是什么?11.说明流函数存在的条件,它与流体质点的速度有何关系?流函数等于常数表示什么?12.何谓无旋流?何谓有旋流?它们和液体质点的运动轨迹是否为圆周无关系?13.为什么无旋流动必为有势流动?反之是否成立?为什么?14.无旋流动一般存在于无黏性的理想流体中,能否说理想流体流动一定是无旋流动?理想流体有旋流动是否存在?15.有旋流动一般存在于有黏性的实际流体中,能否说实际流体一定是有旋流动?实际流体无旋流动是否存在?16.说明势函数存在的条件,它与流体质点的速度有何关系?势函数等于常数表示什么?17.什么是渐变流?渐变流有哪些主要性质?引入渐变流概念,对研究流体运动有什么实际意义?18.什么是断面平均流速?为什么要引入断面平均流速这个概念?19.在静止流体中恒有0=∇u,说明静止流体均为不可压缩流体,是否正确?为什么?20.总流连续性方程2211A A υυ=的物理意义是什么? 二、单项选择题1.用欧拉法表示流体质点的加速度a 等于( )。
(A )dt r d (B )t u ∂∂ (C )()u u ∇⨯ (D )()u u tu ∇⨯+∂∂ 2.在恒定流的流场中,流体质点的加速度( )。
(A)等于零 (B)等于常量 (C)随时间变化而变化 (D)与时间无关3.稳定流是( )。