【2011高教社杯全国大学生数学建模竞赛赛题D】cumcm2011D
- 格式:doc
- 大小:54.50 KB
- 文档页数:2
2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?B题交巡警服务平台的设置与调度“有困难找警察”,是家喻户晓的一句流行语。
警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛题目城市表层土壤重金属污染分析关键词城市表层重金属;地积累指数法;偏微分方程模型;三元回归分析;摘要随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
废气和污水的任意排放,化学物质的任意燃烧,最终导致了各种重金属元素的含量有所增加,这些元素的增加对居民周围的生活环境造成了不可估量的影响。
因此对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
所以我们要对所给区域的重金属元素的含量进行认真仔细地检测,以便准确地来确定污染源的特征,最后来探究下本地区原始环境的历史演变。
对于问题一、二,用地积累指数法,求出地积累指数及其频率,按照地积累指数分级以确定该城区内不同区域重金属的污染程度和重金属的污染原因。
2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?1,定义:污染程度k 表达式划分级别地积累指数法、富集系数法、潜在生态危害法空间分布特征: 平均值(区域排序)柱状图(金属元素区域)总体的位置散点图2,污染原因:生活区工业区公园区…..(人为、工业废料、燃烧…..)3,重金属污染物传播特征:污染源位置:4,优缺点:信息量、随机性、….建立改进模型求解…评价公式:首先根据某一点的实测重金属含量, 进行最高污染系数(CF) 的计算:CFi =ci/c0i式中: CFi 为元素i 的最高污染系数;Ci 为元素i 的实测含量;C0i为元素i 的评价标准, 即背景值。
2021高教社杯全国大学生数学建模比赛A题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。
本问题的数据来源于某城市对土壤环境的实地监测。
评阅时, 应着重注意数学模型的建立、计算方法(或所选软件的程序语句) 及挑选该方法的理由。
(1) 可用插值拟合的方法获得. 各重金属污染物浓度的空间分布。
再参考由背景值确定的阈值, 定量分析城区各区域的污染程度。
由于空间数据是不规则的 , 较好的方法是用散乱数据插值, 例如Kriging插值、 Shepard插值等。
也可以用其他方法插值拟合, 但应明确所使用的方法, 并作出分析, 不能只简单套用软件。
各个污染元素浓度的最大值与插值后浓度的最大值距离不会太远。
(2) 分析污染产生的原因, 必须有充分的数据分析以及明确的结论。
例如, 可以根据各区域的污染浓度信息进行聚类, 考察污染物出现的相关性, 发现某些污染物结伴出现(如Cr与Ni, Cd与Pb的相关性较高) , 这与污染物产生的原因是密切相关的 , 由此可大致确定出产生这些污染的原因。
(3) 本小题可以在不同的假定下建立相应的模型, 但必须有合理的假定、建立明确的数学模型, 并根据模型和所给的数据进行数值计算。
例如, 由于雨水的作用是重金属在土壤表层中传播的主要原因之一, 可以假定传播以对流形式为主, 由此建立对流方程, 并以给出的重金属污染物浓度数据作为初始值(实际上是终值) , 从而得. 到偏微分方程的定解问题。
类似于(1) ,采纳插值拟合的方法, 可以得. 到地形高度函数。
利用特征线法, 可以得. 到各区域在各个时间点上的重金属污染物浓度数据,从而可以得. 到各时间的污染范围, 由此确定出污染源的位置。
(4) 本问题只给出一个时间点上的数据, 信息量明显不足, 需要补充更多的信息。
加入学生考虑到多个时间点上的采样信息, 给出更好的演化模式, 应予以鼓励。
2021高教社杯全国大学生数学建模比赛B题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。
2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。
2011高教社杯全国大学生数学建模竞赛D题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题主要有两种解法。
方法一,主要思路为首先求出三种规格成品的最大捆数,然后求出每捆成品不同长度肠衣的搭配方式。
具体做法为:
1,以现有三种规格对应原料长度和根数为约束,分别建立求三种规格成品捆数最大的整数规划模型,利用软件求解。
2,建立组合或优化模型,计算步骤1得到的各种规格成品每捆中不同原料的搭配方式。
3,根据适当规则调整步骤2得到的各种规格成品每捆中不同原料的搭配方式,使最短长度最长的捆数最多。
上述三步骤应完整,模型应清晰,算法应合理实用。
方法二,主要思路为首先计算三种规格成品的所有可能的不同的原料搭配方式,然后用捆数最大作为目标,同时求出成品的最大捆数和每捆成品的捆扎方式。
具体做法为:
1,用组合方法计算每种成品对应的所有可能的原料搭配方式。
组合模型要明确并体现原料根数和总长度的约束和允许的误差,算法的合理性和可实现性也是重要的。
2,对各种规格成品建立并求解各种搭配的最优组合使成品捆数最多的整数规划模型。
要注意模型中体现原料根数的约束条件的正确性。
在上述两种方法中均应首先考虑原料最长的成品(第三种规格)的捆扎,剩余的材料降级后参与次长的成品的捆扎,再有剩余部分降级参与最短成品的捆扎。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):北京大学参赛队员(打印并签名) :1. 姚胜献2. 许锦敏3. 刘迪初指导教师或指导教师组负责人(打印并签名):刘业辉日期: 2011 年 9 月 12日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度摘要本文通过建立整数规划模型,解决了分配各平台管辖范围、调度警务资源以及合理设置交巡警服务平台这三个方面的问题;通过建立线性加权评价模型定量评价了某市现有交巡警服务平台设置方案的合理性,并根据各个区对服务平台需求量的不同,提出了重新分配全市警力资源的解决方案。
在计算交巡警服务平台到各个路口节点的路程时,使用了图论里的floyd算法。
针对问题一的第一个子问题,首先假设交巡警服务平台对某个路口节点的覆盖度是二元的,引入决策变量,建立了0-1整数规划模型。
交巡警出警应体现时间的紧迫性,所以选择平均每个突发事件的出警时间最短作为目标函数,运用基于MATLAB的模拟退火算法进行求解,给出了中心城区A的20个服务平台的管辖范围,求得平均每个案件的出警时间为1.013分钟。
申明:这不是标准答案,这只是我的一点小思路,希望能帮到各位,有兴趣的加我q:454679703 ,q群:32890089一起谈论。
第一问:(线性规划)
设X1,X2,X3……X46为46档长度肠衣分别的数,N成品捆数。
则 Max Z=M1+M2+M3(成品捆数越多越好)
3X1+3.5X2+……+6.5X8=89
7X9+7.5X10+……+13.5X22=89
14X23+14.5X24+……+25.5X46=89
X1+X2+……+X8=20N
X9+X10+……+X22=8N
X23+X24+……+X46=5N
0<=X1N1<=43 (n是正整数,下同)
0<=X2N1<=59
……
0<=X8N1<=21
0<=X9N2<=24
0<=X10N2<=24
……
0<=X22N2<=25
0<=X23N3<=35
……
0<=X46N3<=1
一:问题分析
1.根据题目附表所给信息,可知天然肠衣每根的最大长度没有超过26米,题目所给天然肠衣规格的信息中只有第三个产品的最大长度可达到任意,而其余两个产品的最大长度都没有达到原料所给长度的最大值,即无论何种方案,最合理的方案也一定有第三种规格的产品;同理可以看到只有第一种规格的产品的最短长度能容纳下长度为3~6.9的产品;第二种规格的产品也是必须的。
所以,综上所述:三种规格的产品缺一不可,现在最主要的问题就是解决如何分配。
欢迎大家一起讨论,。
天然肠衣搭配问题摘要本文研究的是天然肠衣搭配问题,目的是在满足规格要求的条件下,选择使成品捆数最多的优化方案。
共建立了3个模型。
对题中给出的要求逐个考虑,并运用Lingo和Matlab软件编程求解。
模型1 在给定一批原料的情况下,装出的成品捆数越多方案越好。
对各种不同规格的原料,根据每捆成品的总长度和根数建立整数规划模型,得出三种规格的最大捆数分别为14捆, 34捆,129捆。
总数量为177捆。
模型2 根据要求2,在模型1捆数最大的基础上,得出各规格捆数最大时的不同搭配方案,选出最优方案(详见表27,30,47)。
模型3 针对要求3,允许总长度有5.0的误差,各规格成品每捆的根数可以比标准少一根,明显条件放宽,可能会增加成品捆数。
运用Matlab和Lingo软件求解得到三种规格的捆数增加了6捆,总捆数为183捆,具体搭配方案见表48。
针对要求4,后一规格完成搭配后若材料有剩余,剩余材料可降级到前一规格使用,计算出三种规格的捆数增加3,最终最大捆数为186捆。
最后,选用合理的数据对模型进行模拟检验,把相应的数字输入流程,采用计算机搜索法,得出的方案时间不超过30分钟。
关键词:整数规划模型Lingo Matlab1 问题重述1.1 题目背景天然肠衣(以下简称肠衣)制作加工是我国的一个传统产业,出口量占世界首位。
肠衣经过清洗整理后被分割成长度不等的小段(原料),进入组装工序。
传统的生产方式依靠人工,边丈量原料长度边心算,将原材料按指定根数和总长度组装出成品(捆)。
1.2 题目条件1 原料按长度分档,通常以0.5米为一档,如:3-3.4米按3米计算,3.5米-3.9米按3.5米计算,其余的依此类推。
表1是几种常见成品的规格,长度单位为米,∞表示没有上限,但实际长度小于26米。
2 为了提高生产效率,公司计划改变组装工艺,先丈量所有原料,建立一个原料表。
表2为某批次原料描述(见附录A)。
1.3 题目要求1 对于给定的一批原料,装出的成品捆数越多越好;2 对于成品捆数相同的方案,最短长度最长的成品越多,方案越好;3 为提高原料使用率,总长度允许有± 0.5米的误差,总根数允许比标准少1根;4 某种规格对应原料如果出现剩余,可以降级使用。
7月24日至29日,2011年“深圳杯”全国大学生数学建模夏令营在深圳成功举行。
本届夏令营由全国大学生数学建模竞赛组委会与深圳市科学技术协会共同举办,深圳市政协副主席钟晓渝、市政府副秘书长高国辉担任夏令营顾问,深圳市科协主席兼党组书记周路明、全国大学生数学建模组委会副主任陈叔平担任夏令营营长。
开营仪式于7月25日上午举行,市政协副主席钟晓渝、全国大学生数学建模组委会副主任陈叔平分别在开营仪式上致辞。
夏令营期间,深圳光启高等理工研究院院长刘若鹏、西安交通大学副校长徐宗本、全国大学生数学建模组委会副主任陈叔平分别做了大会学术报告,受到师生热烈欢迎。
来自全国50多所高校的200多名师生和专家学者参加了夏令营,讨论交流热烈,学术氛围浓郁。
参加夏令营的部分师生还深入深圳的部分企业和东部华侨城等科普基地进行实地考察,亲身感受高新技术产业在深圳的发展活力。
深圳市科协主席周路明在夏令营闭营式上谈到,改革开放三十年,深圳改革和创新飞速发展中高端人才流动中的“孔雀东南飞”模式已经具有不可复制性,未来深圳高新科技发展的人才源动力必须立足于自主培养。
在过去的20年,深圳高新技术企业的发展取得了很大的成就,出现了许多创业家和创新家,他们从自主创新的丛林时代搏杀出来,从低端走向高端,这是深圳发展必经的路程。
要使著名高校的教育传统和科学传统与深圳的创新性文化之间产生碰撞,学习硅谷斯坦福孵化世界著名企业的路径模式,在碰撞中产生出深圳新一代的创新家和创业家。
促进大学生与深圳市的创新文化之间沟通的渠道需要拓展,要激发起大学城学生创新创业的激情,并将其融合到深圳独特的创新性文化当中。
深圳市科协今后将继续致力于推动校企之间的交流和合作,推进人才培养的多元化,为大学生的成才献心献力。
他并表示希望将夏令营常态化,深圳市科协将对此给予连续支持。
经过专家评选,以下队伍获得2011年“深圳杯”全国大学数学建模夏令营优秀论文前三名:A题第一名:上海工程技术大学学生:范柳斌、陈妮娜、胡昱指导教师:李路第二名:山东科技大学学生:李辰潼、郑镇镇、李广指导教师:王新赠第三名:新疆大学学生:尧姚、吴迪、马洪天指导教师:吴黎军B题第一名:北京师范大学学生:史秋阳、朱红福、蒋文静指导教师:无第二名:暨南大学珠海校区学生: 潘亦铭、詹雯婷、张樟指导教师:张元标第三名:贵州大学学生: 汪德萍、李志霞、王茜指导教师:胡支军C题第一名:重庆大学学生: 陆熙、常乐、李佳钰指导教师:龚劬第二名:中国地质大学(北京)学生:刘洋廷、张小川、刘鑫磊指导教师:黄光东第三名:复旦大学学生:李欣、王学彬指导教师:曹沅D题第一名:哈尔滨师范大学学生: 何征尘、肖迪、周明眉指导教师:么焕民第二名:吉林大学学生: 姜富春、孟庆钟、陈文文指导教师:曹春玲第三名:中山大学学生: 田媛、林惠燕、李祖坚指导教师:无以上师生的论文及更多优秀论文(名单将于近期另行公布)将编辑整理后由高等教育出版社正式出版。
天然肠衣捆绑问题天然肠衣是在中国传统的进口和出口贸易货物。
其处理的关键步骤是用给定规格把材料捆绑成不同长度的段。
Natural casing is a traditional import and export trade in China. The key step of its processing is to bundle the material segments in various length by given specifications.段分组长度通常是半米,这意味着3.5米和3.9米之间分组成3.5米,3M和3.4米段分组3米...等,以下是一个例子,材料分部的描述:The segments are grouped by length and the step is usually half meter, which means the segments between 3m and 3.4m are grouped as 3m and the segments between 3.5m and 3.9m as 3.5m, …, etc. The following is one example of material segments description:表1材料细分描述Table 1 Material segments descriptionLength(m) 3-3.4 3.5-3.9 4-4.4 4.5-4.9 5-5.4 5.5-5.9 6-6.4 6.5-6.9 Count 43 59 39 41 27 28 34 21Length(m) 7-7.4 7.5-7.9 8-8.4 8.5-8.9 9-9.4 9.5-9.9 10-10.4 10.5-10.9 Count 24 24 20 25 21 23 21 18Length(m) 11-11.4 11.5-11.9 12-12.4 12.5-12.9 13-13.4 13.5-13.9 14-14.4 14.5-14.9 Count 31 23 22 59 18 25 35 29Length(m) 15-15.4 15.5-15.9 16-16.4 16.5-16.9 17-17.4 17.5-17.9 18-18.4 18.5-18.9 Count 30 42 28 42 45 49 50 64Length(m) 19-19.4 19.5-19.9 20-20.4 20.5-20.9 21-21.4 21.5-21.9 22-22.4 22.5-22.9 Count 52 63 49 35 27 16 12 2Length(m) 23-23.4 23.5-23.9 24-24.4 24.5-24.9 25-25.4 25.5-25.9Count 0 6 0 0 0 1捆绑规格列于表2。
2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.韩晓峰2.杨晓帆3.李弘倩指导教师或指导教师组负责人(打印并签名):日期:2011年9月11日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度摘要在(1)第一问中,我们根据附表1所给各路口坐标算出A图中每条路线的长度,然后通过floyd算法找出了两点之间的最短路程,得出矩阵D,通过使用matlab圈出各服务平台到周围路口小于3min(即3km)的点,再根据就近原则,将各路口划分到这个圈中离此路口最近的交巡警平台。
对于任意到交巡警平台路程大于3min(即3km)序号为28,29,38,39,61,92的五个路口,则采用就近原则人工划入距离其最近的交巡警平台辖区,这样就在保证出警时间基本都小于3min的条件下,划分出各警务平台合理的管辖范围。
对于(1)第二问中,我们采用指派模型,用lingo软件对20个巡警服务平台对17个城市出入口进行封锁的方法进行了优化,得到初步的调度方案。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写)我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) : 1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):天然肠衣搭配问题摘要针对天然肠衣搭配问题,采用线性规划的数学思想建立了问题的数学模型,并且分别考虑了最多捆数的捆扎方法和最优的搭配方案,就现行天然肠衣搭配问题的科学性及其合理性作出评价。
在模型建立前,首先分析问题,将该搭配问题逐步简单化,并且又对模型中的捆数和搭配方案进行优化,从而采取成品捆数最多、最短长度最长、提高使用率、允许降级使用的方式方法进行搭配,特别是对提高原料的使用率进行优化考虑,又使搭配方案进一步实用,从而使模型求解过程更符合实际要求。
在模型的求解过程中,又应用简单的图形、表格、数字等使搭配方案进一步明了,为了计算方便,该模型又应用了Lingo软件、C语言软件从而大大减少了运算量,使计算既精确又简单。
针对要求(1):在3-6.5、7-13.5、14-∞的长度规格中依次增加目标函数和约束条件,利用Lingo软件,计算出所能搭配出的最大捆数。
2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题城市表层土壤重金属污染分析
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:
(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?
附件1. 取样点位置及其所属功能区。
全国大学生数学建模竞赛2011D题评阅要点第一篇:全国大学生数学建模竞赛2011D题评阅要点2011高教社杯全国大学生数学建模竞赛D题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题主要有两种解法。
方法一,主要思路为首先求出三种规格成品的最大捆数,然后求出每捆成品不同长度肠衣的搭配方式。
具体做法为:1,以现有三种规格对应原料长度和根数为约束,分别建立求三种规格成品捆数最大的整数规划模型,利用软件求解。
2,建立组合或优化模型,计算步骤1得到的各种规格成品每捆中不同原料的搭配方式。
3,根据适当规则调整步骤2得到的各种规格成品每捆中不同原料的搭配方式,使最短长度最长的捆数最多。
上述三步骤应完整,模型应清晰,算法应合理实用。
方法二,主要思路为首先计算三种规格成品的所有可能的不同的原料搭配方式,然后用捆数最大作为目标,同时求出成品的最大捆数和每捆成品的捆扎方式。
具体做法为:1,用组合方法计算每种成品对应的所有可能的原料搭配方式。
组合模型要明确并体现原料根数和总长度的约束和允许的误差,算法的合理性和可实现性也是重要的。
2,对各种规格成品建立并求解各种搭配的最优组合使成品捆数最多的整数规划模型。
要注意模型中体现原料根数的约束条件的正确性。
在上述两种方法中均应首先考虑原料最长的成品(第三种规格)的捆扎,剩余的材料降级后参与次长的成品的捆扎,再有剩余部分降级参与最短成品的捆扎。
第二篇:2013高教社杯全国大学生数学建模竞赛D题评阅要点新概念英语第三册2013高教社杯全国大学生数学建模竞赛D题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题评阅时需要考虑建模的准备工作(包括缺失和误差数据的处理、数据的整理与检查等),模型的表达、求解和分析方法,结果的表述、解释及图示,并注重模型的合理性分析及模型的拓广。
本题的难点和关键在于如何从数据中发现隐藏于其中的规律,建立合适的数学模型分析公共自行车站点分布和自行车锁桩设置的合理性。
2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
D题天然肠衣搭配问题
天然肠衣(以下简称肠衣)制作加工是我国的一个传统产业,出口量占世界首位。
肠衣经过清洗整理后被分割成长度不等的小段(原料),进入组装工序。
传统的生产方式依靠人工,边丈量原料长度边心算,将原材料按指定根数和总长度组装出成品(捆)。
原料按长度分档,通常以0.5米为一档,如:3-3.4米按3米计算,3.5米-3.9米按3.5米计算,其余的依此类推。
表1是几种常见成品的规格,长度单位为米,∞表示没有上限,但实际长度小于26米。
表1 成品规格表
为了提高生产效率,公司计划改变组装工艺,先丈量所有原料,建立一个原料表。
表2为某批次原料描述。
根据以上成品和原料描述,设计一个原料搭配方案,工人根据这个方案“照方抓药”进行生产。
公司对搭配方案有以下具体要求:
(1) 对于给定的一批原料,装出的成品捆数越多越好;
(2) 对于成品捆数相同的方案,最短长度最长的成品越多,方案越好;
(3) 为提高原料使用率,总长度允许有± 0.5米的误差,总根数允许比标准少1根;
(4) 某种规格对应原料如果出现剩余,可以降级使用。
如长度为14米的原料可以和长度介于7-13.5米的进行捆扎,成品属于7-13.5米的规格;
(5) 为了食品保鲜,要求在30分钟内产生方案。
请建立上述问题的数学模型,给出求解方法,并对表1、表2给出的实际数据进行求解,给出搭配方案。