色高斯噪声中信号的检测
- 格式:ppt
- 大小:386.00 KB
- 文档页数:12
一般高斯信号的检测⏹一般高斯信号检测原理⏹确定性信号检测的贝叶斯方法01::H H ==+z w z s w一般高斯信号假设模型:~(,)w N w 0C ~(,)s s N s μC 11()()()()TTws s w s sT --=--+-z z C z z μC C z μμ1111'()()()2TT s w s w s s w T ---=+++z zC C μz C C C C z矩阵求逆定理1111'()()()2TT s w s w s s w T ---=+++z z C C μz C C C C z1) C s =0 或s=μs1'()TwsT -=z z C μ说明:确定信号检测相关情形,即广义匹配滤波器2) μs =011111ˆ'()()22T T w s s w w T ---=+=z z C C C C z z C s说明:随机信号检测估计器---相关器情形1111'()()()2TT s w s w s s w T ---=+++z z C C μz C C C C z3) s=H θ,~(,)N θθθμC 1111'()()()2TTT T T w w w T ---θθθθ=+++z z HC H C H μz C HC H HC H C z说明:确定信号+随机信号线性模型检测情形θ=C 0θ=μ0~(,)TN θθs H μHC H例1:高斯白噪声中确定/随机信号检测问题:0:[][]H z n w n =1:[][][]H z n s n w n =+0,1,...,1n N =-2[]~(0,)w n N σ2[]~(,)ss n N A σ1111'()()()2TT s w s w s s w T ---=+++z z C C μz C C C C z解:2w =σC I s A =μ12s s=σC I22122222/1'()[]2N s n s sNA T z z n -=σσ=+σ+σσ+σ∑z01::H H A ==+z w z s w确定信号的贝叶斯线性模型:~(,)w N w 0C 2~(,)A AA N μσ[][0][1][1]Ts s s N =-s 01::H H ==+z wz Hθw等效假设:,A==H s θ如同估计理论部分中确定性参数可以采用贝叶斯估计,在检测理论中确定性信号也可采用随机信号的贝叶斯检测方法。
32 4.1 内容提要及结构本章首先介绍高斯白噪声统计特性及随机信号的采样定理,然后依次讨论高斯白噪声中二元确知信号检测、多元确知信号检测、二元随机参量信号检测以及多重二元信号的检测。
本章内容实际是将信号检测的基本理论具体应用到高斯白噪声信号检测的情况,并且主要讨论的是理想高斯白噪声中信号检测方法及性能分析方法;本章主要讨论一般的似然比检测方法,而不指定哪一个具体准则。
本章内容逻辑结构如图4.1.1所示。
4.2 目的及要求本章的目的是使学习者从概率分布、相关函数和功率谱密度等方面理解高斯白噪声的特点,熟悉随机信号的采样定理;掌握带限高斯白噪声和理想高斯白噪声中二元确知信号检测方法,尤其掌握理想高斯白噪声中观测信号的似然函数,掌握理想高斯白噪声中二元确知信号检测性能分析方法;掌握理想高斯白噪声中多元确知信号检测方法及性能分析方法;掌握理想高斯白噪声中二元随机参量信号检测方法及性能分析方法;理解和熟悉高斯白噪声中多重二元信号检测的概念及使用条件,掌握高斯白噪声中多重二元确知信号和二元随机参量信号检测方法及性能分析方法。
4.3 学习要点4.3.1 高斯白噪声● 内容提要:本小节从高斯噪声和白噪声两个方面论述高斯白噪声的概念,从概率分布、相关函数和功率谱密度等方面论述高斯白噪声的统计特性,简要讨论低通和带通随机信号采样定理。
● 关键点:从高斯噪声和白噪声两个方面理解高斯白噪声的概念,从概率分布、相关函数和功率谱密度等方面掌握高斯白噪声的统计特性,熟悉低通和带通随机信号采样定理。
1.噪声噪声是指与接收的有用信号混杂在一起而引起信号失真的不希望的信号,是一种随机信号或随机过程。
2.高斯白噪声 高斯白噪声是一种幅度分布服从高斯分布,功率谱密度在整个频带内为常数的随机信号或随机过程。
高斯白噪声既具有高斯噪声的特性,又具有白噪声的特性。
确知信号的检测二元确知信号 的检测 多元确知信号 的检测带限高斯白噪声中二元确知信号的检测理想高斯白噪声中二元 确知信号的检测二元随机振幅和相位信号的检测二元随机相位信号的检测3.高斯噪声1)高斯噪声定义高斯噪声是一种幅度分布服从高斯分布的随机信号或随机过程。
第11卷 第3期 2011年1月1671 1815(2011)3 0480 04科 学 技 术 与 工 程Sc ience T echno l ogy and Eng i nee ri ngV o l11 N o 3 Jan 2011 2011 Sci T ech Engng通信技术一种高斯色噪声混响背景的宽带信号检测算法李春龙1刘 莹2(海军装备部1,西安710054;西安应用光学研究所2,西安710065)摘 要 针对由正反线性调频信号和双曲调频信号产生的宽带混响,研究了以局部平稳高斯色噪声混响模型为基础的分段匹配滤波检测算法。
对匹配滤波器采用分段预白化处理,对数据进行合理分段后,对每段数据按高斯色噪声背景下的最佳检测器,即对匹配滤波检测器进行预白化处理,则可以得到分段预白化匹配滤波检测器。
仿真试验实现了对混响数据下的宽带信号检测。
结果表明采用分段匹配滤波器和分段预白化滤波器可以在低信混比下检测信号,其中分段预白化匹配滤波算法可以有效检测满足局部平稳高斯色噪声背景下的回波信号,且性能优于分段匹配滤波器。
关键词 混响 分段匹配滤波 分段预白化匹配滤波 信号检测中图法分类号 TN 911.23;文献标志码A2010年10月14日收到第一作者简介:李春龙(1978 ),汉族,辽宁朝阳人,工程师,研究方向:信号处理。
在浅海环境下,对于鱼雷主动自导系统,混响成为主要背景干扰[1]。
混响与一般噪声相比,具有与发射机发射的声波信号密切相关、非平稳色噪声的特点,使得混响背景下的信号检测与一般噪声背景下的信号检测有很大的区别。
本文以声纳主动自导系统为应用背景,针对由正反线性调频信号和双曲调频信号产生的宽带混响,研究了以局部平稳高斯色噪声混响模型为基础的分段匹配滤波和分段预白化匹配滤波检测算法。
研究结果表明由正反线性调频信号和双曲调频信号产生的宽带混响满足局部平稳高斯色噪声混响模型,在一定的信混比条件下,分段匹配滤波和分段预白化匹配滤波算法可以实现对这两种混响背景下回波信号的有效检测,而且分段预白化匹配滤波算法的检测性能要优于分段匹配滤波检测器。
XXX 大学(学院)试卷《信号检测与估计》试卷 第 1 页 共 2 页 《信号检测与估计》模拟试卷一、填空题(每空1分,共10分)1.广义匹配滤波器可通过 和 级联而构成。
2.卡亨南-洛维展开是把平稳随机信号表示成 的形式,并使 。
3.修正的奈曼-皮尔逊准则是在给定 和 的条件下,从第一个观测数据开始就进行似然比检测,直至能做出判决为止。
4.秩检测是一种利用观测样本的 和 的一种非参量检测方法。
5.最小二乘估计的使用条件:含有被估计参量的信号模型已知, 和 的任何统计知识均未知。
二、简答题(每题4分,共20分)1.概述高斯白噪声情况下和高斯色噪声情况下信号检测所采用方法的特点。
2.简述序列检测的概念与特点。
3.简述非参量检测的概念、特点及基本原理。
4.简要说明在似然函数对的频率偏导数难以求解情况下,信号频率估计的方法。
5.说明参量的最小二乘估计方法的基本思路。
三、(10分)设线性滤波器的输入为)()()(t n t s t x +=,其中)(t n 是功率谱密度为2/0N 的白噪声,信号为⎩⎨⎧><≤<-=T t t T t t T A t s ,000)()( 式中,0>A ,且为常数。
(1)试求匹配滤波器的冲激响应及对应于)(t s 的输出信号。
(2)求匹配滤波器输出的信噪比。
四、(10分)对于二元随机参量信号的检测问题,若两个假设下观测信号分别为:n x H =:0,n s x H +=:1,其中,信号s 和噪声n 是相互统计独立的随机变量,其概率密度函数分别为⎩⎨⎧<>≥-=0,00,0,)exp()(s a s s a a s p ⎩⎨⎧<>>≥-=0,00,0,)exp()(n a b b n n b b n p 且 设似然比检验门限为0Λ,试证明信号的似然比检测判决式可化简为γ10H H x<>。
五、(15分)在T t ≤≤0时间范围内,二元通信系统发送的二元信号为t A t s 00sin )(ω=,。
第9章 噪声中信号的检测前一章学习了经典假设检验理论,本章将要运用假设检验理论讨论噪声中信号的检测问题或最佳接收机的设计问题,在这里信号检测的含义是指从含有噪声的观测过程中判断是否有信号存在或区分几种不同的信号;而接收机实际上是对观测过程实施的数学运算。
为了设计最佳接收机,首先需要指定设计准则,这可以采用第8章介绍的判决准则,然后相对于选定的准则来设计接收机,在设计通信系统的接收机时,通常采用最小错误概率准则,而对于雷达和声纳系统则采用纽曼-皮尔逊(Neyman-Pearson )准则。
本章只介绍高斯白噪声环境下信号的检测问题,高斯有色噪声以及非高斯噪声环境下的检测问题请读者参看其它相关教材。
9.1 高斯白噪声中确定性信号的检测考虑一个简单的二元通信系统,系统发送信号)(0t y 或)(1t y ,两个信号是完全已知的,假定接收机的观测时间间隔为(0,T),由于信道噪声的影响,接收到的信号受到噪声的污染,因此接收机观测到的过程为:0011:()()()0:()()()0H z t y t v t t TH z t y t v t t T=+<<=+<< (9.1.1)其中噪声)(t v 假定是零均值的高斯白噪声,功率谱密度为2/0N 。
现在要设计一种接收机,通过对观测过程)(t z 的处理,对(9.1.1)式的两种假设作出判决。
由假设检验理论可知,最佳接收机的结构由似然比计算器与一个门限比较器组成,然而在第8章,涉及的观测数据都是离散的,因此要运用假设检验理论来解决噪声中信号的检测问题。
首先需要将连续的观测过程离散化,然后再计算似然比。
假定噪声)(t v 为一带限噪声,功率谱密度为 0()/2,v G N ω=ω<Ω (9.1.2)很显然,当Ω→∞时,带限过程趋于白噪声。
带限过程的相关函数为 τΩτΩ⋅πΩ=τ)sin(2)(0N R v (9.1.3) 噪声的方差为πΩ=σ202N v 当/τ=πΩ时,(/)0v R πΩ=,即(0),(/),(2/),...,v v v πΩπΩ是相互正交的随机变量序列,由于)(t v 是高斯的,故(0),(/),(2/),...,v v v πΩπΩ是相互独立的。