诺贝尔奖与光学全息
- 格式:pptx
- 大小:4.80 MB
- 文档页数:65
诺贝尔奖里的激光技术摘要:随着20世纪激光理论和应用研究的不断发展,激光技术对信息处理和计算、医学治疗和人工智能等领域产生了重大影响。
本文通过诺贝尔奖获得者的研究成果,介绍了激光技术的发展,并提出将诺贝尔奖的研究成果与经历与课程教学融合,对培养激光领域的高素质、高创新性人才有着积极影响。
关键词:激光;诺贝尔奖引言激光[1](Laser)全称为“Light Amplification by Stimulated Emission of Radiation”,又译为“通过受激辐射实现放大的光”,并且其以优异的单色性、相干性等特点一直倍受关注,其广泛的应用场景与核能、电子计算机、半导体等发明被称为近代四大人类重要发明。
诺贝尔奖于1901年首次颁发,其权威性和公正性早已得到世界公认,一直被视为最先进的科学理论和技术的典范。
距今诺贝尔物理学奖已经颁发了100多年,表彰了物理学中最好和最辉煌的科学研究成果,涵盖X射线到量子理论、基本粒子和天体物理学等众多领域。
作为全世界研究人员聪明才智的结晶,诺贝尔奖其本身便拥有着极大的科学魅力,不断吸引着大家的视线,若能合理地将其作为课堂教学的重要内容充分运用,也必将极大提升课堂教学质量。
因此,通过将教学或实验课程的知识与诺贝尔奖的实际成果相结合,将诺贝尔奖的成果引入课堂,进一步丰富课堂教学,调动学生的积极性,培养学术热情,同时也能促进了学生全面发展,提高他们的科学素养,推动创新。
这样一来,激光这颗21世纪最炙手可热的新星将在未来在中国发光发热。
1 激光技术的发展激光的产生最初可以追溯到上个世纪初,爱因斯坦在1913年首次提到了受激辐射技术概念[2],并预测未来会有受激辐射光放大器的出现,这也为后来激光产生埋下了伏笔。
但是由于强相干光源的缺失,光学的发展并不顺利,而这个问题直到物理学家汤斯等人在1954年成功研制出微波激射器才得以解决,其主要原理是微波激发放大或量子放大[3](Maser)。
1、1901年:威尔姆·康拉德·伦琴(德国)发现X射线2、1902年:亨德瑞克·安图恩·洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:安东尼·亨利·贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:伽利尔摩·马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德华(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:卡末林-昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:马克斯·凡·劳厄(德国)发现晶体中的X射线衍射现象15、1915年:威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:查尔斯·格洛弗·巴克拉(英国)发现元素的次级X辐射特性18、1918年:马克斯·卡尔·欧内斯特·路德维希·普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:阿尔伯特·爱因斯坦(德国)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:尼尔斯·亨利克·大卫·玻尔(丹麦)关于原子结构以及原子辐射的研究23、1923年:罗伯特·安德鲁·密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德布罗意(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:维尔纳·海森伯(德国)在量子力学方面的贡献33、1933年:埃尔温·薛定谔(奥地利)创立波动力学理论;保罗·阿德里·莫里斯·狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:恩利克·费米(意大利)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:欧内斯特·奥兰多·劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940—1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:沃尔夫冈·E·泡利(奥地利)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子49、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:马克斯·玻恩(英国)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(美籍华人)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、欧文·张伯伦(OwenChamberlain)(美国)发现反质子58、1960年:格拉塞(美国)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费因曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:马丁·赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:阿格·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:谢尔登·李·格拉肖、史蒂文·温伯格(美国)、阿布杜斯·萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒79、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:卡洛·鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W和Z 粒子的实验成为可能83、1985年:冯·克里津(德国)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料86、1988年:莱德曼、施瓦茨、斯坦伯格(美国)产生第一个实验室创造的中微子束,并发现中微子,从而证明了轻子的对偶结构87、1989年:拉姆齐(美国)发明分离振荡场方法及其在原子钟中的应用;德默尔特(美国)、保尔(德国)发展原子精确光谱学和开发离子陷阱技术88、1990年:弗里德曼、肯德尔(美国)、理查·爱德华·泰勒(加拿大)通过实验首次证明夸克的存在89、1991年:皮埃尔·吉勒德-热纳(法国)把研究简单系统中有序现象的方法推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中90、1992年:夏帕克(法国)发明并发展用于高能物理学的多丝正比室91、1993年:赫尔斯、J·H·泰勒(美国)发现脉冲双星,由此间接证实了爱因斯坦所预言的引力波的存在92、1994年:布罗克豪斯(加拿大)、沙尔(美国)在凝聚态物质研究中发展了中子衍射技术93、1995年:佩尔(美国)发现τ轻子;莱因斯(美国)发现中微子94、1996年:D·M·李、奥谢罗夫、R·C·理查森(美国)发现了可以在低温度状态下无摩擦流动的氦同位素95、1997年:朱棣文、W·D·菲利普斯(美国)、科昂·塔努吉(法国)发明用激光冷却和捕获原子的方法96、1998年:劳克林、霍斯特·路德维希·施特默、崔琦(美国)发现并研究电子的分数量子霍尔效应97、1999年:H·霍夫特、韦尔特曼(荷兰)阐明弱电相互作用的量子结构98、2000年:阿尔费罗夫(俄国)、克罗默(德国)提出异层结构理论,并开发了异层结构的快速晶体管、激光二极管;杰克·基尔比(美国)发明集成电路99、2001年:克特勒(德国)、康奈尔、卡尔·E·维曼(美国)在“碱金属原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基本性质研究”方面取得成就100、2002年:雷蒙德·戴维斯、里卡尔多·贾科尼(美国)、小柴昌俊(日本)“表彰他们在天体物理学领域做出的先驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面的成就。
历史上与光学有关的诺贝尔奖(一)诺贝尔奖物理学奖颁给了LIGO的科学家,作为光电学子,小编今天为大家整理一篇历史上的与光学有关的诺贝尔奖。
1901年德国物理学家威廉·康拉德·伦琴因为发现了伦琴射线而获得诺贝尔物理学奖。
威廉·康拉德·伦琴在研究阴极射线时。
意外地发现X射线。
而后他给维尔茨堡物理学医学学会递交了一份认真、简洁的通讯,题目为《一种新的射线,初步报告》,那时的伦琴对这种射线是什么确实不了解,这就是他在第一个通报中按代数上的未知数符号“X”命名的原因,X射线的发现,又很快地导致了一项新发现——放射性的发现。
第一张x光片1902年彼得.塞曼和亨德里克.安东.洛伦兹因研究磁场对辐射现象的影响所取得的成就(塞曼效应)而获得诺贝尔奖赛曼效应的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解,特别是由于及时得到洛仑兹的理论解释,更受到人们的重视,被誉为继X射线之后物理学最重要的发现之一。
1907年艾伯特·亚伯拉罕·迈克尔孙因发明迈克耳孙干涉仪及在光谱学方面的工作而获得诺贝尔物理学奖迈克生和摩尔利用灵敏度很高的干涉仪验证以太风并不真实存在。
这是科学史上最大的负实验结果,但是它证明了19世纪科学家们所假想的以太根本不存在。
动摇了古典力学的基础。
为后来爱恩斯坦建立相对论创造了前提。
迈克尔孙干涉仪原理图1908年加布里埃尔·李普曼因发明用干涉效应使照相底片重现彩色的方法(彩色照相)而获奖诺贝尔物理学奖彩色照相干涉法不用染料和颜料,而是利用各种不同波长的天然颜色,即可重现照片的色彩1911年威廉·维恩因对于热辐射等物理法则贡献,而获得诺贝尔物理学奖。
维恩辐射定律给出了这种确定黑体辐射的关系式,提供了描述和测量高温的新方法。
虽然后来被证明维恩公式仅适用于短波,但维恩的研究使得普朗克能够用量子物理学方法解决热平衡中的辐射问题。
全息实验报告【背景】全息术是利用干涉和衍射原理记录并再现物体光波波前的一种技术。
Dennis Gabor是全息照相技术的发明者,由此获得了诺贝尔物理学奖。
自此,全息技术逐渐发展起来,近五十年来全息术的研究日趋广泛深入,逐渐开辟了全息应用的新领域,成为近代光学一个重要分支。
现如今全息术已渗透到社会生活的各个领域,并被广泛地应用于近代科学研究和工业生产中,例如利用全息技术进行艺术品展示、防伪商标、3D全息显示屏等,在未来,全息技术还可能被用于全息电视。
【实验目的】1.复习且巩固全息照相的基本原理与相片制作的处理方法。
2.掌握调节光路的方法。
3.掌握像面全息图的记录和再现原理,学会制作像面全息图;4.观察像面全息图的再现像,比较其与普通三维全息图的不同之处;【实验仪器】全息实验台,激光器,分束镜,反射镜,扩束镜,载物台,底片夹,被摄物体,全息干板,显影及定影器材,凸透镜全息照相【实验原理】全息照相是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。
这样的照相把物光束的振幅和相位两种信息全部记录下来。
从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。
在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。
全息照相过程:一.把物体光波的全部信息记录在感光材料上(记录过程)。
二.照明已被记录下来的全部信息的感光材料,使其再现原始物体的光波(再现过程)。
实验光路图【实验内容与步骤】1.全息照相光路调整按上图所示光路安排各光学元件,并作如下调整:(a)使各元件中心点对应的法线平行于桌面并且基本等高;(b)在底片架上夹一块玻片,使参考光均匀照在玻片上、入射光均匀照亮被摄物体,且其漫反射光能照射到白屏上,调节参考光与物光夹角在30°左右;(c)使物光和参考光的光程大致相等,光程差小于2 cm;(d)可分别挡住物光和参考光调节其光强比约1:3~1:10,两光束有足够大的重叠区;(e)所有光学元件必须通过磁钢与平台保持稳定;2.全息照片的记录设置好曝光时间。
1971年诺贝尔物理学奖——全息术的发明1971年诺贝尔物理学奖授予英国伦敦帝国科技学院的匈牙利裔物理学家伽博(Dennis Gabor,1900—1979),以表彰他发明和发展了全息术。
伽博是在激光器还未出现前的40年代发明全息术的。
当时他正在一家公司的研究室里工作,该公司制造电子显微镜需要提高分辨率。
当时电子显微镜的分辨能力已比最好的光学显微镜提高了一百倍,但仍不足以分辨晶格,其中球差和衍射差是限制分辨率的主要因素,要减少衍射差就要加大孔径角,把孔径角增加一倍则衍射差减少一半,但这时球差则增加了8倍。
为了兼顾两者,不得不把电子透镜的孔径角限制为0.005弧度,从而算得分辨率的理论极限约为0.4nm。
而分辨晶格起码要0.2nm。
面对这样的难题,伽博苦苦思索。
1947年复活节的一天,天空晴朗,伽博在网球场等待一场球赛时脑子里突然出现一道闪念,想到:“为什么不拍摄一张不清楚的电子照片,使它包含有全部信息,再用光学方法去校正呢?”他考虑到电子物镜永远不会完善,若把它省去,利用相干电子波记录相位和强度信息,再利用相干光可再现无像差的像,这样一来,电子显微镜的分辨率就可以提高到0.1nm,达到观察晶格的要求了。
伽博就是从这一思想出发,发明了全息术。
应该说,全息术的基本概念是波动光学的产物。
17世纪末,惠更斯在建立光的波动说时,就提出了他的“次波”原理,这是理解波前和衍射的有力武器。
19世纪初,托马斯·杨用波动说解释他的双缝干涉实验,菲涅耳用光的干涉思想补充了惠更斯原理,完善了光的衍射理论。
应该说,在这样的基础上,早就该有人发明全息术了。
可是,为什么要等到20世纪中叶,才由一位研究电子显微镜的专家无意中对全息术作出发明呢?关键在于伽博抓住了了全息术的核心思想:波前重建。
而伽博之所以会把握住这一关键,就像他自己曾经说过的:“在进行这项研究时,我站在两个伟大的物理学家的肩膀上,他们是劳伦斯·布拉格和泽尔尼克”。
激光全息摄影发展史全息摄影亦称:“全息照相”,一种利用波的干涉记录被摄物体反射(或透射)光波中信息(振幅、相位)的照相技术。
全息摄影是通过一束参考光和被摄物体上反射的光叠加在感光片上产生干涉条纹而成。
全息摄影不仅记录被摄物体反射光波的振幅(强度),而且还记录反射光波的相对相位。
1948年英藉匈牙利物理学家丹尼斯·盖伯为了提高电子显微镜的分辨本领提出了全息术的最初设想。
随后,他采用汞灯作光源,首次拍摄了第一张全息照片(即全息图),并获得了相应的再现像,从而创立了全息术(为此,他于1971年得到了诺贝尔物理学奖)。
但是由于当时缺乏明亮的相干光源(激光器),全息图的成像质量很差。
在上个世纪50年代里,这方面的工作进展相当缓慢。
直到60年代出现激光这一相干强光源之后,全息术才得以迅速发展,成为现代光学中十分活跃的分支.1962年随着激光器的问世,利思和乌帕特尼克斯(Leith and Upatnieks)在盖伯全息术的基础上引入载频的概念,发明了离轴全息术,有效地克服了当时全息图成像质量差的主要问题——孪生像,三维物体显示成为当时全息术研究的热点,但这种成像科学远远超过了当时经济的发展,制作和观察这种全息图的代价是很昂贵的,全息术基本只是一个需要高昂经费来维持的实验.1969年本顿(Benton)发明了彩虹全息术,掀起以白光显示为特征的全息三维显示新高潮。
彩虹全息图是一种能实现白光显示的平面全息图,与丹尼苏克(Denisyuk)的反射全息图相比,除了能在普通白炽灯下观察到明亮的立体像外,还具有全息图处理工艺简单、易于复制等优点。
把彩虹全息术与当时发展日趋成熟的全息图模压复制技术结合起来便形成了目前风靡世界的全息印刷产业,产生了全息信用卡、全息商标、全息钞票、全息卡通、全息装饰材料、甚至全息服装等保安防伪及装璜装饰的全息图新应用。
因此可以说彩虹全息术的发明才真正使全息防伪成为可能。
经过数十年发展,激光全息防伪产品也从最初的全息防伪标识逐步升级发展为第二代、第三代甚至第四代激光防伪技术。
实验六 全息技术1948年,伽柏(D •.Gabor)提出了一种新的照相技术,记录的不是物体的影像,而是物体上各点光的完全信息——振幅和相位,从而称之为全息技术。
由于初期采用的同轴方法和条件上的困难,在最早的十多年间全息技术的发展非常缓慢。
1960年激光问世以后,这一领域重新活跃起来。
1962年,利思(E.N.Leith )等人利用激光做光源,并采用离轴方法,成功地进行了三维物体的记录和再现,为现代全息技术的发展开辟了新的途径。
1971年,伽柏因全息技术的发明荣获了诺贝尔物理奖。
现在,全息技术已成为一门很有前景的新学科,在许多方面已获得实际应用,全息技术的产品也越来越多地走向市场,而且这种新技术仍以极大的魅力吸引着众多的科技工作者致力研究,不断涌现出新的成果。
本实验的目的,在要让读者了解全息照相的基本原理和实验方法,通过摄制全息图引起读者对这一领域的兴趣和关注。
一、 实验原理全息技术,是一种二步成像的照相技术。
如图1(a )所示,将物体O 的光波波面记录在光敏材料H 上,记录的结果称全息图,然后如图1(b )所示,按一定条件用光照射这全息图,原先被记录的物体光波波面,就会在全息图H 的右方再现出来。
这时,H 左面的物体以及物体至全息图之间的光波面并不存在,但是H 右方的“再现”波面,却和物体1. 物体光波波面的记录⑴物体光波与参考光波的干涉如图1(a ),物体O 漫反射的光和参考光源R 的光是相干光,它们在xy 平面上的振幅分别为a 0(x,y), a r (x,y),相位分布为ø0(x,y).ør (x,y),也就是,复振幅分布为A 0 = A 0(x,y) = a 0(x,y)exp[i ø0(x,y)].A r = A r (x,y) = a r (x,y)exp[i ør (x,y)].叠加后的合振幅分布为A = A(x,y) = A 0(x,y) + A r (x,y),合振动的强度分布为I = I(x,y) = | A(x,y)|2 = AA * ,式中的*表示共轭复数,所以I (x,y)= A 0A 0*+A r A r *+ A 0*A r + A 0 A r *. (1)为了便于分析,这强度分布改写为I (x,y)=a 02+a r 2+2a 0a r cos(ø0-ør ). (2)由式(2)各项看出:a 02+a r 2是xy 平面上的平均光强。
全息技术的发展历史及其应用前景整理By:标准时间3本文主要介绍全息技术的工作原理、发展历史及应用前景。
1.全息技术的工作原理全息技术利用了光的干涉原理来记录物光波并利用光的衍射原理来再现物光波,因此其工作过程主要分为全息记录和全息图的再现。
本文以激光全息照相为例说明其工作原理。
1.1全息记录全息记录利用了光的干涉原理,因此要求记录的光源必须是相干性能很好的激光。
图1-1是拍摄全息照片的光路图。
图1-1 拍摄全息照片的光由激光器发出的激光束,通过分束镜(Beam splitter)分成两束相干的透射光和反射光:一束光经反射镜Mirror1反射,扩束镜Lenses1扩束后照射到被拍摄物体上,再从物体投向照相底片(Film)上,这部分光称为物光(Object beam)。
另一束光经反射镜Mirror2反射,扩束镜Lenses2扩束直接照射到底片上,称为参考光(Reference beam)。
由于同一束激光分成的两束光具有高度的时间相干性和空间相干性,在照相底片上相遇后,形成干涉条纹。
由于被摄物体发出的物光波是不规则的,这种复杂的物光光波是由无数的球面波叠加而成的,因此,在全息底片上记录的干涉图样是一些无规则的干涉条纹,这就是全息图。
1.2全息图的再现全息图的物像再现过程就是光的衍射过程。
一般采用拍摄时所用的激光作照明光,并以特定方向或与原参考光相同的方向照射全息图片,就能在全息图片的衍射光波中得到0级衍射光波和±1级衍射光波(如图1-2所示)。
图1-2 全息图的物象再现示意图1-2中,把拍好的全息照片放回底片架上,遮挡住光路中的物光,移走光路中的被拍物体,只让参考光照在全息图片上。
这样在拍摄物体方向可看到物的虚像,在全息照片另一侧有一个与虚像共轭的对称实像(不易观察到),这是最简单的再现方法。
2.全息技术的发展历史全息照相技术是1948年英国科学家丹尼斯•伽伯(Dennis Gabor)为改善电子显微镜成像质量提出的重现波前的理论,并因此获得了诺贝尔奖。
元宇宙全息技术的内容“全息”(Holography)即“全部信息”,这一概念首次在1947年提出,由英国匈牙利裔物理学家DennisGabor发明,并因此获得了1971年的诺贝尔物理学奖。
全息技术是一种利用干涉和衍射原理来记录物体的反射,透射光波中的振幅相位信息进而再现物体真实三维图像的技术。
它与物理学,计算机科学,电子通信及人机交互等学科领域有着密切的联系。
全息技术的提出,不仅是一种技术的发明,更是一种思路的提出,借由全息技术的技术原理,通过物波与参考波叠加干涉来记录物体信息的思路被应用到很多其他领域,进而衍生出了一些类似的领域,比较有代表性的有:声全息、模压全息、红外全息、微波全息、光学扫描全息术等根据成像原理及呈现效果的不同,将全息成像技术分为三种类型:2D全息、3D全息、理想全息。
2D全息指利用较为简单的反射、折射原理或者视觉残留制造可视角度有限的裸眼三维效果。
包括空气成像、旋转风扇屏、雾屏/雾幕以及立体光栅显示器。
3D全息是当前最接近于理想全息显示效果的全息显示技术,包含的技术主要有全息光场、点云、电离空气、光镊、声镊和体全息技术。
理想全息是基于计算全息图的真正意义上的狭义全息,通过计算全息图的制作与再现完成3D对象的全息显示。
6G技术将支持人类对物理世界进行更深刻的理解与感知,帮助人类构建虚拟世界与虚实融合世界,从而扩展人类的活动空间;同时支持大量智能体互联,从而延伸人类的体能和智能水平。
结合6G技术、全息通信愿景与未来通信技术发展趋势,以扩展活动空间与延伸体能智能为基线,进行扩展与挖掘可获得包括数字孪生、高质量全息、沉浸XR、新型智慧城市、全域应急通信抢险、智能工厂、网联机器人、自治系统等相关6G全息通信场景与业务形态,贴合6G的愿景,体现“人-机-物-境”的完美协作。
根据依赖技术及给予用户体验的不同,未来6G时代,全息通信的应用场景将有七大类,分别是:带宽远程管理,低时延精密辅助,超智能信息网络,多维度交互体验,高质量人像互动,临场态全息展示和沉浸式全息影像。
与光学有关的部分诺贝尔物理奖介绍1907年迈克耳孙(Albert Abrahan Michelson 1852~1931)因发明精密光学仪器和借助这些仪器在光谱学和度量学的研究工作中所做出的贡献,被授予了1907年度诺贝尔物理学奖。
迈克耳孙的第一个重要贡献是发明了迈克耳孙干涉仪,并用它完成了著名的迈克耳孙-莫雷实验。
按照经典物理学理论,光乃至一切电磁波必须借助静止的以太来传播。
地球的公转产生相对于以太的运动,因而在地球上两个垂直的方向上,光通过同一距离的时间应当不同,这一差异在迈克耳孙干涉仪上应产生0.04个干涉条纹移动。
1881年,迈克耳孙在实验中未观察到这种条纹移动。
1887年,迈克耳孙和著名化学家莫雷合作,改进了实验装置,使精度达到 2.5⨯10-10,但仍未发现条纹有任何移动。
这次实验的结果暴露了以太理论的缺陷,动摇了经典物理学的基础,为狭义相对论的建立铺平了道路。
迈克耳孙是第一个倡导用光波的波长作为长度基准的科学家。
1892年迈克耳孙利用特制的干涉仪,以法国的米原器为标准,在温度15摄氏度、压力760毫米汞柱的条件下,测定了镉红线波长是6438.4696埃,于是,1米等于1553164倍镉红线波长。
这是人类首次获得了一种永远不变且毁坏不了的长度基准。
在光谱学方面,迈克耳孙发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。
迈克耳孙还运用自己发明的“可见度曲线法”对谱线形状与压力的关系、谱线展宽与分子自身运动的关系作了详细研究,其成果对现代分子物理学、原子光谱和激光光谱学等新兴学科都发生了重大影响。
1898年,他发明了一种阶梯光栅来研究塞曼效应,其分辨本领远远高于普通的衍射光栅。
迈克耳孙是一位出色的实验物理学家,他所完成的实验都以设计精巧、精确度高而闻名,爱因斯坦曾赞誉他为“科学中的艺术家”。
1918年因发现能量子(量子理论),从而对物理学的发展作出了巨大贡献,普朗克(MaxKarl Ernst Ludwig Plank 1858~1947)获得了1918年度诺贝尔物理学奖。
浅谈全息技术的发展及前景摘要:从全息思想的提出至今已经有半个多世纪的历史。
期间,全息技术的发展取得了很大的成就。
梳理一下全息技术的发展以及当今的研究和应用现状,有助于我们深入了解全息技术对生产、生活的重要影响以及其今后的发展方向。
关键词:全息;防伪;存储1.引言全息技术一门正在蓬勃发展的光学分支,主要运用了光学原理,是一种不用透镜,而用相干光干涉得到物体全部信息的二部成像技术。
如果说全息技术在照相方面的应用与普通照相技术的最大区别,那就是全息技术能够利用激光的相干性原理,将物体对光的振幅和相位反射(或透射)同时记录在感光板上,也就是把物体反射光的所有信息全部记录下来,并能够再现出立体的三维图像。
也就是全息技术所记录不是图像,二是光波。
全息技术近年来已渗透到社会生活的各个领域并被广泛地应用于近代科学研究和工业生产中,特别是在现代测试、生物工程、医学、艺术、商业、保安及现代存储技术等方面已显示出特殊的优势。
随着全息技术的快速发展,全息技术的产品正越来越多地走向市场、应用于现代生活中。
2.全息技术的发展简介全息照相技术是1948年英国科学家丹尼斯·伽伯为改善电子显微镜成像质量提出的重现波前的理论,并因此获得了诺贝尔奖。
但当时由于缺乏纯净的能够相互干涉的光,全息图的质量很差。
直到十二年以后的1960年,激光器问世,美国密执安大学的埃梅蒂·利斯与朱里斯·尤佩尼克拍成了第一张全息相片,全息技术才有了蓬勃快速的发展。
全息术的发展大约可分同轴全息术、离轴全息术、白光再现全息术、白光全息术等4个阶段。
同轴全息术是伽伯当时采用的技术,这一阶段主要是在1960年激光器出现以前。
这种技术获得的物体的再现像与照明光混在一起,不易观察。
1948年,伽伯为提高电子显微镜的分辨率,在布拉格的“x射线显微镜”、泽尼克的相衬原理的启示下,提出了一种用光波记录物光波的振幅和相位的方法,并用实验证实了这一想法。
全息技术的发展历程与成果展示全息技术是一项具有高科技含量的技术,它的发展历程可以追溯到上个世纪60年代,随后迅速发展并广泛应用于电视、娱乐、军事等领域,为人们提供了更加丰富的信息和更加真实的场景感受。
本文将就全息技术的发展历程与成果展示进行探讨。
一、全息技术的发展历程全息技术最初的开发工作始于1962年,当时美国物理学家德尼士·高勒博士发明了全息术,并于1964年获得了诺贝尔物理学奖。
1966年,英国物理学家丹尼尔斯教授首次将全息技术应用于三维物体重建,奠定了全息技术在三维成像方面的基础。
1970年代,全息技术得到了飞速的发展。
苏联科学家I.A.Umitov首次应用全息技术进行传真,标志着全息技术走向实用化;美国国防部开始将全息技术用于军事情报和导航领域,大幅提高了作战指挥的效率;同时,全球各大媒体和电视台也开始广泛运用全息技术进行新闻报道和娱乐节目制作。
随着计算机技术的不断提升,全息技术也得到了更广泛的应用。
1980年代,全息技术开始进入医学领域,被用于医学影像的诊断和治疗;1990年代,全息技术进一步发展,成为了虚拟现实技术的重要组成部分,并在演艺、建筑、工业、交通等领域得到广泛使用。
二、全息技术的成果展示近年来,随着计算机科技和传感器技术等的不断进步,全息技术得以更好地应用于各个领域,取得了众多成果,在医学、娱乐、教育、建筑、设计等方面发挥了巨大的作用。
在医学领域,全息技术可用于医学影像的重建和数据分析。
基于全息技术的医学影像现已广泛应用于手术导航、诊断、治疗等领域。
全息技术可将大量2D和3D的医学影像数据整合为一整体,提供更多信息,提高医务人员的工作效率。
在娱乐领域,全息技术被广泛运用于电影、演唱会、舞台剧等节目的制作和表演中。
全息投影等技术不仅可以展示出超现实的空间感和幻境般的效果,还可以将观众带入到影像之中,创造出沉浸式的观影体验。
在教育领域,全息技术也被广泛应用于带有虚拟现实的教学环境中,帮助学生更好地理解抽象的概念和具体的现象。
全息术原理全息术(Holography)是一种记录并再现光波的技术,它能够以三维形式储存并再现物体的图像。
全息术是由匈牙利物理学家Dennis Gabor在1947年发明的,他因此获得了1971年的诺贝尔物理学奖。
全息术的原理是利用光的干涉和衍射现象,通过记录物体的光波信息,再现出物体的全息图像。
全息术的原理主要包括以下几个方面:1.相干光的特性。
全息术需要使用相干光,相干光是指频率相同、波长一致、且具有固定相位关系的光波。
相干光的特性使得光波能够发生干涉和衍射现象,从而实现全息图像的记录和再现。
2.记录全息图像。
在全息术中,首先需要使用激光等相干光源,将光波分为两部分,物体光和参考光。
物体光经过物体后,携带了物体的形状和表面信息,而参考光则是直接从光源发出的光波。
物体光和参考光相遇时会发生干涉现象,形成干涉图样。
然后,将干涉图样记录在全息底片上,形成全息图像的记录。
3.再现全息图像。
当需要再现全息图像时,使用与记录时相同的参考光,照射到记录了干涉图样的全息底片上。
参考光与记录时的参考光相遇,使得干涉图样再次出现,从而再现出物体的全息图像。
4.全息图像的特性。
全息图像具有以下几个特性,一是全息图像是三维的,能够呈现出物体的立体感;二是全息图像具有像实感,能够显示出物体的表面细节和深度信息;三是全息图像具有波长信息,能够保持光波的相位和振幅信息,使得再现的图像非常逼真。
总之,全息术是一种利用光的干涉和衍射现象实现物体三维图像记录和再现的技术。
它可以应用于全息照相、全息显微镜、全息显示等领域,具有广泛的应用前景。
通过深入理解全息术的原理,我们可以更好地掌握这一技术,并将其应用于更多的领域,为人类的科技发展做出更大的贡献。