仪器分析第三章发射光谱
- 格式:ppt
- 大小:1.36 MB
- 文档页数:15
第二章一.选择题1、符合吸收定律的稀溶液稀释时,其最大吸收峰波长位置:(C)A、向长波方向移动B、向短波方向移动C、不移动D、不移动,吸收峰值增大2、光学分析中,使用到电磁波谱,其中可见光的波长范围:A、10~400nm ,B、400~750nmC、0.75~2.5mD、0.1~100cm3、指出下列哪个化合物的紫外吸收波长最大:(D)A、CH3CH2CH3B、CH3CH2OHC、CH2=CHCH2CH=CH2D、CH3CH=CH-CH=CHCH34.下面哪一种电子能级跃迁需要的能量最高( A)A、σ→σ *B、n→σ *C、π→π *D、π→σ *6.在下列化合物中,π→π*跃迁所需能量最大的化合物是(B )A. 1,3-丁二烯B. 1,4-戊二烯C. 1,3-环已二烯D. 2,3-二甲基-1,3-丁二烯7.下列基团或分子中,能发生nπ→*跃迁的基团是(BC )A. C=CB. C=OC. C≡ND. CH3OH二、填空题1、分子内部的运动方式有三种,即:电子相对于原子核运动、和原子在其平衡位置的相对振动和分子本身的转动,相应于这三种不同的运动形式,分子具有电子远动能能级、振动能级和转动能级。
2 、R带是由nπ→* 跃迁引起,其特征是波长_较长;K带是由π→π* 跃迁引起,其特征是波长较短。
3、在紫外吸收光谱中,随着溶剂极性增加,R带_蓝移,K带将___红移。
三、名词解释1.σ→σ*:饱和烃类化合物由基态(σ)跃迁到激发态(σ*)。
此类跃迁需要的能量较高,一般吸收波长<150 nm。
2.π→π*:不饱和化合物由基态(π)跃迁到激发态(π*)。
此类跃迁需要的能量降较低,孤立的π→π*吸收波长一般<200 nm;共轭的π→π*吸收波长>200 nm。
共轭体系越长,跃迁所需能量越小,向长波长方向移动的程度越大,吸收强度越强(ε= 103--104)。
3.n→π*:含有杂原子的不饱和化合物由杂原子空轨道(n)跃迁到π反键轨道(π*)。
第三章紫外可见吸收光谱法1.定义2.紫外吸收光谱的产生3.物质对光的选择性吸收4.电子跃迁与分子吸收光谱第一节概述11. 定义根据溶液中物质的分子或离子对紫外、可见光谱区辐射能的吸收来研究物质的组成和结构的方法,包括比色分析法与分光光度法。
◆比色分析法:比较有色溶液颜色深浅来确定物质含量的方法。
◆分光光度法:使用分光光度计进行吸收光谱分析测量的方法。
2/紫外-可见波长范围:(真空紫外区)◆远紫外光区:10-200 nm;◆近紫外光区:200-400 nm;◆可见光区:400-780 nm。
◆O2、N2、CO2、H2O等可吸收远紫外区(60-200 nm)电磁辐射。
◆测定远紫外区光谱时,须将光学系统抽真空,并充入惰性气体。
◆准确:近紫外-可见分光光度法(200-780 nm)。
3/方法特点:◆仪器较简单,价格较便宜;◆分析操作简单;◆分析速度较快。
4/紫外可见吸收光谱:分子中价电子能级跃迁(伴随着振动能级和转动能级跃迁)。
2. 紫外可见吸收光谱的产生价电子的定义?AB 电磁辐射5/◆分子内部三种运动形式:电子相对于原子核的运动;原子核在其平衡位置附近的相对振动;分子本身绕其重心的转动。
◆分子具有三种不同能级:电子能级、振动能级和转动能级(量子化,具有确定能量值)。
◆分子内能:包括电子能量E e、振动能量E v、转动能量Er 。
2.1 电子跃迁与分子吸收光谱6/分子的各能级:◆转动能级能量差:0.005~0.05 eV,跃迁产生吸收光谱位于远红外区(远红外光谱或分子转动光谱)。
◆振动能级能量差:0.05~1 eV,跃迁产生吸收光谱位于红外区(红外光谱或分子振动光谱)。
◆电子能级能量差:1~20 eV。
电子跃迁产生的吸收光谱在紫外-可见光区(紫外-可见光谱或分子的电子光谱)。
7/8/◆电子能级间跃迁的同时,总伴随有振动和转动能级间的跃迁。
◆电子光谱中总包含有振动/转动能级间跃迁产生的若干谱线而呈现宽谱带(带状光谱)。
第三章原子发射光谱分析§3.1 光化学分析法概述3.1.1 光化学分析法概述1、光学分析法的分类光学分析法分为光谱法和非光谱法两类。
✓光谱法:基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。
✓非光谱法:不涉及物质内部能级的跃迁,是基于物质与辐射相互作用时,电磁辐射只改变了传播方向、速度或某些物理性质,如折射、散射、干涉、衍射、偏振等变化的分析方法(即测量辐射的这些性质)。
属于这类分析方法的有折射法、偏振法、光散射法、干涉法、衍射法、旋光法和圆二向色性法等。
2、电磁波谱电磁辐射按照波长(或频率、波数、能量)大小的顺序排列就得到电磁波谱。
表3-1-1 各光谱区的光谱分析方法3、各种光分析法简介A、发射光谱法∙γ射线光谱法∙x射线荧光分析法∙ 原子发射光谱分析 ∙ 原子荧光分析法 ∙ 分子荧光分析法 ∙ 分子磷光分析法 ∙ 化学发光分析 B 、吸收光谱法 ∙ 莫斯堡谱法∙ 紫外可见分光光度法 ∙ 原子吸收光谱法 ∙ 红外光谱法∙ 顺磁共振波谱法 ∙ 核磁共振波谱法 C 、散射∙ Roman 散射4、原子发射光谱分析法的特点①可多元素同时检测:各元素同时发射各自的特征光谱;②分析速度快:试样不需处理,同时对几十种元素进行定量分析(光电直读仪); ③选择性高:各元素具有不同的特征光谱;④检出限较低:10~0.1μg ⋅g -1(一般光源);ng ⋅g -1(ICP ) ⑤准确度较高:5%~10% (一般光源); <1% (ICP);⑥ICP-AES 性能优越:线性范围4~6数量级,可测高、中、低不同含量试样; ⑦非金属元素不能检测或灵敏度低。
3.1.2 原子光谱与原子光谱分析法直接相关的原子光谱理论,主要指原子光谱的产生和谱线强度理论,这就是光谱定性、定量分析的理论依据。
1、原子光谱的产生量子力学认为,原子光谱的产生,是原子发生能级跃迁的结果,而跃迁几率的大小则影响谱线的强度,并决定了跃迁规则。
分析化学仪器分析第三版答案【篇一:仪器分析第五版习题及答案】/p> 1、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。
2、共同点:都是进行组分测量的手段,是分析化学的组成部分。
1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。
分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。
仪器分析与分析仪器的发展相互促进。
1-7因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。
因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。
第二章光谱分析法导论2-1光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。
各部件的主要作用为:光源:提供能量使待测组分产生吸收包括激发到高能态;单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器;样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用;检测器:将光信号转化为可量化输出的信号。
信号处理与输出装置:对信号进行放大、转化、数学处理、滤除噪音,然后以合适的方式输出。
2-2:单色器的组成包括:入射狭缝、透镜、单色元件、聚焦透镜、出射狭缝。
各部件的主要作用为:入射狭缝:采集来自光源或样品池的复合光;透镜:将入射狭缝采集的复合光分解为平行光;单色元件:将复合光色散为单色光(即将光按波长排列)聚焦透镜:将单色元件色散后的具有相同波长的光在单色器的出口曲面上成像;出射狭缝:采集色散后具有特定波长的光入射样品或检测器2-3棱镜的分光原理是光的折射。
仪器分析重点绪论一.现代仪器分析的作用和发展二.仪器分析的应用第三章、原子发射光谱法原子荧光,1.原子荧光光谱的产生气态自由原子吸收特征辐射后跃迂到较高能级,然后又跃迁回到基态或较低能级。
同时发射出与原激发辐射波长相同或不同的辐射即原子荧光。
原子荧光为光致发光,二次发光,激发光源停止时,再发射过程立即停止。
2.原子荧光的类型原子荧光分为共振荧光,非共振荧光与敏化荧光等三种类型。
一、原子荧光的特点:(1)高灵敏度、低检出限。
特别对Cd、Zn等元素有相当低的检出限,Cd可达0.001ng.cm-3、Zn为0.04ng.cm-3。
由于原子荧光的辐射强度与激发光源成比例,采用新的高强度光源可进一步降低其检出限。
(2)谱线简单、干扰少。
可以制成非色散原子荧光分析仪。
这种仪器结构简单,价格便宜。
(3)标准曲线线性范围宽,可达3-5个数量级。
(4)多元素同时测定。
因为原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。
一、为什么要采用高强度的光源:光源强可使灵敏度增高,达到低检出限二、氩气的作用:载气等第四章、原子吸收光谱法一、光源:采用待测元素制成的锐线光源及其原因,用普通连续光源进行测量时吸收值仅相当于总入射光强度的0.5%,信号变化小,难于检测,测定灵敏度极差,而锐线光源可以解决上述问题。
二、谱线变宽的因素:1.、自然宽度,无外界因素影响时谱线具有的宽度。
其大小与激发态原子的寿命有关,寿命越短,谱线越宽。
2、多普勒宽度(热变宽),ΔνD原子在空间作无规则的热运动所引起的,故又称为热变宽。
一个运动着的原子发出的光,如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。
3、压力变宽,由于原子相互碰撞使能级发生稍微变化。
10-3nm~10-2nm劳伦兹(Lorentz)变宽ΔνL待测原子和其他原子碰撞。
随蒸汽压力增加而增大。
赫鲁兹马克(Holtmark)变宽(共振变宽)同种原子碰撞。