概率论总复习
- 格式:ppt
- 大小:1.21 MB
- 文档页数:97
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
复习重点题目第一章p13例2、p14例5、习题一20、25第二章p34 例7、8;习题二15、24。
第三章p58 例2、例5、p61 例5、p63 例1、习题三5。
第四章习题四13、14、15、16。
第七章P139 例4、P148 例2、习题七P157 1、P159 13。
第八章例4、例5、习题八3、6。
例 1.5.2 设袋中装有r 只红球,t 只白球,每次自袋中任取一只球,观察其颜色然后放回,并再放入 a 只与所取出的那只球同色的球,若在袋中连续取球 4 次,试求第一、二次取到红球且第三、四次取到白球的概率。
解以A i(i 1,2,3,4)表示事件“第i次取到红球”,则A3, A4 分别表示事件“第三、四次取到白球” 。
所求概率为:P( A1 A2 A3 A4 ) P(A4 | A1 A2 A3)P( A3 | A1A2 )P( A2 |A1)P(A1)t a t r a rr t 3a r t 2a r t a r t例 1.5.4 八支枪中,有三支未经试射校正,五支已经试射校正。
校正过的枪射击时,中靶的概率为0.8,未校正的枪射击时,中靶的概率为0.3,今从8 支枪中任取一支射击中靶。
问所用这枪是校正过的概率是多少?解设事件8 8 10 45A ={射击中靶}B 1={ 任取一枪是校正过的 }, B 2 ={任取一枪是未校正过的 }, B 1, B 2构成完备事件组 ,则 P(B 1) 5/8,P(B 2) 3/8,P(A |B 1) 0.8,P(A|B 2) 0.3, 故所求概率为P(B 1 | A) P(B 1)P(A|B 1)/[P(B 1)P(A|B 1) P(B 2)P(A|B 2)] 40/49 0.816习题一、20.已知在 10 只晶体管中有 2 只次品,在其中取两次,每次任取一 只,作不放回抽样。
求下列事件的概率: (1)两只都是正品; (2)两只都是次品;(3)一只是正品,一只是次品; (4)第二次取出的是次品。
随机事件和概率第一节基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m −=从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m−=从m 个人中挑出n 个人进行组合的可能数。
(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(4)一些常见排列1特殊排列相邻彼此隔开顺序一定和不可分辨2重复排列和非重复排列(有序)3对立事件4顺序问题2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(2)事件的关系与运算①关系:如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):BA ⊂如果同时有B A ⊂,A B ⊃,则称事件A 与事件B 等价,或称A 等于B :A=B 。
A、B 中至少有一个发生的事件:A ∪B ,或者A +B 。
属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也可表示为A-AB 或者B A ,它表示A 发生而B 不发生的事件。
A、B 同时发生:A ∩B ,或者AB 。
A ∩B=Ø,则表示A 与B 不可能同时发生,称事件A 与事件B 互不相容或者互斥。
基本事件是互不相容的。
Ω-A 称为事件A 的逆事件,或称A 的对立事件,记为A 。
它表示A 不发生的事件。
互斥未必对立。
②运算:结合率:A(BC)=(AB)CA∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)德摩根率:∪∩∞=∞==11i ii i AA B A B A ∩∪=,BA B A ∪∩=3、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1°0≤P(A)≤1,2°P(Ω)=13°对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎟⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P ∪常称为可列(完全)可加性。
概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。
概率论与数理统计复习汇总第⼀章:概率论初步基本概念:随机事件、古典概率、条件概率、事件的独⽴性事件的关系与运算(结合集合论和⽂⽒图来学习)⼦事件(⼦集)、积事件(交集)、和事件(并集)、对⽴事件AB A B ∪A (补集)、差事件 ;A B AB A AB ?==? 互斥事件 AB =Φ事件发⽣:事件A 中⾄少有⼀个样本点出现.处理技巧:把稍微复杂点事件处理成简单的互斥事件的和 []A B A B A =?∪∪运算规律:德摩根律 ;AB A B A B AB ==∪∪加法原理:(分类),乘法原理:12m n n n +++ 12m n n n (分步)排列:全排列:;组合:,m m nnA P ,!n ,!m m m n nn P C C C m n mn ?==古典概型:满⾜以下两个特点的随机试验 ()An P A n Ω=1. 试验的样本空间中有有限的样本点;2. 每个样本点发⽣的可能性是相等.(对称性和均衡性) 例题1 计算下列概率题 (求概率前先设事件) 1. 抛两颗骰⼦,观察他们点数出现的情况, (1) 写出试验的样本空间;(2) 设两颗骰⼦点数相同,:A :B 两颗骰⼦点数和为5,求(),().P A P B 2. 袋⼦中有a 只⽩球,b 只红球,2个⼈依次在袋⼦中取⼀球,(1) 做有放回的抽样,求第⼆个⼈取得⽩球的概率;()aP A a b=+(2) 做⽆放回的抽样,求第⼆个⼈取得⽩球的概率;1(1)()11()(1)b a a a a b a a P A a b a b a b a b a b a b a b ()+=+==+++++++ 注:当箱⼦中奖券⾜够多时,摸奖不分先后;概率的公理化定义设E 是⼀个随机试验,S 是它的样本空间,对于E 中的每⼀个事件A 赋予⼀个实数,记为,称为事件的概率,如果他满⾜下列的假设:()P A A (1) (2) 对于0()P A ≤≤1;S 有()1;P S = (3) 设两两互不相容,则有12,,,,n A A A 1212()()()n n P A A A P A P A P A =+++∪∪∪∪ ()公理化定义的性质:(1) ()1();P A P A =? (2) ()0;P Φ=(3) 对任意的事件有 ,A B ()()(P A B P A P AB );?=? 差事件的概率(4) 对任意的事件有 ,A B ()()()();P A B P A P B P AB =+?∪概率的⼀般加法公式例题2 利⽤事件关系和运算及公理化定义计算下列概率1. 设,A B 是两个事件,已知1118(),(),(),42P A P B P AB ===(),P A B ∪求(),(),[()()].P AB P AB P A B AB ∪条件概率在事件B 发⽣前提下,事件发⽣的概率,记为A ()()()P AB P A B P B =. 乘法公式:()()()()()P AB P B P A B P A P B A ==或全概率公式和贝叶斯公式样本空间的⼀个划分:设为随机试验S S E 的样本空间,12,,,n B B B 为E 的⼀组事件,若(1);i j B B =Φ (2) 12,n B B B S =∪∪∪则称12,,,n B B B 为样本空间的⼀个划分.或者S 12,,,n B B B 为⼀个完备事件组.全概率公式:设设为随机试验S E 的样本空间,12,,,n B B B 为⼀个完备事件组,则有1122()()()()()()()n n P A P B P A B P B P A B P B P A B =+++i B 称为原因,A 称为结果;全概率公式由原因找结果;贝叶斯公式:由结果找造成的原因1122()()()()()()()()()()()i i i i n n P B P A B P AB P B A P A P B P A B P B P A B P B P A B ==+++ 注:不要盲⽬记公式,分析原因和结果例题3 计算下列概率1. 某商店收进甲⼚⽣产的产品300个,⼄⼚⽣产的同种产品200个,甲⼚⽣产产品的次品率为0.06,⼄⼚⽣产产品的次品率为0.05,求 (1) 任取⼀件产品为次品的概率是多少?(2) 已知取得的产品为次品,求此次品来⾃甲⼚⽣产的概率是多少?2. ⼈们为了了解⼀⽀股票未来⼀定时期内价格的变化,往往会去分析影响股票价格的基本因素,⽐如利率的变化. 现假设⼈们经分析评估知利率下降的概率为60%,利率不变的概率为40%.根据经验,⼈们估计,在利率下调的情况下,该⽀股票价格上涨的概率为80%,⽽在利率不变的情况下,其价格上涨的概率为40%,求该⽀股票上涨的概率.事件的独⽴性设是两个事件,若有,A B ()()()P AB P A P B =,则称事件是相互独⽴的.,A B 结论1:设是两个事件,若事件相互独⽴,则,A B ,A B ()(P A B P A =). 若事件,A B 相互独⽴,则,;,;,A B A B A B 也是相互独⽴的. 三个事件相互独⽴若事件满⾜,,A B C ()()();()()();()()();()()()();P AB P A P B P AC P A P C P BC P B P C P ABC P A P B P C ====则称事件相互独⽴.,,A B C 结论2:若事件相互独⽴,则其中任意12,,,n A A A (2)k k n ≤<个事件也相互独⽴;若事件相互独⽴,则中任意多个事件换成他们各⾃的对⽴事件,所得的个事件也相互独⽴. 12,,,n A A A 12,,,n A A A n 例题4计算下列概率1. 某⼀治疗⽅法对⼀个患者有效的概率为0.9. 今对3个患者进⾏了治疗,求对3个患者的治疗中,⾄少有⼀个是有效的概率. 设对各个患者的治疗效果是相互独⽴的.第⼆章:随机变量及其相关内容基本概念:随机变量、分布律、概率密度、分布函数随机变量:设随机试验的样本空间为{},()S e X X e ==是定义在样本空间上的实值单值函数,称S ()X X e =为随机变量. ( 样本点到数的对应法则) 随机变量的分类:离散型随机变量和连续型随机变量(基于的取值类型) ..r v 离散型随机变量取值为有限个或者⽆限可列个的随机变量分布律若..r v X 的取值为对应概率值为,即12,,,,n x x x 12,,,,n p p p {}1,2,k kP X x p k === 且满⾜:10;1,k k k p p ∞=≥=∑则称为{}1,2,k kP X x p k === ..r v X 的概率分布律,简称分布律常见的离散型随机变量的分布 (区分背景、分布律、记号)贝努利试验试验E 中只有两个结果,,A A ;n 重贝努利试验可以重复进⾏的,相互独⽴的贝努利试验 (搞清楚背景)01?分布 (1,)X B p ~X0 1kp 1p ? p⼆项分布 X :次试验中出现的次数取值:0, 分布律为n A 1,2,,n (,)X B n p ~或推导,验证是分布律{}(1)0,1,k kn k n P X K C p p k n ?==?= ,⼏何分布 X :直到出现经历的试验次数取值:1, A 2,,,n 分布律为:推导,验证是分布律1{}(1)1,,,n P X K p p k n ?==?= 例题1 计算下列概率题⽬1. 已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.2. 某⼈进⾏射击,设每次射击的命中率为0.02,独⽴射击100次,记X 为击中⽬标的次数(1) 写出X 的分布律;(2) 恰好击中3次的概率;(3)求⾄少击中两次的概率。