算术平均值的实验标准差和单次测量值的实验标准差的区别
- 格式:doc
- 大小:182.00 KB
- 文档页数:4
1.4 测量误差分析1.4.1 测量误差分类按照误差的表示形式,可分为绝对误差、相对误差和引用误差;按照误差的特点和性质,又可分为系统误差、随机误差和粗大误差。
1.按表示形式分类(1) 绝对误差绝对误差的定义为绝对误差=测得值-真值 (1-1)在实际工作中,经常使用修正值。
为消除系统误差,用代数法加到测量结果中的值称为修正值。
将测得值加上修正值之后可以得到近似的真值,即修正值=真值-测得值 (1-2)由此可得真值≈测得值+修正值 (1-3)修正值与误差值的大小相等而符号相反。
测得值加修正值后可在一定程度上消除该误差的影响,这就是误差修正的基本原理。
但值得注意的是,由于在大多数情况下难以得到真值,修正值本身也存在着误差,因此修正后只能得到较测得值更为准确的结果。
(2) 相对误差相对误差定义为绝对误差与被测量的真值之比,即绝对误差相对误差=真值(1-4) 相对误差只有大小和符号且量纲为一,一般用百分数来表示。
此外,相对误差常用来衡量测量的相对准确程度,相对误差越小,测量精确度越高。
(3) 引用误差对于有一定测量范围的测量仪器或仪表,以上所提到的绝对误差和相对误差都会随测量点的改变而改变,因此往往还采用其测量范围内的最大误差来表示该仪器仪表的误差,这就是引用误差的概念。
引用误差定义为在一个量程内的最大绝对误差与测量范围上限或满量程之比,即最大绝对误差引用误差=测量范围上限(1-5) 根据国家标准GB776—76《测量指示仪表通用技术条件》规定,我国电工仪表的精确度等级就是按照引用误差进行分级的。
一般分为0.1,0.2,0.5,1.0,1.5,2.5,5.0七级,分别表示它们的引用误差不超过的百分数。
例1-1 某1.0级电流表,满度值为100A μ,求测量值分别为100A μ,80A μ和20A μ时可能出现的最大绝对误差和相对误差。
根据题意得1100A x μ=,280A x μ=,320Ax μ=(13x x -对应了三次测量值),且考虑到绝对误差不随测量值而变,均为123100 1.0%1A x x x μ∆=∆=∆=±⨯=±则最大相对误差分别为1111100%100%1%100x x r x ∆=⨯=±⨯=± 2221100%100% 1.25%80x x r x ∆=⨯=±⨯=± 3331100%100%5%20x x r x ∆=⨯=±⨯=± 可见,在同一量程内,测得值越小,示值相对误差越大。
一、问题的提出在不等精度直接测量时,由各测量值x i及其标准差σi计算加权算术平均值的标准差时,有两个计算公式式中:p i——各测量值的权;σi——各测量值的标准差;σ——单位权标准差;——加权算术平均值的标准差。
但这两个公式的计算结果有时会相差很大。
那么,在这种情况下,采用哪个公式更为合理呢?本文对此从公式的推导到公式的选用进行探讨,并给出了一般性的原则。
二、公式的数学推导在不等精度测量时,各测量值的权的定义式为:测量结果的最佳估计值为:则测量结果的不确定度评定为:对式(5)求方差有设各测量值x i的方差都存在,且已知分别为,即D(x i)=由(4)式有=σ2/p i从公式(1)的推导,我们可以看出,此时各测量值的方差(或标准差)必须是已知的。
而在实际测量中,常常各测量值的方差(或标准差)是未知的,无法直接应用公式(1)进行不确定度评定。
但是,从分析来看,如果能由各测量值的残差(其权等于测量值的权)求出单位权标准差的估计值,并将其代入公式(1)中,就可计算出加权算术平均值标准差的估计值。
为此,作如下推导:由残差νi=x i-i=1,2,……n对νi单位权化由于v i的权都相等,因而可设为1,故用v i代替贝塞尔公式中的νi可得单位权标准差的估计值将此式代入公式(1),即得到加权算术平均值标准差的估计值从上面的推导我们可以看出,公式(1)是在各测量值的标准差已知时计算出的不等精度测量结果的不确定度的准确值;而公式(2)是在各测量值的标准差未知时计算出的不等精度测量结果的不确定度的估计值。
从概率论与数理统计知识可知,只有在n→∞时,其单位权标准差的估计值才能等于单位权的标准差,而由于测量次数的有限性和随机抽样取值的分散性,这两者是不相等的,所以由公式(1)和公式(2)确定的不确定度的值是也不相同的。
三、公式选用的一般原则笔者用了较大的篇幅来进行公式的数学推导,主要是为了说明这两个公式推导的前提是不一样的,其应用当然也就不同。
不等精度直接测量不确定度的评定国家质检总局福州培训中心彭靖一、问题的提出在不等精度直接测量时,由各测量值x i及其标准差σi计算加权算术平均值的标准差时,有两个计算公式式中:p i——各测量值的权;σi——各测量值的标准差;σ——单位权标准差;——加权算术平均值的标准差。
但这两个公式的计算结果有时会相差很大。
那么,在这种情况下,采用哪个公式更为合理呢?本文对此从公式的推导到公式的选用进行探讨,并给出了一般性的原则。
二、公式的数学推导在不等精度测量时,各测量值的权的定义式为:测量结果的最佳估计值为:则测量结果的不确定度评定为:对式(5)求方差有设各测量值x i的方差都存在,且已知分别为,即D(x i)=由(4)式有=σ2/p i从公式(1)的推导,我们可以看出,此时各测量值的方差(或标准差)必须是已知的。
而在实际测量中,常常各测量值的方差(或标准差)是未知的,无法直接应用公式(1)进行不确定度评定。
但是,从分析来看,如果能由各测量值的残差(其权等于测量值的权)求出单位权标准差的估计值,并将其代入公式(1)中,就可计算出加权算术平均值标准差的估计值。
为此,作如下推导:由残差νi=x i-i=1,2,……n对νi单位权化由于v i的权都相等,因而可设为1,故用v i代替贝塞尔公式中的νi可得单位权标准差的估计值将此式代入公式(1),即得到加权算术平均值标准差的估计值从上面的推导我们可以看出,公式(1)是在各测量值的标准差已知时计算出的不等精度测量结果的不确定度的准确值;而公式(2)是在各测量值的标准差未知时计算出的不等精度测量结果的不确定度的估计值。
从概率论与数理统计知识可知,只有在n→∞时,其单位权标准差的估计值才能等于单位权的标准差,而由于测量次数的有限性和随机抽样取值的分散性,这两者是不相等的,所以由公式(1)和公式(2)确定的不确定度的值是也不相同的。
三、公式选用的一般原则笔者用了较大的篇幅来进行公式的数学推导,主要是为了说明这两个公式推导的前提是不一样的,其应用当然也就不同。
《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容.答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了"还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值.+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49。
999(mm ) 1-7.用二等标准活塞压力计测量某压力得 100。
2014年测量数据处理及计量专业实务(一级)参考答案 (1)更多一级二级注册计量师历年真题和考试资料请搜索淘宝店铺:王工计量师 xx测量数据处理及计量专业实务(一级)参考答案一.单项选择题(共70题,每题1分,每题的备选项中,只有一个最符合题意)1.下列方法中,可用于减小周期性系统误差的是()。
A .异号法B.交换法C. 半周期偶数测量法D.全周期奇数测量法参考答案:C。
解析:教材上关于系统误差处有提。
2.检定员小李为了修正环境温度对量器容积的影响,用温度计测量环境温度为22.0℃,该温度计校准证书上给出该点的示值误差为-0.2℃,此时实验室空调系统显示温度为21.6℃,则小李在量器容积的计算公式中需要带入的温度值为()。
A .22.2℃B.22.0℃C.21.8℃D.21.6℃ 参考答案:A。
解析:实际温度:(22.0+0.2)℃3.以长度标准装置测量标称值为10mm的量块,得到量块的示值误差为-0.0010mm.以该量块校准一测长仪,测长仪读数为10.0020mm,该测长仪的修正值是()。
A0.0030mm D 0.0030mm 参考答案:A。
10mm量块修正后的值是10+0.0010=10.0010mm,测长仪的修正值=-示值误差=-(10.0020-10.0010)mm=-0.0010mm4.某计量院建立长度计量标准时,对计量标准进行重复性试验,对某常规被测件重复测量10次,测量数据如下:10.0006mm,10.0004mm,10.0008mm,10.0002mm,10.0003mm,10.0005mm,10.0005mm,10.0007mm,10.0004mm,10.0006mm。
在实际检定中,采用该计量标准在相同条件下对某一同类被测件进行4次测量,取4次测量的算术平均值作为被测量的最佳估计值,则最佳估计值的实验标准偏差为()。
A 0.00018mm B 0.00006mm C 0.00009mm D 0.00029mm 参考答案:C。
1.1.1 研究误差的意义为:1)正确认识误差的性质,分析误差产生的愿意,以消除或者减小误差2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据3)正确组织实验过程,合理设计仪器或者选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
1.2.1 误差的定义:误差是测得值与被测量的真值之间的差。
1.2.2 绝对误差:某量值的测得值之差。
1.2.3 相对误差:绝对误差与被测量的真值之比值。
1.2.4 引用误差:以仪器仪表某一刻度点的示值误差为份子,以测量范围上限值或者全量程为分母,所得比值为引用误差。
1.2.5 误差来源: 1)测量装置误差 2)环境误差 3)方法误差 4)人员误差1.2.6 误差分类:按照误差的特点,误差可分为系统误差、随机误差和粗大误差三类。
1.2.7 系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或者在条件改变时,按一定规律变化的误差为系统误差。
1.2.8 随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差称为随机误差。
1.2.9 粗大误差:超出在规定条件下预期的误差称为粗大误差。
1.3.1 精度:反映测量结果与真值接近程度的量,成为精度。
1.3.2 精度可分为:1)准确度:反映测量结果中系统误差的影响程度2)精密度:反映测量结果中随机误差的影响程度3) 精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度来表示。
1.4.1 有效数字:含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那末从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不管是零或者非零的数字,都叫有效数字。
1.4.2 测量结果应保留的位数原则是:其最末一位数字是不可靠的,而倒数第二位数字应是可靠的。
1.4.3 数字舍入规则:保留的有效数字最末一位数字应按下面的舍入规则进行凑整:1)若舍去部份的数值,大于保留部份的末位的半个单位,则末位加一2)若舍去部份的数值,小于保留部份的末位的半个单位,则末位不变3)若舍去部份的数值,等于保留部份的末位的半个单位,则末位凑成偶数。
1:计量标准的重复性、稳定性考核一、概述计量标准是准确度低于计量基准,用于检定或校准其他计量标准或者工作计量器具的计量器具,它处于国家量值传递(溯源)体系的中间环节,起承上启下的作用。
因此,计量标准在使用前必须依照JJF1033《计量标准考核规范》的要求,进行各项技术准备,使计量标准符合规范的要求并通过考核。
下面主要介绍计量标准的重复性、稳定性考核的内容。
二、计量标准的重复性考核1.计量标准的重复性计量标准的重复性即在相同测量条件下,重复测量同一被测量,计量标准提供相近示值的能力。
计量标准的重复性通常用测量结果的分散性来定量表示,即用单次测量结果y i 的实验标准差s(y i)来表示。
计量标准的重复性通常是检定或校准结果的一个不确定度来源。
新建计量标准应当进行重复性试验,并提供试验的数据;已建计量标准,至少每年进行一次重复性试验,测得的重复性应满足检定或校准结果的测量不确定度的要求。
在计量标准考核中,计量标准的重复性是指在重复性条件(这些条件包括测量程序、人员、仪器、环境等方面)下用该计量标准测量一常规的被测对象时,所得到的测量结果的一致性。
为保证在尽量相同的条件下进行测量必须在尽量短的时间内完成重复性测量。
2.重复性的试验方法在重复性条件下,用计量标准对常规的被检定或被校准对象进行n次独立重复测量,若得到的测量结果为y i (i = 1,2,…,n),则其重复性s(y i)为()()112--=∑=nyyy snii i式中:y—n次测量结果的算术平均值;n—重复测量次数,n应尽可能大,一般应不少于10次。
重复性试验结果也会受被测对象不稳定的影响,所以在进行计量标准的重复性试验时,选择的测量对象应为常规的被检定或被校准计量器具,而不是本身重复性和稳定性都是最佳的被检定或被校准计量器具,这样评定得到的不确定度可以用于大多数的检定或校准结果。
3.计量标准的重复性考核对于新建计量标准,只要按照要求进行重复性试验,并提供试验的重复性数据即可;对于已建计量标准,至少每年进行一次重复性试验,如果重复性试验结果不大于新建计量标准时的重复性,则重复性符合要求;如果重复性试验结果大于新建计量标准时的重复性时,应按照新的重复性结果重新进行检定或校准结果的测量不确定度评定,并判断检定或校准结果的测量不确定度是否满足被检定或校准对象的需要。
《误差理论与数据处理》练习题第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。
相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。
今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。
试求g 及其最大相对误差。
如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。
由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T T T h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆- g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。
标准差与标准误的区别一、标准差(standard deviation,缩写SD或者S)在国家计量技术规范中,标准差的正式称是标准偏差,简称标准差,用符号σ表示。
标准差的名称有10 余种,如总体标准差、母体标准差、均方根误差、均方根偏差、均方误差、均方差、单次测量标准差和理论标准差等。
标准差的定义式为:如果用样本标准差s 的值作为总体标准差σ的估计值。
样本标准差的计算公式为:二、标准误(标准误差,standard error,缩写 Sx 或S E ) )在抽样试验(或重复的等精度测量) 中,常用到样本平均数的标准差,亦称样本平均数的标准误或简称标准误( standard error of mean) 。
因为样本标准差s 不能直接反映样本平均数 x 与总体平均数μ究竟误差多少, 所以, 平均数的误差实质上是样本平均数与总体平均数之间的相对误。
可推出样本平均数的标准误为,其估计值为,它反映了样本平均数的离散程度.标准误越小, 说明样本平均数与总体平均数越接近,否则,表明样本平均数比较离散.标准误,衡量的是我们在用样本统计量去推断相应的总体参数(常见如均值、方差等)的时候,一种估计的精度.样本统计量本身就是随机变量,每一次抽样,都可以根据抽出的样本情况计算出一个不同的样本统计量值。
理论上来讲,从既定的总体中按照既定的样本规模n,穷尽所有可能抽出的样本(不妨假设为NN),根据这些样本可以计算出NN个样本统计量值,把这些统计量值分组绘成直方图(X轴为分组的统计量数值,Y轴为落在某一分组区间内的频率),则这个直方图就反应了样本统计量的分布情况(即抽样分布)。
既然是分布,当然就有均值和方差.如果所有可能的样本统计量值的平均值就是总体均值,这就是无偏估计.如果所有可能的样本统计量值的方差在所有用于估计总体参数的统计量里最小,这就是有效估计。
因此,抽样分布的标准差(也就是标准误)越小,则用样本统计量去估计总体参数时,精度就越高。
一、问题的提出
在不等精度直接测量时,由各测量值x i及其准差σi计算加权算术平均值的标准差时,有两个计算公式
式中:p i——各测量值的权;σi——各测量值的标准差;σ——单位权标准差;——加权算术平均值的标准差。
但这两个公式的计算结果有时会相差很大。
那么,在这种情况下,采用哪个公式更为合理呢?本文对此从公式的推导到公式的选用进行探讨,并给出了一般性的原则。
二、公式的数学推导
在不等精度测量时,各测量值的权的定义式为:
测量结果的最佳估计值为:
则测量结果的不确定度评定为:
对式(5)求方差有
设各测量值x i的方差都存在,且已知分别为,即D(x i)=
由(4)式有=σ2/p i
从公式(1)的推导,我们可以看出,此时各测量值的方差(或标准差)必须是已知的。
而在实际测量中,常常各测量值的方差(或标准差)是未知的,无法直接应用公式(1)进行不确定度评定。
但是,从分析来看,如果能由各测量值的残差(其
权等于测量值的权)求出单位权标准差的估计值,并将其代入公式(1)中,就可计算出加权算术平均值标准差的估计值。
为此,作如下推导:
由残差νi=x i-i=1,2,……n
对νi单位权化
由于v i的权都相等,因而可设为1,故用v i代替贝塞尔公式中的ν
可得单位权标准差的估计值
i
将此式代入公式(1),即得到加权算术平均值标准差的估计值
从上面的推导我们可以看出,公式(1)是在各测量值的标准差已知时计算出的不等精度测量结果的不确定度的准确值;而公式(2)是在各测量值的标准差未知时计算出的不等精度测量结果的不确定度的估计值。
从概率论与数理统计知识可知,只有在n→∞时,其单位权标准差的估计值才能等于单位权的标准差,而由于测量次数的有限性和随机抽样取值的分散性,这两者是不相等的,所以由公式(1)和公式(2)确定的不确定度的值是也不相同的。
三、公式选用的一般原则
笔者用了较大的篇幅来进行公式的数学推导,主要是为了说明这两个公式推导的前提是不一样的,其应用当然也就不同。
我们分两种情况来进行讨论。
1.各测量值的标准差未知时
显然,在这种情况下,由于其测量值的权是由其他方法得到的,而各测量值的标准差未知,无法应用公式(1)来进行不确定度评定,而只能用公式(2)。
2.各测量值的标准差已知时
当已知测量值x i和其标准差σi时,有两种方法计算的标准差:第一种方法是用公式(1)进行计算,第二种方法是用公式(2)进行计算。
前面已述这两种方法在理论上是不相等的。
两种方法的区别是:第一种方法是根据已知的σi 计算,没有用到测量数据x i。
而第二种方法既用到了σi(确定权),也用到了测量数据x i(计算残差)。
公式(2)是一个统计学公式,与观测次数n有关,只有n足够大,即观测数据足够多时,该公式才具有实际意义。
所以,根据前面的推导分析,当测量次数较少时,考虑到随机抽样取值的分散性,建议采用公式(1)
进行不确定度评定,当测量次数较多时,采用公式(2)评定不确定度更能真实地反映出这一组数据的不确定度值,它包含了由随机效应引起的不确定度,也包含了由系统效应引起的不确定度,因而更具有实验性质。
现在的问题是,测量次数究竟为多少时才是较少或较多呢?根据概率论与数理统计知识,单次测量的标准
差与平均值的标准差的关系为:,当σ一定时,n>10以后,已减少得非常缓慢。
所以常把n=10作为一个临界值。
综上所述,当测量次数n<10时,用公式(1)进行计算效果较好;当测量次数n≥10时,采用公式(2)来评定不确定度会更客观一些。
另外,还有一个问题值得注意:不等精度测量本来就是改变了测量条件的复现性测量,这些改变了的测量条件有可能带来系统误差。
当n足够大时且本次测量条件与以前的测量条件变化不大时,两个公式计算的结果应近似相等。
否则本次测量数据可能存在系统误差。
四、实例
[实例1]用国家基准器在相同的条件下连续3天检定某一基准米尺,检定的结果为(3次测量取平均值),(2次测量取平均值.雪,(5次测量取平均值),试求最终的检定结果。
[解]由于测量条件相同,3天里的10次测量是等精度的。
3个检定结果所以精度不等,是因为每天测量的次数不同,所以其权为:
p
:p2:p3=σ2/n1:σ2/n2:σ2/n3=3:2:5
1
所以,加权算术平均值为:
因各测量值的标准差未知,故σx应按公式(2)估算,所以
[实例2]对某物理量进行9次直接测量,数据见下表,评定测量结果的不确定度。
[解](1)计算各测量值的权:
由式(4)知
p
=σ2/
i
令单位权标准差σ=50,则各测量值的权为:
p
:p2:p3:p4:p5:p6:p7:p8:p9
1
=1:1:1::::::
(2)计算最佳估计值:
(3)计算的标准差:
第一种方法;用公式(1)计算
第二种方法:用公式(2)计算
从本例看,两种方法计算的结果相差较大。
依据第三节的原则,该例采用第一种方法计算的结果为好。
从对观测列的分析来看,x max-x min=132,取值很分散,似有系统误差存在。
当系统误差大于随机误差时,测量值的变化规律会明显地为系统误差所左右,因而无法用统计的方法得到正确的测量结果,原有的测量值也就失去了意义。
要有效地提高测量准确度,必须认真分析测量过程中系统效应的影响,并采取措施,减小或消除其影响。