电子束的偏转与聚焦(北京科技大学物理实验报告)
- 格式:doc
- 大小:35.50 KB
- 文档页数:3
大学物理实验电子束的偏转实验报告一、实验目的1、研究电子束在电场和磁场中的偏转规律。
2、了解电子束偏转的控制方法和应用。
3、掌握测量电子束偏转量的实验技术。
二、实验原理1、电子在电场中的偏转当电子在平行板电容器的电场中运动时,受到电场力的作用而发生偏转。
假设电子从阴极发射出来时的初速度为$v_0$,平行板电容器的板间电压为$U$,板间距为$d$,板长为$L$,则电子在电场中的加速度为$a =\frac{eU}{md}$,其中$e$为电子电荷量,$m$为电子质量。
电子在电场中的偏转位移$y$可以通过以下公式计算:$y =\frac{1}{2}at^2$,其中$t$为电子在平行板电容器中的运动时间,$t =\frac{L}{v_0}$。
2、电子在磁场中的偏转当电子在均匀磁场中运动时,受到洛伦兹力的作用而发生偏转。
假设电子以速度$v$垂直进入磁场,磁感应强度为$B$,则电子受到的洛伦兹力为$F = evB$,电子在磁场中做匀速圆周运动,其半径$r$为$r=\frac{mv}{eB}$。
电子在磁场中的偏转位移$y$可以通过几何关系计算得出。
三、实验仪器电子束偏转实验仪、直流稳压电源、示波器、多用表等。
四、实验步骤1、电场偏转实验(1)连接实验仪器,将电子束偏转实验仪的电源接通,调节电压输出,使平行板电容器的板间电压达到设定值。
(2)打开示波器,调整示波器的参数,使其能够清晰地显示电子束的偏转轨迹。
(3)观察电子束在电场中的偏转情况,记录不同电压下电子束的偏转位移。
2、磁场偏转实验(1)将磁场装置接入实验电路,调节磁场强度,使其达到设定值。
(2)观察电子束在磁场中的偏转情况,记录不同磁场强度下电子束的偏转位移。
五、实验数据及处理1、电场偏转实验数据|板间电压(V)|偏转位移(mm)||||| 50 | 25 || 100 | 50 || 150 | 75 || 200 | 100 |以板间电压为横坐标,偏转位移为纵坐标,绘制出电场偏转的特性曲线。
电子束的偏转与聚焦实验报告实验目的:本实验旨在通过对电子束的偏转与聚焦进行实验,探究电子束在电场和磁场作用下的行为规律,加深对电子束的物理特性的理解。
实验仪器和材料:1. 电子束偏转器。
2. 电子束聚焦器。
3. 电子束发生器。
4. 电子束检测器。
5. 电源。
6. 磁铁。
7. 导线。
8. 示波器。
9. 实验台。
10. 电子束样品。
实验原理:电子束的偏转与聚焦实验是利用电场和磁场对电子束进行控制,从而观察电子束在不同条件下的行为。
电子束在电场中会受到电场力的作用,而在磁场中会受到洛伦兹力的作用。
通过调节电场和磁场的强度和方向,可以实现对电子束的偏转和聚焦。
实验步骤:1. 将电子束发生器连接到电子束偏转器和聚焦器上,并调节电子束的强度和方向。
2. 将磁铁放置在电子束的路径上,调节磁场的强度和方向。
3. 通过示波器观察电子束在不同电场和磁场条件下的运动轨迹。
4. 调节电子束的聚焦器,观察电子束的聚焦效果。
5. 记录实验数据,并进行数据分析和实验结论的总结。
实验结果:经过一系列实验操作和数据记录,我们观察到在不同电场和磁场条件下,电子束的偏转和聚焦情况发生了明显的变化。
当电场和磁场的方向和强度发生变化时,电子束的运动轨迹也相应发生了变化。
在调节电子束聚焦器时,我们发现可以通过调节聚焦器的参数,实现对电子束的聚焦效果的控制,从而获得清晰的电子束图像。
实验结论:通过本实验,我们深入了解了电子束在电场和磁场作用下的行为规律。
电子束在电场和磁场的双重作用下,呈现出复杂的运动轨迹,但通过调节电场和磁场的参数,可以实现对电子束的精确控制。
此外,通过调节电子束聚焦器,也可以实现对电子束的聚焦效果的控制,为电子束成像提供了重要的理论基础和实验依据。
总结:本实验通过对电子束的偏转与聚焦进行实验,探究了电子束在电场和磁场作用下的行为规律,加深了对电子束的物理特性的理解。
通过实验操作和数据分析,我们获得了丰富的实验结果,并得出了一系列结论,为进一步研究和应用电子束技术提供了重要的实验基础。
实验五十七电子束的偏转与聚焦[实验目的]1、了解电子枪的结构2、研究电子在横向电场及横向磁场中的运动规律3、了解电子束的磁聚集原理4、测定电子的荷质比[实验仪器]WS-JD-DZS型电子束综合实验仪、直流稳压电源、数字万用表,低压电表、直流毫安表,螺线管[实验原理]一、示波管的结构与工作原理电子束综合实验仪的核心部件是一示波管。
示波管为阴极射线管,简写为CRT。
示波管由电子枪、偏转板和荧光屏三部分组成,如图57-1所示。
图57-1电子枪:由加热电极(灯丝)F、阴极K、栅极(调制极)G、加速电极A2’第一阳极A1(聚焦极)和第二阳极A2(辅助聚焦极)组成。
A2’与A2在示波管内部相连。
偏转板:DX 为水平偏转板(X、X’一对),DY为垂直偏转板(Y、Y’一对)。
荧光屏:在示波管玻璃屏内表面涂敷荧光物质膜层构成;外部用玻璃封装,抽真空并加有吸气剂。
阴极K为表面涂有氧化物(钡、锶的氧化物)的金属圆筒,经灯丝加热(电压6.3V)后,温度上升,一部分电子脱离圆筒表面,变成自由电子,自由电子在外电场作用下形成电子流。
栅极G为顶端带孔(Ø.1mm)的圆筒,套装在阴极之外,栅极的电位低于阴极的电位,对阴极发射出的电子起控制作用。
调节栅极电位可以控制射向荧光屏的电子流密度。
电子流密度越大,荧光屏上的光点就越亮。
当栅极电位调到相对阴极足够负时,将没有电子通过栅极,荧光屏上光点消失,此时栅-阴极间的电位差称为截止电压。
8SJ31J型示波管的截止电压为-35~-70V。
调节栅-阴极间电压可控制荧光屏上光点的亮度,这就是亮度调节。
加速电极A2’是一长金属圆筒,其电位比阴极高1000V左右,用于加速电子。
圆筒内有一对同轴中心开孔的金属片,用于截获偏离轴线的电子,使电子束有较细截面。
加速电极后面是第一阳极A1和第二阳极A2(A2与A2’相连接),第一阳极电压一般为几百伏,与A2’、A 2一样也是中心有小孔的圆板。
A2’、A1、A2三极形成的电场除具有对电子加速作用外,还起着会聚作用,使电子束会聚成很细一束,这种作用称为聚焦。
竭诚为您提供优质文档/双击可除电子束的电偏转和电聚焦实验报告篇一:电子束的偏转与聚焦(北京科技大学物理实验报告)北京科技大学实验预习报告实验名称:电子束的偏转与聚焦实验目的:研究带电粒子在电场和磁场中偏转和聚焦的规律;了解电子束线管的构造和工作原理。
实验原理:A,电子束流的产生与控制通过阴极K发射电子。
控制栅极g是一个顶端有小孔的圆筒,套在阴极的外面,其电位比阴极低,因此栅极对阴极发射的电子流密度起到控制作用。
b,电偏转原理通过电场对电子的偏转作用,我们可以得到以下公式:De=udl(1/2+L)/(2uzd)其中,De为偏转长度,l为电场长度,d为电场宽度,L 为电容器到荧光屏的距离,uz为加速电压。
c,磁偏转原理通过磁场场对电子的偏转作用,我们可以得到以下公式:Dm=klI(L+l/2)sqrt(e/2uzm)D,点聚焦原理利用非均匀电场是电子束形成交叉点。
由阴极射出的电子,经栅极与第一阳极之间的不均匀电场的作用会聚与栅极出口前方,形成电子束的叉点。
e,磁聚焦原理电子运动的周期和螺距均与v(垂直)无关。
从同一点出发的各个电子在作螺线运动时,尽管各自的v(垂直)不相同,但经过一个周期的旋转之后,他们又会在距离出发点一个螺距的方向相遇。
实验内容及步骤A,电偏转的观测b,磁偏转的观测c,电聚焦的观测D,磁聚焦的观测篇二:实验14-电子束的偏转与聚焦及电_...实验14电子束偏转、聚焦及电子荷质比的测定带电粒子在电场和磁场作用下的运动是电学组成的基础。
带电粒子通常包括质子、离子、和自由电子等,其中电子具有极大的荷质比和极高的运动速度。
因此,在各种分支学科中得到了极其广泛的应用。
众所周知,快速运动的电子会在阴极射线管的荧光屏上留下运动的痕迹,可以利用观察此光迹的方法来研究电子在电场和磁场中的运动规律。
辅以聚焦、偏转和强度控制等系统,可以使电子束在荧光屏上清晰地成象。
电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。
北京科技大学实验预习报告实验名称:电子束的偏转与聚焦实验目的:研究带电粒子在电场和磁场中偏转和聚焦的规律;了解电子束线管的构造和工作原理。
实验原理:A ,电子束流的产生与控制通过阴极K 发射电子。
控制栅极G 是一个顶端有小孔的圆筒,套在阴极的外面,其电位比阴极低,因此栅极对阴极发射的电子流密度起到控制作用。
B ,电偏转原理通过电场对电子的偏转作用,我们可以得到以下公式:D e =U d l(1/2+L)/(2U z d)其中,D e 为偏转长度,l 为电场长度,d 为电场宽度,L 为电容器到荧光屏的距离,Uz 为加速电压。
C, 磁偏转原理通过磁场场对电子的偏转作用,我们可以得到以下公式:D m =klI(L+l/2)sqrt(e/2U z m)D,点聚焦原理利用非均匀电场是电子束形成交叉点。
由阴极射出的电子,经栅极与第一阳极之间的不均匀电场的作用会聚与栅极出口前方,形成电子束的叉点。
E,磁聚焦原理电子运动的周期和螺距均与v(垂直)无关。
从同一点出发的各个电子在作螺线运动时,尽管各自的v(垂直)不相同,但经过一个周期的旋转之后,他们又会在距离出发点一个螺距的方向相遇。
实验内容及步骤A,电偏转的观测阳极电/V压Uz偏转量DeB, 磁偏转的观测磁片电流I偏转量DeC, 电聚焦的观测阳极电/V压Uz聚焦电压U1D,磁聚焦的观测600V 700V 800V 900V 1000V 阳极电压U/V电流I/ A。
电子束的磁偏转与磁聚焦实验报告一、实验目的1、研究电子束在磁场中的偏转规律,加深对洛伦兹力的理解。
2、掌握电子束磁偏转和磁聚焦的测量方法。
3、测定电子荷质比。
二、实验原理1、电子束的磁偏转当电子以速度 v 垂直进入磁场 B 时,将受到洛伦兹力 F 的作用,其大小为 F = e v B,其中 e 为电子电荷。
洛伦兹力的方向始终垂直于电子的速度方向,使电子在垂直于磁场和速度的平面内做圆周运动。
在磁场中运动的电子会发生偏转,其偏转位移 y 与磁场强度 B、加速电压 V、偏转电压 V_d 等因素有关。
2、电子束的磁聚焦在均匀磁场中,电子束中的电子做螺旋运动。
如果磁场是轴向的,且各电子的速度 v 大小相近、方向略有差异,经过一段距离后,它们会会聚在一点,这就是磁聚焦现象。
磁聚焦的条件是电子旋转一周的时间与在轴向前进的距离正好相等。
三、实验仪器电子束实验仪、直流稳压电源、示波器等。
四、实验步骤1、连接实验仪器,确保线路连接正确。
2、打开电源,预热一段时间,使仪器工作稳定。
3、调节加速电压 V,使其达到一定值,并保持不变。
4、逐渐增加偏转电压 V_d,观察电子束在磁场中的偏转情况,记录偏转位移 y。
5、改变磁场强度B,重复上述步骤,测量不同条件下的偏转位移。
6、进行磁聚焦实验,调节磁场强度和加速电压,观察磁聚焦现象,测量相关数据。
五、实验数据及处理1、磁偏转实验数据加速电压 V =____ V磁场强度 B(T)偏转电压 V_d(V)偏转位移 y(mm)01 5 1201 10 2502 5 0602 10 13根据实验数据,绘制偏转位移 y 与偏转电压 V_d 的关系曲线,分析其线性关系。
2、磁聚焦实验数据加速电压 V =____ V磁场强度 B(T)聚焦长度 L(mm)01 15002 75根据磁聚焦实验数据,计算电子的荷质比 e/m。
六、实验误差分析1、仪器精度的限制,如电源电压的稳定性、磁场强度的测量误差等。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==大学电子束实验总结篇一:电子束的偏转与聚焦(北京科技大学物理实验报告)北京科技大学实验报告实验名称:电子束的偏转与聚焦实验目的、实验原理(见预习报告)实验数据及数据分析(数据及图见附页)A.电偏转的观测由图1、2、3、5可以清楚得看出,当阳极电压Uz不变时,偏转电压随偏转量的增大线性变化。
第4张图可以看出,我测量的第五组数据是有问题的。
所以,我就放弃了第五组数据,作出了图5。
然后我分析了一下不同阳极电压下偏转电压随偏转量变化快慢。
显然,斜率即电偏转灵敏度,分别为:0.105,0.0915,0.082, 0.0753, 斜率是随着阳极电压的增大而减小的。
为了清晰明了,我把两者的关系用图表示出来上图说明阳极电压与图1,2,3,5的电偏转灵敏度之间几乎是成线性变化的。
阳极电压的增大导致了初速度的增加,而初速度越大偏转就越难,因而偏转灵敏度越小。
偏转距离De和偏转电压Ud是成线性变化的。
至于De与阳极电压Uz的关系,根据图1,2,3,5中的公式,可以知道,当偏转电压Ud为10V时,Dz分别为:1.025,0.912,0.785, 0.744,所以根据下图可知:当偏转电压相同时,随着阳极电压的增大,偏转量增减少。
B 磁偏转的观测图6,7,8是磁偏转观测部分的图。
这三张图说明了,偏转电流与偏转量是成一次函数关系变化的。
下图表示的是图6,7,8的斜率即磁偏转灵敏度与阳极电压的关系:显然,三个数据几乎是在一条直线上,所以磁偏灵敏度是和阳极电压成线性的。
并且随着阳极电压的增大磁偏灵敏度减小。
阳极电压增大导致电子速度的增大,电子就越不容易被偏转。
当Uz不变时,Dm随着偏转电流I的增大而增大;当I不变时,Dm随着Uz的变大而减小,如图:(取I为100mA为基点)C 电聚焦的观测由于聚焦是一种直观的感受,所以何时真正地聚焦了就属于自己的感觉了。
电子束的聚焦和偏转一、实验目的1、了解示波管的构造和工作原理。
2、定量分析电子束在匀强电场作用下的偏转情况和均匀磁场作用下的偏转情况。
3、学会规范使用数字万能表。
4、学会磁聚焦法测量电子荷质比的方法。
二、实验原理1.示波管的结构示波管主要包括三个部分:前端为荧光屏,中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪。
灯丝H用电源供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。
2.电偏转原理在示波管中,电子从被加热的阴极K逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。
令Z 轴沿示波管的管轴方向从灯丝位置指向荧光屏;同时,从荧光屏上看,令X 轴为水平方向向右,Y 轴为垂直方向向上。
则电子经过电势差为U 的空间后,电场力做的功eU 应等于电子获得的动能2m 21v eU =显然,电子沿Z 轴运动的速度v z 与第二阳极A 2的电压U 2的平方根成正比,22v U mez =若在电子运动的垂直方向加一横向电场,电子在该电场作用下将发生横向偏转,如图。
若偏转板板长为l 、偏转板末端到屏的距离为L 、偏转电极间距离为d 、轴向加速电压为U 2,横向偏转电压为U d ,则荧光屏上光点的横向偏转量:dlU U L D d 2)2l (2+=可知,当U 2不变时,偏转量 D 随U d 的增加而线性增加。
若 改变加速电压U 2,适当调节U 1到最佳聚焦,可以测定D-U d 直线随U 2改变而使斜率改变的情况。
B3.磁偏转原理电子通过A 2后,若在垂直Z 轴的X 方向外加一个均匀磁场,那么以速度v 飞越子电子在Y 方向上也会发生偏转,如图所示。
由于电子受洛伦兹力F=eBv 作用,F 的大小不变,方向与速度方向垂直,因此电子在F 的作用下做匀速圆周运动,洛伦兹力就是向心力,即有eBv=mv 2/R ,所以eBR zmv =电子离开磁场后将沿圆切线方向飞出,直射到达荧光屏。
北京科技大学实验预习报告
实验名称:电子束的偏转与聚焦
实验目的:
研究带电粒子在电场和磁场中偏转和聚焦的规律;了解电子束线管的构造和工作原理。
实验原理:
A ,电子束流的产生与控制
通过阴极K 发射电子。
控制栅极G 是一个顶端有小孔的圆筒,套在阴极的外面,其电位比阴极低,因此栅极对阴极发射的电子流密度起到控制作用。
B ,电偏转原理
通过电场对电子的偏转作用,我们可以得到以下公式:
D e =U d l(1/2+L)/(2U z d)
其中,D e 为偏转长度,l 为电场长度,d 为电场宽度,L 为电容器到荧光屏的距离,Uz 为加速电压。
C, 磁偏转原理
通过磁场场对电子的偏转作用,我们可以得到以下公式:
D m =klI(L+l/2)sqrt(e/2U z m)
D,点聚焦原理
利用非均匀电场是电子束形成交叉点。
由阴极射出的电子,经栅极与第一阳极之间的不均匀电场的作用会聚与栅极出口前方,形成电子束的叉点。
E,磁聚焦原理
电子运动的周期和螺距均与v(垂直)无关。
从同一点出发的各个电子在作螺线运动时,尽管各自的v(垂直)不相同,但经过一个周期的旋转之后,他们又会在距离出发点一个螺距的方向相遇。
实验内容及步骤
A,电偏转的观测
阳极电
/V
压U
z
偏转量
D
e
B, 磁偏转的观测
磁片电
流I
偏转量
D
e
C, 电聚焦的观测
阳极电
/V
压U
z
聚焦电
压U
1
D,磁聚焦的观测
600V 700V 800V 900V 1000V 阳极电压
U/V
电流I/ A。