Mathematics中数据处理插值拟合和编程基础
- 格式:ppt
- 大小:109.50 KB
- 文档页数:15
MATLAB软件中软件拟合与插值运算的方法内容目录
1MATLAB中软件拟合与插值运算的方法1
1.1拟合函数的选择1
1.1.1线性拟合1
1.1.2非线性拟合2
1.2拟合函数的求解2
1.2.1直接法2
1.2.2迭代法3
1.3MATLAB插值函数4
1.3.1样条插值函数4
1.3.2拉格朗日插值函数5
1.3.3指数插值函数5
结论6
近来,随着科学技术的进步,数据采集技术的发展,大量的实验数据和实验结果越来越多,如何合理地分析处理数据,描绘实际趋势,就变得十分重要,MATLAB中的软件拟合与插值是目前应用最多的数据处理技术之一、本文介绍了MATLAB中软件拟合与插值运算的方法及其具体实现。
1.1拟合函数的选择
1.1.1线性拟合
线性拟合是指拟合函数可以用一元线性方程描述,MATLAB中的拟合
函数有polyfit、polyval和 polyconf等。
其中,polyfit函数用来根据
输入的拟合数据拟出一元多项式,polyval函数用来求出拟合后的拟合值,polyconf函数用来计算拟合的参数的置信范围。
例如,用polyfit函数
拟合下面的数据,输入x = [1 2 3 4 5]和y = [4.3 7.3 11.1 14.1
18.4],拟出的拟合函数为y = 4.1 + 2.3x,即拟合函数为y = 4.1 +
2.3x。
1.1.2非线性拟合。
插值、拟合与MATLAB 编程相关知识在生产和科学实验中,自变量x 与因变量y 间的函数关系()y f x =有时不能写出解析表达式,而只能得到函数在若干点的函数值或导数值,或者表达式过于复杂而需要较大的计算量。
当要求知道其它点的函数值时,需要估计函数值在该点的值。
为了完成这样的任务,需要构造一个比较简单的函数()y x ϕ=,使函数在观测点的值等于已知的值,或使函数在该点的导数值等于已知的值,寻找这样的函数()y x ϕ=有很多方法。
根据测量数据的类型有以下两类处理观测数据的方法。
(1)测量值是准确的,没有误差,一般用插值。
(2)测量值与真实值有误差,一般用曲线拟合。
在MATLAB 中,无论是插值还是拟合,都有相应的函数来处理。
一、插 值1、一维插值:已知离散点上的数据集1122{(,),(,),,(,)}n n x y x y x y ,即已知在点集X=12{,,,}n x x x 上的函数值Y=12{,,,}n y y y ,构造一个解析函数(其图形为一曲线)通过这些点,并能够求出这些点之间的值,这一过程称为一维插值。
MATLAB 命令:yi=interp1(X, Y, xi, method)该命令用指定的算法找出一个一元函数()y f x =,然后以()f x 给出x 处的值。
xi 可以是一个标量,也可以是一个向量,是向量时,必须单调,method 可以下列方法之一:‘nearest’:最近邻点插值,直接完成计算;‘spline’:三次样条函数插值;‘linear’:线性插值(缺省方式),直接完成计算; ‘cubic’:三次函数插值;对于[min{xi},max{xi}]外的值,MATLAB 使用外推的方法计算数值。
例1:已知某产品从1900年到2010年每隔10年的产量为:75.995, 91.972, 105.711, 123.203, 131.699, 150.697, 179.323, 203.212, 226.505, 249.633, 256.344, 267.893,计算出1995年的产量,用三次样条插值的方法,画出每隔一年的插值曲线图形,同时将原始的数据画在同一图上。
matlab插值与拟合
在MATLAB中,插值和拟合都是通过函数来实现的。
插值是通过创建新的数据点来填充在已知数据点之间的空白。
MATLAB提供了几种不同的插值方法,例如分段线性插值、三次样条插值、立方插值等。
具体使用哪种插值方法取决于数据的特性和所需的精度。
插值函数的一般形式是`interp1(x, y, xi, 'method')`,其中`x`和`y`是已知的数据点,`xi`是待插值点的横坐标向量,`method`是插值方法,例如最近邻点插值、线性插值、三次样条插值、立方插值等。
拟合是通过调整一个数学模型来使得该模型尽可能地接近给定的数据点。
在MATLAB中,可以使用`polyfit`函数进行多项式拟合。
该函数的一般形式是`p = polyfit(x, y, n)`,其中`x`和`y`是已知的数据点,`n`是多项式的阶数。
该函数返回一个向量`p`,表示多项式的系数。
可以使用`polyval`函数来评估这个多项式模型在给定数据点上的值。
需要注意的是,插值和拟合都是数学上的近似方法,它们只能尽可能地逼近真实的情况,而不能完全准确地描述数据的变化。
因此,选择合适的插值和拟合方法是非常重要的。
插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。
插值是通过已知数据点之间的数值来估计未知位置的数值。
而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。
插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。
interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。
2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。
lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。
3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。
spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。
拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。
polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。
函数返回一个多项式的系数向量p,从高次到低次排列。
通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。
2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。
fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。
MATLAB中的数据插值与拟合方法介绍概述数据处理是科学研究和工程实践中的重要环节之一。
对于实验或观测数据,我们常常需要通过插值和拟合方法来获取更加精确和连续的函数或曲线。
在MATLAB中,有多种方法和函数可以用于实现数据插值和拟合,本文将介绍其中的一些常用方法。
一、数据插值数据插值是指利用有限个数据点,通过某种方法构建一个连续的函数,以实现在这些点之间任意位置的数值估计。
在MATLAB中,常用的数据插值方法有线性插值、多项式插值、三次样条插值等。
1. 线性插值线性插值是最简单的插值方法之一,假设我们有两个数据点 (x1, y1) 和 (x2, y2),要在这两个点之间插值一个新的点 (x, y),线性插值即为连接 (x1, y1) 和 (x2, y2) 这两个点的直线上的点(x, y)。
在MATLAB中,可以通过interp1函数进行线性插值。
2. 多项式插值多项式插值是使用一个低次数的多项式函数来拟合数据的方法。
在MATLAB 中,可以通过polyfit函数进行多项式拟合,然后利用polyval函数来进行插值。
具体的插值效果与所选用的多项式阶数有关。
3. 三次样条插值三次样条插值算法利用相邻数据点之间的三次多项式来拟合数据,从而构成一条光滑的曲线。
在MATLAB中,可以通过spline函数进行三次样条插值。
二、数据拟合除了插值方法外,数据拟合也是处理实验或观测数据的常见方法之一。
数据拟合是指通过选择一个特定的数学模型,使该模型与给定的数据点集最好地拟合。
在MATLAB中,常用的数据拟合方法有多项式拟合、指数拟合、非线性最小二乘拟合等。
1. 多项式拟合在MATLAB中,可以使用polyfit函数进行多项式拟合。
该函数通过最小二乘法来拟合给定数据点集,并得到一个多项式函数。
根据所选用的多项式阶数,拟合效果也会有所不同。
2. 指数拟合指数拟合常用于具有指数关系的数据。
在MATLAB中,可以通过拟合幂函数的对数来实现指数拟合。
matlab学习——05插值和拟合(⼀维⼆维插值,拟合)05插值和拟合1.⼀维插值(1) 机床加⼯零件,试⽤分段线性和三次样条两种插值⽅法计算。
并求x=0处的曲线斜率和13<=x<=15范围内y的最⼩值。
x0=[0 3 5 7 9 11 12 13 14 15];y0=[0 1.2 1.7 2 2.1 2.0 1.8 1.2 1.0 1.6];x=0:0.1:15;% interp1现有插值函数,要求x0单调,'method'有% nearest 最近项插值 linear 线性插值% spline ⽴⽅样条插值 cubic ⽴⽅插值y1=interp1(x0,y0,x);y2=interp1(x0,y0,x,'spline');pp1=csape(x0,y0);y3=fnval(pp1,x);pp2=csape(x0,y0,'second');y4=fnval(pp2,x);[x',y1',y2',y3',y4']subplot(1,4,1)plot(x0,y0,'+',x,y1)title('Piecewise linear 分段线性')subplot(1,4,2)plot(x0,y0,'+',x,y2)title('spline1')subplot(1,4,3)plot(x0,y0,'+',x,y3)title('spline2')subplot(1,4,4)plot(x0,y0,'+',x,y4)title('second')dx=diff(x);dy=diff(y3);dy_dx=dy./dx;dy_dx0=dy_dx(1);ytemp=y3(131:151);ymin=min(ytemp);index=find(y3==ymin);xmin=x(index);[xmin,ymin](2) 已知速度的四个观测值,⽤三次样条求位移S=0.15到0.18上的vd(t)积分t 0.15 0.16 0.17 0.18vt 3.5 1.5 2.5 2.8format compact;% 已知速度的四个观测值,⽤三次样条求位移S=0.15到0.18上的vd(t)积分% t 0.15 0.16 0.17 0.18% vt 3.5 1.5 2.5 2.8clc,clearx0=0.15:0.01:0.18;y0=[3.5 1.5 2.5 2.8];% csape 三次样条插值,返回要求插值的的函数值pp=csape(x0,y0) % 默认的边界条件,Lagrange边界条件format long gxishu = pp.coefs % 显⽰每个区间上三次多项式的系数s=quadl(@(t)ppval(pp,t),0.15,0.18) % 求积分format % 恢复短⼩数的显⽰格式% 画图t=0.15:0.001:0.18;y=fnval(pp,t);plot(x0,y0,'+',t,y)pp =包含以下字段的 struct:form: 'pp'breaks: [0.1500 0.1600 0.1700 0.1800]coefs: [3×4 double]pieces: 3order: 4dim: 1xishu =1 ⾄2 列-616666.666666667 33500-616666.666666667 15000-616666.666666668 -3499.999999999993 ⾄4 列-473.333333333334 3.511.6666666666671 1.5126.666666666667 2.5s =0.0686252.⼆维插值(1) 丘陵测量⾼度。
Matlab中的插值与拟合方法介绍在数据分析与处理的过程中,插值与拟合是非常重要的工具。
Matlab作为一种常用的数据处理与分析工具,提供了许多插值与拟合函数,方便用户进行数据处理和分析。
本文将介绍Matlab中的插值和拟合方法,并提供相应的示例和应用场景。
一、插值方法1. 线性插值线性插值是最简单的插值方法之一,通过连接已知数据点的直线进行插值。
在Matlab中,可以使用interp1函数进行一维线性插值。
下面以一个简单的例子来说明线性插值的应用:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi)```在这个例子中,已知一组数据点(x, y),要求在x=2.5处的插值结果。
通过interp1函数,可以得到插值结果yi=5。
线性插值适用于数据点较少且近邻点的变化趋势比较明显的情况。
2. 三次样条插值三次样条插值是一种更精确的插值方法,它利用多个小区间的三次多项式进行插值。
在Matlab中,可以使用interp1函数的'spline'选项进行三次样条插值。
以下是一个示例:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi, 'spline')```通过设置'spline'选项,可以得到插值结果yi=5.125。
三次样条插值适用于数据点较多且变化较为复杂的情况。
3. 二维插值除了一维插值,Matlab还提供了二维插值函数interp2,用于处理二维数据的插值问题。
以下是一个简单的二维插值示例:```x = 1:4;y = 1:4;[X, Y] = meshgrid(x, y);Z = X.^2 + Y.^2;xi = 2.5;yi = 2.5;zi = interp2(X, Y, Z, xi, yi)```在这个例子中,首先生成一个二维数据矩阵Z,然后利用interp2函数在给定的坐标(xi, yi)处进行插值,得到插值结果zi=12.25。
插值与拟合matlab实现插值与拟合的Matlab实现王正盛编写在科技工程中,除了要进行一定的理论分析外,通过实验、观测数据,做分析、处理也是必不可少的一种途径。
由于实验测定实际系统的数据具有一定的代表性,因此在处理时必须充分利用这些信息;又由于测定过程中不可避免会产生误差,故在分析经验公式时又必须考虑这些误差的影响。
两者相互制约。
据此合理建立实际系统数学模型的方法成为数值逼近法。
一、插值法1、数学原理工程实践和科学实验中,常常需要从一组实验观测数据中,求自变量与因变量的一个近似的函数关系式。
例如:观测行星的运动,只能得到某时刻所对应的行星位置(用经纬度表示),想知道任何时刻的行星位置。
例如:大气压测定问题;导弹发射问题;程序控制铣床加工精密工件问题;飞机船舶制造问题等等。
都属于此类问题。
因为考虑到代数多项式既简单又便于计算,所以人们就用代数多项式近似地表示满足个点的函数关系式——插值法建模。
(1)计算方法课程中学习了两种多项式插值:Lagrange插值和Newton均差插值:已知n+1个数据点:n次Lagrange插值公式:特别地,当n=1时,————线性插值当n=2时,———————抛物线插值或二次插值Newton均差插值公式:,其中是k阶均差,可由均差表方便计算得到。
Lagrange插值和Newton均差插值本质上是一样的,只是形式不同而已,因为插值多项式是唯一的。
(2)Runge现象和分段低次插值:如在[-5,5]上各阶导数存在,但在此区间取n个节点构造的Lagrange插值多项式在区间并非都收敛,而且分散得很厉害。
(matlab\bin\ Lagrange.m是自己编写的M文件)[例]取n=-10hold offx=[-5:1:5];y=1./(1+x.^2);x0=[-5:0.1:5];y0=lagrange(x,y,x0);y1=1./(1+x0.^2);plot(x0,y0)hold onplot(x0,y1,'b:')legend('插值曲线','原数据曲线')因此插值多项式一般不要超过四次为宜。