2
(B )
A.n 为任何正整数时都成立
B.当 n = 1,2,3 时成立
C.当 n = 4 时成立,n = 5 时不成立
D.仅当 n = 4 时不成立
课堂练习
5.在数列{an }中,an
1
1 2
1 3
1 4
1 2n
1
1 2n
,则ak
1等于
()
1
A.
ak
2k 1
C.
ak
1 2k 2
1
1
B.
ak
例2
已知数列 1 1 4
,
4
1
7
,
7
1 10
,
,
3n
1
23n
1,
,
计算S1,S2,S3,S4, 根据计算结果,猜出Sn的表达式,并用 数学归纳法进行证明.
解
S1
1 1 4
1; 4
S2
1 4
1 47
2; 7
S3
2 7
1 7 10
3; 10
S4
3 10
1 10 13
4. 13
可以看到,上面表示四个结果的分数中,分子和项数
成立;n 4成立 ,就有n 5 也成立 所以,对任意
的正整数n,猜想都成立,即数列的通项公式是an
1. n
一 般 地, 证 明 一 个 与 正 整 数n有 关 的 命 题, 可 按 下
列 步 骤:
1归纳奠基 证明当n取第一个值n0时命题成立;
2归纳递推假设当n k k n0,k N 时命题成立,
1 an2 = 1a
(a≠1)”,在验证 n = 1 时,左端计
算所得的项为