全基因组选择育种值估计
- 格式:docx
- 大小:26.51 KB
- 文档页数:1
基因组选择育种遗传评估模型
基因组选择育种遗传评估模型是一种基于全基因组信息进行选择育种的模型,通过对个体的基因组信息进行精确测量和分析,预测其表型表现和育种价值。
该模型主要分为三个步骤:
1. 基因型数据准备:对个体的基因组进行测序或基因分型,获取个体的基因型数据。
2. 关联分析:通过关联分析方法,将基因型数据与表型数据进行关联,找出与表型性状相关的基因位点。
3. 预测育种值:利用与表型性状相关联的基因位点信息,构建预测模型,对个体的育种值进行预测。
基因组选择育种遗传评估模型具有以下优点:
1. 高精度:通过对全基因组信息的分析,可以更准确地预测个体的表型表现和育种价值。
2. 高效率:相较于传统的育种方法,基因组选择育种遗传评估模型可以大大缩短育种周期和成本。
3. 广泛应用:该模型适用于各种农作物和动物,具有广泛的应用前景。
总的来说,基因组选择育种遗传评估模型是一种基于全基因组信息进行精确育种的模型,具有高精度、高效率和广泛应用等优点。
未来随着基因组学技术的发展,该模型将得到更广泛的应用和推广。
科技成果——利用基因组检测评估奶牛育种值构建高质量奶牛群技术技术开发单位黑龙江省畜牧总站、中国农业大学动物科技学院成果简介基因组检测评估育种值(Genomic selection,GS)是利用覆盖奶牛全基因组的高密度分子遗传标记进行辅助标记,进而实现奶牛育种值运算评估。
基本原理是首先在一个国家或地区构建大规模参考群体,再利用单核苷酸多态(SNP)芯片获取候选个体的基因型数据,然后根据性状表型和标记基因型构建育种值估计模型,计算出候选奶牛个体的基因组育种值,并以此为参考对牛只个体进行选留。
基因组选择基本过程基因组选择技术相较于传统遗传选择技术优势明显,基因组选择可以不依赖于表型信息实现早期精准选择,从而大幅度加速育种进展,降低奶牛后备牛及种公牛育种成本。
该技术自2009年开始在世界各奶业发达国家得到广泛应用,我国于2012年开始正式启动实施该项技术,虽然刚刚起步,但总体应用效果显著。
基因组选择基本原理应用情况目前基因组选择技术已经得到广泛应用,奶业发达国家的青年公牛选择已经100%应用基因组选择技术,截止到2019年美国和加拿大基因组参考群体已达到448007头荷斯坦牛(其中公牛群体56970头)。
荷兰、德国和北欧三国也相继成立了基因组选择技术平台,参考群体规模也在不断扩大。
我国奶牛基因组选择技术平台是从2008年开始研发,中国农业大学奶牛分子育种团队于2012年申请《中国荷斯坦牛基因组选择分子育种技术体系的建立与应用》项目,已通过教育部科技成果鉴定,开始在全国推广应用,实现了青年公牛基因组选择全覆盖。
截至2020年12月,中国荷斯坦牛基因组选择参考群体累计3497头,荷斯坦青年公牛全部完成了基因组检测和评估。
技术效果2009年我国奶牛育种开始应用基因组选择技术,该技术显著提高了奶牛遗传世代进展,降低种公牛及母牛核心群培育成本。
参测牛群主要经济性状的遗传进展得到加速提升,产奶量的平均遗传进展提升58.1kg/年;乳脂量的平均遗传进展提升1.42kg/年;乳蛋白量的平均遗传进展提升 1.76kg/年,在产奶性能遗传进展方面增加直接效益4.6亿/年。
国际瞭望GLOBAL NEWS海外文摘对公猪肉质异味质量控制的研究最近,德国哥廷根大学的Johanna Trautmann博士对公猪肉质异味的感官质量控制进行了深入研究,其研究结果总结如下。
需要谨慎选择公猪异味评估者选择程序的第一部分是进行气味测试,主要目的是客观地描述公猪肉质异味评估员的遴选过程。
该测试主要是分析雄烯酮和粪臭素的检测阈值以及评估员通过易于使用的纸质气味条区分和鉴定各种浓度水平的物质的能力。
随后,对25个脂肪样品进行异味检测,以评估嗅觉性能对肉质感官质量控制的影响。
评估员对雄烯酮和粪臭素的嗅觉敏锐度显示出相当大的个体间变异性。
由此可知,评估员的嗅觉性能显著影响脂肪样品评级为公猪肉质异味的概率。
热铁是公猪异味检测的最佳选择第二部分的主要目的是填补先前研究中用于公猪肉质异味评价的样品制备差异。
在本次研究中,通过3个常用的工具加热脂肪样品以检测公猪肉质异味,即微波、热铁和热水法。
审核小组由10个评估员组成,对72个脂肪样品进行比较。
加热方法显著影响偏差评级的概率。
与假定的“金标准”(化学分析)相比,当考虑灵敏度和特异性时,通过热铁处理的肉品质量更好一些。
此外,结果显示,与单个评估者的评估结果相比,审核组的评估结果更准确。
恒定噪声不影响人们嗅觉第三部分的主要目的是质疑广泛的建议,即感官测试应该在没有外来噪声的环境中进行。
然而,当在屠宰环境中进行评估时,大家对评估结果有所质疑。
在本研究中,选择了两组成员:通常在无声条件下工作的大学小组和通常在屠宰场工作的屠宰场小组。
我们针对40个公猪肉质样品研究了气味辨别、气味识别和气味检测阈值。
结果表明,噪声不影响评估员对肉品有无异味的结果判断。
雄甾烯酮和粪臭素相互作用影响肉品的感官判断第四部分的主要目的是深入分析雄烯酮和粪臭素的气味及气味相互作用。
因此,采用气相色谱质谱法对1 043只公猪的脂肪样品进行感官评价和公猪肉质异味化合物的定量测定。
每个样品由10个训练有素的评估者评价,得到11 000个以上的个体评分,对其进行统计分析。
全基因组选择育种(GS)简介全基因组选择(Genomic selection, GS)是⼀种利⽤覆盖全基因组的⾼密度标记进⾏选择育种的新⽅法,可通过早期选择缩短世代间隔,提⾼育种值(Genomic Estimated Breeding Value, GEBV)估计准确性等加快遗传进展,尤其对低遗传⼒、难测定的复杂性状具有较好的预测效果,真正实现了基因组技术指导育种实践。
原理常规育种⼿段主要利⽤性状记录值、基于系谱计算的个体间亲缘关系,通过最佳线性⽆偏估计(best linear unbiased predication,BLUP)来估计各性状个体育种值(EBVs),通过加权获得个体综合选择指数,根据综合选择指数⾼低进⾏选留。
标记辅助选择(marker assisted selection, MAS)育种,利⽤遗传标记,将部分功能验证的候选标记联合BLUP计算育种值,这样不仅可以提⾼育种值估计的准确性,⽽且可以在能够获得DNA时进⾏早期选择,缩短世代间隔,加快遗传进展。
⽽GS则通过覆盖全基因组范围内的⾼密度标记进⾏育种值估计,继⽽进⾏排序、选择,简单可以理解为全基因组范围内的标记辅助选择,主要⽅法是通过全基因组中⼤量的遗传标记估计出不同染⾊体⽚段或单个标记效应值,然后将个体全基因组范围内⽚段或标记效应值累加,获得基因组估计育种值(GEBV),其理论假设是在分布于全基因组的⾼密度SNP标记中,⾄少有⼀个SNP能够与影响该⽬标性状的数量遗传位点(quantitative trait loci, QTL)处于连锁不平衡(linkage disequilibrium, LD)状态,这样使得每个QTL的效应都可以通过SNP得到反映。
相⽐BLUP⽅法,全基因组选择可以有效降低计算个体亲缘关系时孟德尔抽样误差的影响;相⽐MAS⽅法,全基因组选择模型中包括了覆盖于全基因组的标记,能更好地解释表型变异。
技术路线植物GS路线动物GS路线GS预期效果:1. 缩短育种周期,实现待选群体的低世代选留2. 提⾼育种值估计准确性3. 降低育种成本,减少表型鉴定的数量4. 预测亲本杂交后代,选择最佳杂交优势组合统计模型统计模型是GS的核⼼,极⼤地影响了基因组预测的准确度和效率。
报告从20世纪80年代开始,分子标记系统的开发使植物育种者和分子生物学家获得多态性标记的数量大大增加。
单核苷酸多态性(Single nucleotide polymorphisms,SNPs)已经在数量性状基因座(Quantitative trait locus,QTL)中广泛使用。
目前已有多项研究结果表明,超过10 000个不同标记系统的QTL 应用于12种植物中,旨在改善具有重要经济价值的数量性状。
最初,通过应用MAS 将分子标记整合到传统的表型选择(Phenotypic selection,PS)中。
对于简单的性状,MAS 只选择具有主要作用的QTL 相关标记的个体,不使用与性状无显著相关的标记的个体。
由于QTL 与环境相互作用,难以在多种环境中或不同的遗传背景下找到相同的QTL,通过使用QTL 相关标记检测来改善多基因控制的复杂数量性状是不可行的,因此,新的MAS 技术-基因组选择(GS)应运而生。
Meuwissen 等首次提出了GS 育种策略,GS 育种分为两步。
第一步主要是利用训练群体的基因分型结果和表型建立最佳线性无偏预测(Best linear unbiased prediction,BLUP )模型,得到训练的育种值(Breeding value,BV)。
第二组是育种群体的基因型数据,但群体中的个体均没有表型,基于BLUP 模型和与训练群体中的表型相关的基因组的等位基因同一性来预测育种群体的各种性状的表现,从而得到GEBV ,GEBV 来源于预测群体中每个个体的基因组中发生的有用基因组的组合,并且提供了每个个体具有优良表型的估计值,即高育种值。
可以根据GEBV 选择新的育种亲本。
GS 与传统的MAS 相比有以下优点:①GS 不需要QTL 定位。
GS 不同于连锁和关联作图的策略,它不是映射单个基因效应,而是基于大量分子标记对有效育种值进行估计,理想地覆盖全基因组。
②GS 更精确,特别是对于早期选择。
中国水产科学 2011年7月, 18(4: 936−943 Journal of Fishery Sciences of China综述收稿日期: 2011−03−14; 修订日期: 2011−04−10.基金项目: 国家自然基金资助项目(30730071; 30972245; 农业科技成果转化资金项目(2010GB24910700. 作者简介: 于洋(1987−, 硕士研究生. E-mail:***************通信作者: 张晓军, 副研究员.E-mail:*************** DOI: 10.3724/SP.J.1118.2011.00935全基因组选择育种策略及在水产动物育种中的应用前景于洋1,2 , 张晓军1 , 李富花1 , 相建海11. 中国科学院海洋研究所实验海洋生物学重点实验室, 山东青岛266071;2. 中国科学院研究生院, 北京 100049摘要: 全基因组选择的概念自2001年由Meuwissen 等提出后便引起了动物育种工作者的广泛关注。
目前, 澳大利亚、新西兰、荷兰、美国的研究小组已经应用该方法进行了优质种牛的选择育种, 并取得了很好的效果。
此外在鸡和猪的选择育种中也有该方法的应用, 但在水产动物选育中尚未见该方法使用的报道。
本文对“全基因组选择育种”的概念和提出背景进行了归纳, 对全基因组选择育种的优势进行了阐述, 并详细介绍了其具体的策略, 总结了目前全基因组育种所广泛采用的方法以及取得的成果, 旨在为该方法在水产动物育种方面的应用研究提供科学参考。
关键词: 全基因组选择; 水产动物育种; SNP; QTL; 全基因组育种值估计中图分类号: S96 文献标志码: A 文章编号: 1005−8737−(201104−0935−08人类对于动物的选择育种由来已久, 最初所进行的只是简单的人工驯化。
随着遗传学研究的发展, 尤其是“数量遗传学理论”的提出, 动物育种技术进入快速发展时期。
植物全基因组选择技术的研究进展及其在玉米育种上的应用孙琦;李文兰;陈立涛;赵勐;李文才;于彦丽;孟昭东【摘要】全基因组选择技术通过全基因组中大量的单核苷酸多态性标记(SNP)和参照群体的表型数据建立 BLUP模型估计出每一标记的育种值,称为估计育种值(GEBV),然后仅利用同样的分子标记估计出后代个体育种值并进行选择。
该文就近年来国内外有关影响基因组选择效率的主要因素———参考群体的类型与大小、模型的建立方法、标记的类型及其数目、性状遗传力,以及对基因组选择效率的影响等方面的研究进展进行综述,并介绍了全基因组选择技术在玉米育种上应用概况以及对未来的展望。
%Marker-assisted selection (MAS)technology could realize direct genetic selection,but it must base on QTL mapping.Genomic selection (GS),as the newest MAS method,has much advantage com-pared to traditional MAS technology,especially QTL mapping not necessary.Inthis paper,the factors af-fecting prediction accuracy of GS were reviewed,including training population type,prediction model, marker number,population size,population structure,hereditary of traits and so on.The application of GS in maize breeding was also introduced as well as hybrids performance prediction.We then predicated the future research and application of GS in maize breeding.【期刊名称】《西北植物学报》【年(卷),期】2016(036)006【总页数】9页(P1269-1277)【关键词】全基因组选择;玉米;估计育种值【作者】孙琦;李文兰;陈立涛;赵勐;李文才;于彦丽;孟昭东【作者单位】山东省农业科学院玉米研究所,济南 250100;山东省农业科学院玉米研究所,济南 250100;莱阳市种子公司,山东莱阳 265200;山东省农业科学院玉米研究所,济南 250100;山东省农业科学院玉米研究所,济南 250100;山东省农业科学院玉米研究所,济南 250100;山东省农业科学院玉米研究所,济南250100【正文语种】中文【中图分类】Q789With rapid development of the molecular biology and genomics, marker-assisted selection(MAS) emerged as the times require. MAS technology is as a kind of crop genetic improvement method combing the phenotypic and genetic value, which can realize genetic direct selection and effective polymerization[1] . When complex traits controlled by multiple genes need to be improved, MAS has two aspects of flaws. First, selection of the progeny population is established on the quantity traits location (QTL) mapping. But the result of QTL mapping basing on the bi-parental populations has no universality and couldn’t be applied accurately in breeding[2]. Second, the important traits were controlled by lots of small effective genes,lack of appropriate statistic method and breeding technology which will apply quantity genes to complex traits improvement[3]. New MAS technology-genomic selection (GS) emerged asthe times require.Meuwissen first put forward genomic selection (GS) breeding strategy. GS uses a “training population” of individuals that have been genotyped and phenotyped. Best linear unbiased prediction (BLUP) model is established on the basis of the genotyped result of an individual and its breeding value (Mean performance of crosses with same tester) for the training population. The breeding value of “Candidate population” is estimated by BLUP model and genotypic data.without cross to tester and phenotypes record[4]. BLUP model takes genotypic data of untested individuals and produces genomic estimated breeding values (GEBVs). These GEBVs say nothing of the function of the underlying genes as the ideal selection criterion[5] . Genomic selection basis of GEBVs is superior to traditional breeding for increasing gains per unit time even if both models show the same efficiency. In principle, phenotypes value of the candidate individuals is non-essential for the selection, hence shortening the length of the breeding cycle[6].Genomic selection have several merits compared to the traditional MAS. (1) QTL mapping is not necessary for GS. Genomic selection differs from previous strategies such as linkage and association mapping in that it abandons the objective to map the effect of single gene and instead of focusing on the efficient estimation of breeding values on the basis of a large number of molecular markers, ideally covering the full genome[5] . (2) Genomic selection is more precision especially for early selection. Genotyping uses high density molecular markers which can estimate all ofthe QTL effects and explain the genetic variance for most of the traits. But MAS only uses several markers in traits selection. So genomic selection is more accurate than MAS[7] . (3) Genomic selection can shorten generation interval, accelerate genetic progress and reduce production cost. Genetic progress of GS is more than phenotypic selection 4%-25%. Cost of GS is less than traditional breeding 26%-56%[8] . (4) Selection efficiency of low heritability traits is higher for GS than MAS. (5) The criterion of GS is breeding value, sum of all of the allele genetic effects for each individual. It is judged by the mean performance of its cross progeny, not the performance of itself. So GS is more accurate[9].Genomic selection originated from animal breeding during last century. It has been widely used in dairy cattle breeding in America, Australia, New Zealand and so on[10-11] . It was also applied in broiler chickens and pigs breeding[12-13] . GS’ application in plant breeding was developed in recent years, which focused on simulation studies. It is used in maize[14] , wheat[15] , tree[16] , sugar beet[17] , Barley[18] , triticale[19] and so on. Empirical study is performed in larger companies such as Monsanto and Pioneer-Dupond. Mark Sorrells and Jean-Luc Jannink are trying to use GS to increase the speed of variety improvement 3-4 times. The work is carried out with CYMMIT and performed four aspects to improve the yield of maize and wheat[20].Under the above context, the objective of this study is to review the essential factors affecting the GS in plant breeding. Maize is essential for global food security. More research of genomic selection on maize lauchedin recent years[21-23]. The paper will introduce the advance on the application of GS in maize breeding. We than put forward the future research which should be carried out in maize breeding in China. Factors that affect GS prediction accuracy of include the number of markers used for estimating the GEBVs[10] , trait heritability[7] , calibration population size[5] , statistical models[24] , number and type of molecular markers[25-26] , linkage disequilibrium[27] , effective population size[28], relationship between calibration and test set (TS)[29-31] and population structure[32-34] .2.1 Training population of genomic selectionIn animal breeding, we only discussed GS in the context of population-wide linkage disequilibrium, where the population might be defined as an entire breed of cattle, pig, or chicken. The need for high marker densities in GS may be reduced if the candidate population consists of progeny of the training population. In that case, an evenly spaced low-density subset of the markers typed on the training population can be used on the candidates, and scores for the full complement of markers can be inferred by cosegregation[35] . Because plants often produce very large full sibships (an F2 population derived from a single F1 by selfing is an example of such a sibship), however, there is also a tradition of QTL detection, MAS and GS within such sibships[5] . Bernardo compared F2, BC1, and BC2 populations from an adapted×exotic maize cross as training population in the simulation experiment[14]. The result indicates that genomewide selection should start at F2 rather than backcross population,even when the number of favorable alleles is substantially larger in the adapted parent than in the exotic parent. Compared to natural populations, genetic basis of F2 populations is simpler because F2 populations derive from only two inbred lines. So the biparental population size might be smaller than that of natural populations. Simulation studies have previously indicated that for three cycles of genomewide selection in an adapt ed×exotic cross, a population size of NC0 = 144 was generally sufficient[21] . Low density markers are suitable to F2 populations[22] . But two disadvantages of F2 populations exist. Biparental population requires separate model for training within each cross.The BLUP model is only suit for the progenies selection from the two parental lines. The progeny of F2 population must be selected by the phenotypic value of F3 testcrosses. Following progeny selection may be only according to BLUP model afterF3.F2 as training population often be suilt for cross-pollinated plant such as maize. Yusheng Zhao based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program[23]. In the study of Vannesa etal.[36] , marker effects estimated in 255 diverse maize hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F2-derived lines from each of five populations.Wegenast et al. suggested that genomic selection was applied in plant breeding, however, not only within a specific bi-parental cross or within adiverse panel of elite lines but also rather within and among crosses[37]. Self-pollination plant often adopt natural population such as wheat or sugar. Würschum et al used 924 sugar beet lines as training population. The results suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection[17]. Hans et al. accessed the accuracy of GEBVs for rust resistance in 206 hexaploid wheat landraces[15].2.2 Prediction model of genomic selectionGenomic selection modeling takes advantage of the increasing abundance of molecular markers through modeling of many genetic loci with small effects[26,35,38] . Over the last decade, simulation and empirical cross-validation studies in plants have shown GS is more effective than traditional MAS strategies that use only a subset of markers with significant effects[5-7,39] .Estimation methods of allelic effects include least squares regression[40], ridge regression BLUP (RR-BLUP), principle component analysis[41-42] and Bayes regression[43]. In essence for least squares, chromosome fragments or markers are selected associated to the traits by genome-wide association studies (GWAS) at the same time and then the effect of the fragments is estimated[44]. RR-BLUP method regards the fragment effects as random effects. The marker effect was estimated by linear mixed models. The sum of fragments effect is breeding value for an individual[43]. Bayes methods combines the prior distribution of marker effect varianceand data collection. Frenquently used Bayes methods conclude Bayes A and Bayes B. Main difference between Bayes A and Bayes B is that Bayes A permits different variance for different markers and Bayes B permits that the variance of some markers is zero[45].Simulation studies show that the prediction accuracy of Bayes method is best and least squares is weakest. The accuracy rate of RR-BLUP is slightly smaller than Bayes A. Even so, RR-BLUP has four aspects superior to Bayesian method. First, Bayesian method is complex and need super computer. But computer requirement is lower and calculation speed is higher for RR-BLUP. Marker effects are estimated by RR-BLUP in SAS PROC IML[46]. Second, prediction within families was more accurate in BLUP than Bayes B. Regression coefficient b of RR-BLUP is nearer to 1 than BayesA[47]. Habier et al. showed that RR-BLUP is more effective at capturing genetic relationships because it fits more markers into the prediction Model[27]. In contrast, Bayes B is more effective at capturing LD between markers and QTL. Third, RR-BLUP is more accurate than other method when the number of QTLs increases or the heredity is higher[18] . Fourth, BLUP led to lower inbreeding and a smaller reduction of genetic variance compared to Bayes and PLS [48]. From above, we can conclud that BLUP methods is better than Bayesian regression for plant models.In addition, machine-learning methods also can be used to predict the marker effect, including support vector machine (SVM) , booting and random forest (RF). Ogutu et al. compared these methods for genomic selection. The result shows that the correlation between the predicted andtrue breeding values is 0.547 for boosting, 0.497 for SVMs,and 0.483 for RF, indicating better performance for boosting than for SVMs and RF[49].2.3 Other factors affecting prediction accuracyIn genome-wide selection methods, prediction accuracy is affected by population size (N), average hereditary of traits (h2) and markernumbers(NM)[50]. Simulation studies showed that the population structure is also crucial for the prediction accuracy in genomicselection[27].Prediction accuracy increases with markers density. Markers number on a certain length genome also directly affects total information of genetic markers. If SSR markers density increases from 0.25 Ne/morgan (Ne, effective population size) to 2 Ne/morgan, prediction accuracy will be improved from 0.63 to 0.83. If SNP markers density increases from 1Ne/morgan to 8 Ne/morgan, prediction accuracy will be improved from 0.69 to 0.86. Even at the highest tested densities of 2 Ne SSR markers per Morgan or 8 Ne SNP markers per Morgan, accuracy had not reached a plateau[5] . Meanwhile, more markers number, more easy to get the Linkage disequilibrium(LD) markers. Emily found that in the biparental populations, there was no consistent gain in genome-wide prediction (rmp) from increasing marker density above one marker per 12.5 cM[22]. Zhao et al. revealed that the accuracy was nearly reaching a plateau at 800 SNPs when the number of markers varied from 100 to 800 [23]. The reason is that genome is sufficiently saturated with markers when the prediction accuracy arrives at a plateau[28,50]. The number of markers needed foraccurate predictions of genotypic values depends on the extent of linkage disequilibrium (LD) between markers and QTL[4] and also on the germplasm under consideration[18] .Different marker type has different polymorphism information content (PIC). Comparing SSR and SNP markers, they found that for similar accuracies, the SNP markers required a density of 2 to 3 times that of the SSR[5].Simulation studies showed that the population size is crucial for the prediction accuracy in genomic selection[27]. The result of Emily et al. indicated that prediction accuracy rmp increased as population size N increased. In the biparental maize population and with the highest markers number NM, (1 213 markers) and hereditary h2 = 0.30, the prediction accuracy for grain yield was rmp = 0.19 with N= 48, rmp = 0.26 with N = 96, and rmp = 0.33 with N = 192[22]. Zhao Yusheng observed a monotonic increase in the prediction accuracy for grain yield with increasing population size without any substantial decrease in the slope [23] . The study of Bernardo also indicated that lager poluation size would get higher prediction precision[14]. But F2 population size of NC0 = 144 was generally sufficient[21].Training population structure is also an important factor affecting prediction accuracy of genomic selection for multi-parental populations. Training population structure set methods conclude random sampling, unidirectional sampling (selecting individuals with highest genotypic values), bidirectional sampling (selecting individuals with highest or lowestgenotypic values)[50-51]. This bidirectional selection showed to be much more powerful than random sampling[52] . Yusheng Zhao observed a substantial loss in the accuracy to predict genomic breeding values in unidirectional selected populations. Bidirectional selection is a valuable approach to efficiently implement genomic selection in applied plant breeding programs[53].For the same trait within the same population, prediction accuracy(rmp) will remain unchanged for different combinations of population size (N) and trait hereditary (h2). Decrease on h2 can be compensated by a proportional increase in N (and vice versa) so that rmp is maintained. On the other hand, traits with initially low h2 can be evaluated with larger N or the h2 for a subset of traits can be increased by the use of additional testing resources. Different traits, however, vary in their prediction accuracy even when N, h2, and NM (markers number) are constant. Yield traits had lower prediction accuracy than other traits despite the constant N, h2, and NM. Simulation results indicated that rmp is also lowest for yield traits even when its h2 is as high as other traits. Plant height and lodging are always predicted most accurately followed by floweringtime[22] . Empirical evidence and experience on the predictability of different traits are necessary in designing training populations.3.1 Origination of GS in maizeThe key technology of GS is the maize hybrid prediction by BLUP model with markers effects or coefficient of parentage. It was used to predict the single-cross performance in maize hybrid breeding at first. The BLUPmodel is established based on the tested hybrids data and the markers information of their parents. The performance of untested hybrids is predicted by the BLUP model and the markers data of the parents[54]. Bernardo devoted himself to hybrids prediction by BLUP model inmaize[55-58]. The coefficient of relative between theory and actual observation was 0.688~0.800 by RFLP markers[54] . BLUP is suitable for hybrid performance prediction since the trait only has moderate heritability. Prediction accuracy of molecular marker effects is higher than phylogenetic relationship[58]. With the development of molecular markers, new molecular marker type emerged. Simple sequence repeats (SSR) and single nucleotide polymorphism (SNP) were widely used. Manje Gowda et al. found that prediction accuracy of flower time and plant height was above 0.8 with SSR markers in maize[19]. Research of Massman et al. indicated that prediction accuracy of grain yield was 0.8, and root logging ratio was 0.87 using SSRmarkers[59]. But the prediction effect of grain yield was only 0.50~0.66, and root logging ratio was only 0.31~0.45 with coefficient of parentage[55] . Then it indicated that molecular markers was more suitable for hybrid performance prediction than coefficient of parentage.Then scientists found that BLUP was not only used to hybrid performance prediction, but also the breeding value of individuals among the maize population. So BLUP was used to individuals selection of F2 population in selection and breeding of inbred lines. Hybrid performance prediction lay the foundation for the genome-wide selection in maize.3.2 Application of genomic selection in maizeBernardo’s laboratory began to study applying GS to maize breeding in Minnesota University of America[21] . They did plenty of simulation and empirical experiments. Piepho in German and Robert in Brazil also tried to study using GS in maize breeding[60-61]. GS utility in maize breeding consist of two sides, hybrids performance prediction and improvement of inbred lines. He devoted to inbred lines improvement using GS. The BLUP model of biparental populations from two inbred lines is only suit for the progeny of the parents. Genomewide selection as proposed in maize involves two steps[21]. First, a segregating maize population is genotyped and evaluated for testcross performance of F3 family. Based on the genotypic and phenotypic data, breeding values associated with a large set of markers (e.g., 256 to 512 markers) are calculated for the traits of interest. Significance tests for markers are not used, and the effects of all markers are fitted as random effects in a linear model by best linear unbiased prediction (BLUP). Second, two or three generations of selection based on all markers are conducted in a year-round nursery (e.g., Hawaii or Puerto Rico) or greenhouse. Trait values are predicted as the sum of an individual plant’s marker values across all markers, and selection is subsequently based on these genomewide prediction. According to the steps, Emily (2013b) introgressed semidwarf germplasm to U.S. Corn belt inbred and found that genomewide selection from Cycle 1 until Cycle 5 either maintained or improved on the gains from phenotypic selection achieved in Cycle 1[62].The results of Bernardo indicated that a useful strategy for the rapid improvement of an adapted×exotic cross involves 7 to 8 cycles of genomewide selection starting in the F2[14]. Benjamin et al. demonstrated that progressive selfing had a significant and positive impact on genomic selection gains. In particular, selfing to the F8 produced a 72% increase over F2 gains[63]. However, most of the gains are realized by the F5 generation (95% of the F8 gains). Also note that the F8 and DH performed similarly, consistent with previous observations[64] .In the research of Bernardo, the training population is the specific bi-parental populations from the two parental lines, so the BLUP model is suit for the progeny of the two inbred lines. Other experiments of GS in maize are about multi-parental populations as training population. Study of Yusheng Zhao was based on experimental data of six segregating populations from a half-diallel mating design. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs[23]. These result of the study might be as genomic prediction model for further breeding elite maize lines between the six populations. In the study of Vanessa et al., marker effects estimated in 255 diverse maize hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F2-derived lines from each of five populations[36]. Potential uses for genomic prediction in maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario in which genomicprediction should be applied (i.e., prediction among or within populations), (2) a detailed analysis of the population structure before performing cross validation, and (3) larger training sets with strong genetic relationship to the validation set.GS is just beginning to be implemented, but it will take long time to be used in maize breeding. In previous study, training population was only from several inbred lines, even if two inbred lines. It couldn’t be implemented by other breeding program. Future research should focus on two sides of work. First, we should commit to build a generalized prediction model for some kinds of inbred lines such as yield, quality and so on. But these traits were complex composed of a great deal of genes. Traditional MAS technology couldn’t realize the traits selection in maize breeding. 973 Plan “Basic study on breeding of geno me-wide selection of yield and quality traits in maize” has been carried out in 2014. The plan will systematicly analyze the genetic basis of maize yield and quality, and then build genome-wide selection breeding model. It will afford new technology for maize breeding. Seond,in China, abiotic stress tolerance also reduces the yield seriously in maize especially drought tolerance. Drought is the foremost factor restricting maize production, often resulting in 20-50% maize yield reduction every year in China[65] . If we establish prediction model of drought tolerance, it will afford the theory and technology support of maize breeding. Consequently, our research team will carried out study on the genomic selection program of drought tolerance.References:[1] STUBER C W, POLACCO M, SENIOR M L. Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential[J]. Crop Science, 1999,39:1 571-1 583.[2] MOOSE S P, MUMM R H. Molecular plant breeding as the foundation for 21st century crop improvement[J]. Plant Physiology, 2008, 147: 969-977.[3] BERNARDO R. Molecular markers and selection for complex traits in plants: learning from the last 20 years[J].Crop Science, 2008, 48:1 649-1 664.[4] MEUWISSENT H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157: 1 819-1 829.[5] JANNINK J L, LORENZ A J, IWATA H. Genomic selection in plant breeding: from theory to practice[J]. Briefings in Functional Genomics, 2010, 9(2):166-177.[6] HEFFNER E L, JANNINK J L, IWATA H, et al. Genomic selection accuracy for grain quality traits in biparental wheat populations[J]. Crop Science, 2011, 51: 2 597-2 606.[7] HEFFNER E L, SORRELLS M E, JANNINK J L. Genomic selection for crop improvement[J]. Crop Science, 2009, 49: 1-12.[8] MAYOR P J , BERNARDO R. Genomewide selection and marker-assisted recurrent selection in doubled haploid versus F2 populations[J]. Crop Science, 2009, 49:1 719-1 725.[9] MASSMAN J M, JUNG H J G, BERNARDO R. Genomewide selectionversus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize[J]. Crop Science, 2012, 53(1): 58-66.[10] SCHAEFFER L R. Strategy for applying genome-wide selection in dairy cattle[J]. Journal of Animal Breeding Genetic, 2006, 123: 218-223.[11] GODDARD M E, HAYES B J. Genomic selection[J]. Journal of animal Breeding Genetics, 2007, 124: 323-330.[12] DAETWYLER H D, VILLANUEVA B, BIJMA P. Inbreeding in genome-wide selection[J]. Journal of Animal Breeding Genetic, 2007, 124: 369-376.[13] TU L, WOOLLIAMS J A, SIGBJORN L. The accuracy of genomic selection in norwegian red cattle assessed by cross validation[J]. Genetics, 2009, 183: 1 119-1 126.[14] BERNARDO R. Genomewide selection for rapid introgression of exotic germplasm in maize[J]. Crop Science, 2009, 49: 419-425.[15] HANS D D, BANSAL U K, BARIANA H S, et al. Genomic prediction for rust resistance in diverse wheat landraces[J]. Theory and Applied Genetics, 2014, 127: 1 795-1 803.[16] MARIE D, BOUVET J M. Genomic selection in tree breeding: testing accuracy of prediction models including dominance effect[J]. BMC Proceedings, 2011, 5(Supply7): 1-2.[17] WÜRSCHUM T, REIF J C , KRAFT T, et al. Genomic selection in sugar beet breeding populations[J]. BMC Genetics, 2013, 14: 85-92.[18] ZHONG S Q, DEKKERS J C M, FERNANDO R L, et al. Factors affecting accuracy from genomic selection in populations derived from multipleinbred lines: a barley case study[J]. Genetics, 2009, 182(1): 355-364. [19] GOWDA M, ZHAO Y S , MAURER H P, et al. Best linear unbiased prediction of triticale hybrid performance[J]. Euphytica, 2013, 191: 223-230.[20] 吴永升, 邵俊明, 周瑞阳, 等. 植物数量性状全基因组选择研究进展[J]. 西南农业学报, 2012,25(4): 1 510-1 514.WU Y S, SHAO J M, ZHOU R Y, et al. Reviews of genome- wide selection for quantitative traits in plants[J]. Southwest China Journal of Agricultural Sciences, 2012, 25(4): 1 510-1 514.[21] BERNARDO R, YU J. Prospects for genome-wide selection for quantita-tive traits in maize[J]. Crop Science,2007, 47: 1 082-1 090.[22] EMILY C, BERNARDO R. Accuracy of genomewide selection for different traits with constant population size, heritability, and number of markers[J]. Plant Genome, 2013a, 6(1): 1-7.[23] ZHAO Y S, GOWDA M, LIU W X, et al. Accuracy of genomic selection in European maize elite breeding populations[J].Theoretical and Appllied Genetics, 2012a, 124: 769-776.[24] HESLOT N, YANG H P, SORRELLS M E, et al. Genomic selection in plant breeding: a comparison of models[J]. Crop Science, 2012, 52: 146-160.[25] CHEN X, SULLIVAN P F. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput[J]. Pharmaco Genetics, 2003, 3: 77-96.[26] POLAND J, RIFE T W. Genotyping-by-sequencing for plant breeding and genetics[J]. Plant Genetics, 2012, 5: 92-102.[27] HABIER D, FERNANDO R L, DEKKERS J C M. The impact of genetic relationship information on genome-assisted breeding values[J]. Genetics, 2007, 177: 2 389-2 397.[28] DAETWYLER H D, VILLANUEVA B, WOOLLIAMS J A. Accuracy of predicting the genetic risk of disease using a genome-wide approach[J]. PLoS One, 2008, 3: 3 395.[29] ALBRECHT T, WIMMER V, AUINGER H J, et al.Genome-based prediction of testcross values in maize[J]. Theoretical and Appllied Genetics, 2011, 123: 339-350[30] CLARK S, HICKEY J, WERF J. Different models of genetic variation and their effect on genomic evaluation[J]. Genetic Selection Evolution, 2011, 43: 18.[31] PSZCZOLA M, STRABEL T, MULDER H A, et al.Reliability of direct genomic values for animals with different relationships within and to the reference population[J]. Journal of Dairy Science, 2012, 95z: 389-400. [32] SAATCHI M, MCCLURE M C, MCKAY S D, et al. Accuracies of genomic breeding values in American Angus beef cattle using k-means clustering for cross-validation[J]. Genetic Selection Evolution, 2011, 43: 40.[33] WINDHAUSEN V S, ATLIN G N, CROSSA J, et al. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments[J]. Genes Genomes Genetic, 2012, 2:1 427-1 436.[34] GUO Z, TUCKER D M, BASTEN C J, et al. The impact of population structure on genomic prediction in stratified populations[J]. Theoretical。
首页 科技服务 测序指南 基因课堂 市场活动与进展 文章成果 关于我们全基因组选择1. Meuwissen T H, Hayes B J, Goddard M E.Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4): 1819 1829. 阅读原文>>2. Haberland A M, Pimentel E C G, Ytournel F, et al. Interplay between heritability, genetic correlation and economic weighting in a selection index with and without genomic information[J]. Journal of Animal Breeding and Genetics, 2013, 130(6): 456-467. 阅读原文>>3. Wu X, Lund M S, Sun D, et al. Impact of relationships between test and training animals and among training animals on reliability of genomic prediction[J]. Journal of Animal Breeding and Genetics, 2015, 132(5): 366-375. 阅读原文>>4. Goddard M E ,Hayes BJ. Genomic selection [J]. Journal of Animal Breeding and Genetics,2007,124:323:330. 阅读原文>>5. Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement [J]. Crop Science, 2009, 49(1): 1-12. 阅读原文>>参考文献全基因组选择简介Meuwissen等[1]在2001年首次提出了基因组选择理论(Genomic selection , GS),即利用具有表型和基因型的个体来预测只具有基因型不具有表型值动植物的基因组育种值(GEBV)。
全基因组选择技术在猪育种中的应用进展江慧青 1,2 ,李千军 1 *,崔茂盛 1,马 墉 1,张丰霞 1,李文军 3(1.天津市农业科学院畜牧兽医研究所,天津 300381;2.天津农学院动物科学与动物医学学院,天津 300384;3.天津市农垦康嘉生态养殖公司,天津 300380)家畜育种是人类应用遗传学理论,主要是在遗传水平上改良动物群体重要经济性状,从而提高效益的方法和技术。
家畜在经过长期的优胜劣汰自然选择后,人工选择也加快了育种进程。
时代和科学技术的发展,动物育种经历了4个阶段,从主要依靠古朴经验学的人工驯化1.0阶段,到依赖于试验设计和数据统计的杂交育种2.0阶段,再到分子育种时代,而分子育种时代又分为转基因育种3.0阶段和智能设计育种4.0阶段。
随着分子育种时代的到来,育种家们将分子标记和全基因预测应用到了选育工作中,全基因组选择等智能设计育种技术在时代发展的需求下应运而生。
育种的关键是选择,选择的关键是提高选种的准确性,即若想选择具有优良遗传性状的个体,其主要核心在于选择的准确性。
市场需求是家畜育种发展的动力,全基因组选择是对传统遗传评估技术的一次重大革新,该技术是利用覆盖全基因组的高密度遗传标记计算个资助项目:天津市2019年种业科技重大专项“基于猪全基因组选择平台的高繁殖力种猪选育技术研究与应用”(19ZXZYSN00100);天津市农业科学院财政种业创新研究项目(2022ZYCX009)作者简介:江慧青(1995—),女,汉族,湖南耒阳人,硕士研究生,主要从事猪育种技术研究与应用, E-mail :******************通信作者:李千军(1964—),男,汉族,陕西人,研究员,主要从事猪育种方向研究, E-mail :**************体的基因组估计育种值(Genomic estimated breeding value ,GEBV )。
全基因组选择技术在动物育种中最早应用于奶牛,且已在奶牛行业取得显著成效,但在猪育种方面研究得还不够深入。
作物全基因组选择育种技术研究进展
王欣;徐一亿;徐扬;徐辰武
【期刊名称】《生物技术通报》
【年(卷),期】2024(40)3
【摘要】全基因组选择(GS)育种是根据训练群体全基因组上的分子标记基因型和表型之间的关联构建遗传模型,进而对基因型已知的待选群体进行育种值估计或表型预测,以实现对育种群体高效和精确的选择。
相比于常用的分子标记辅助选择育种,GS育种无需进行标记显著性测验,特别适用于微效多基因控制的数量性状,可以缩短育种周期,降低育种成本,现已成为动、植物育种领域的一项前沿技术。
然而,对受环境影响较大的作物产量等数量性状而言,仍面临着基因组预测准确性难以提升的瓶颈问题。
本文首先分析了影响作物GS功效的主要因素,继而从非加性效应模型、群体构建方案、多性状与多环境预测、多组学预测和育种芯片技术现状等方面阐述了GS技术在作物育种中的研究进展,并指出研究所面临的问题和发展前景,为推动作物GS育种技术的进一步深入研究提供策略和思路。
【总页数】13页(P1-13)
【作者】王欣;徐一亿;徐扬;徐辰武
【作者单位】扬州大学农学院;扬州大学信息工程学院
【正文语种】中文
【中图分类】S51
【相关文献】
1.植物全基因组选择技术的研究进展及其在玉米育种上的应用
2.全基因组选择及其在玉米育种中的研究进展
3.全基因组选择技术在作物育种中的研究进展
4.玉米全基因组选择育种研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
·2011·20·科技Research on X-sex Control of Frozen Semen for Jersey and Holstein-FriesianWEI Huan 1,LI Ming 2,LI Xiu-liang 2,LIU Rui-xin 2,LUO Meng-huo 2(1.Technical Extension Station of Animal Production in Hechi City,Hechi,quangxi547000;2.Guangxi Institute of Animal Science,Nanning,Guangxi 530001)Abstract :A trial of artificial insemination(AI)has been carried out with frozen semen of X-sex control for the cows of Jersey andHolstein -Friesian,as well as the donators of embryo transfer to evaluate the effect on this AI research work.Results from the synchronous estrus,superoulation,AI and embryo collection in this trial showed that the conception rate and the amount and rate of available embryo from the donators were affected by the frozen semen of X-sex control;higher conception rate was found in heifers other than delivered cows and Holstein -Friesian other than Jersey cows in different breeds.However,the results of amount of available embryo and rate of available embryo from the younger donators were much better than the delivered ones in the same breed,and the better result also occurred in Holstein-Friesian when the comparison was done in the same age of different breed cows.Key words :Jersey ;Holstein-Friesian ;Frozen semen of X-sex control ;Evaluation of results在生产上采用CIDR+PG+LHRH-A 3的方法更经济实惠。
全基因组选择流程
全基因组选择的流程如下:
1. 建立参考群体。
参考群体应该选择具有可靠育种值的验证公牛或母牛,并使用SNP芯片测定每个个体的SNP基因型。
2. 利用估计SNP效应的统计分析系统获得一套SNP效应估计值。
3. 建立估计gEBV的统计分析系统,预测候选个体的gEBV用于选种。
4. 在选择群体中进行基因组选择的基本过程:
测定候选个体的SNP基因型。
计算个体gEBV。
依据gEBV结合其它信息进行遗传评定和排序。
全基因组选择的优势包括能够捕获所有的遗传变异、不依赖表型信息、选择准确性更高、可以早期选择、可准确评定一些难于测定或新定义的性状、降低育种成本和大幅度提高育种进展等。
以上信息仅供参考,如需了解更多信息,建议查阅相关文献或咨询专业人士。
育种值估计的方法一、引言育种是指通过选择和培育优良品种,提高农作物的产量和质量。
在育种过程中,评估育种价值是非常重要的。
育种值估计是指通过对不同品种进行综合评估,确定其在产量、抗病性、适应性等方面的表现,并据此预测其未来的表现。
本文将介绍几种常用的育种值估计方法。
二、单因素分析法单因素分析法是最简单、最基础的育种值估计方法之一。
该方法基于一个假设:只有一个因素影响品种表现,其他因素都保持不变。
例如,在评估小麦品种时,我们可以仅考虑它们在干旱条件下的产量表现。
该方法具体步骤如下:1. 确定要评估的性状;2. 选取多个品种,在相同条件下进行试验;3. 对每个品种在该性状上的表现进行统计分析;4. 根据统计结果,选取表现最好的品种。
三、多因素分析法多因素分析法是一种更加复杂的育种值估计方法。
该方法考虑了多个因素对品种表现的影响,并尝试确定每个因素的权重。
例如,在评估玉米品种时,我们可以考虑其在不同气候条件下的产量表现、抗虫性等多个因素。
该方法具体步骤如下:1. 确定要评估的性状;2. 选取多个品种,在不同条件下进行试验;3. 对每个品种在每个性状上的表现进行统计分析;4. 根据统计结果,确定各个性状对品种表现的影响程度,并给出相应权重;5. 综合各个性状的得分,选取表现最好的品种。
四、遗传进化模型法遗传进化模型法是一种基于遗传学理论的育种值估计方法。
该方法尝试确定不同基因型之间在适应性和生存力方面的差异,并据此预测未来表现。
例如,在评估大豆品种时,我们可以考虑它们在不同环境下的基因型分布情况。
该方法具体步骤如下:1. 确定要评估的性状;2. 选取多个基因型,在不同条件下进行试验;3. 对每个基因型在每个性状上的表现进行统计分析;4. 根据统计结果,确定各个基因型在适应性和生存力方面的得分;5. 综合各个得分,选取表现最好的基因型。
五、综合评估法综合评估法是一种将多个育种值估计方法结合起来的方法。
该方法尝试充分考虑各种因素对品种表现的影响,并给出相应权重。
全基因组选择育种值估计是一种利用覆盖全基因组的高密度分子标记进行选择育种的方法。
其原理是通过构建预测模型,根据基因组估计育种值(Genomic Estimated Breeding Value,GEBV)进行早期个体的预测和选择,从而缩短世代间隔,加快育种进程,节约大量成本。
统计模型是全基因组选择的核心,影响着全基因组预测的准确度和效率。
传统预测方法基于线性回归模型,但难以捕捉基因型和表型间的复杂关系。
相较于传统模型,非线性模型(如深度网络神经)具备分析复杂非加性效应的能力,人工智能和深度学习算法为解决大数据分析和高性能并行运算等难题提供了新的契机,深度学习算法的优化将会提高全基因组选择的预测能力。
全基因组选择已应用于奶牛、生猪的品系选育中,但在家禽育种方面的研究和应用相对较少。
随着分子标记检测技术不断发展,分子育种进入了全基因组选择时代,这将推动现代育种向精准化和高效化方向发展。