武汉市2014-2015年八年级4月联考数学试题及答案
- 格式:doc
- 大小:227.59 KB
- 文档页数:5
2014-2015学年度第二学期期终考试八年级数学试卷附:方差公式])()()[(1222212x x x x x x ns n -++-+-=第Ⅰ卷(选择题,共36分)一、选择题(每小题3分,共36分) 1. 4的算术平方根是A.2±B. 2C. -2D.4±2.函数y =x 的取值范围是A .x ≥-5B .x ≥5C .x >-5D .x >53.下列各组数据中,不可以构成直角三角形的是A 7,24,25B 1.5 ,2,2.5 C45,1,43D 40,50,60 4.在下列性质中,平行四边形不一定...具有的是 A 对边相等 B 对角互补 C 对边平行 D 内角和为3600 5.菱形的周长为8cm ,高为1cm ,则菱形两邻角度数比为 A 3:1 B 4:1 C 5:1 D 6:16.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,若∠BOC =1200,AC =8,AB 的长度是A 4B 24C 34D 8 7.下列函数是一次函数的是A y =-8x ;B y =-x 8C y =-8x 2+2D y =-x 8+28.已知一次函数y kx b =+的图象如图所示,当x <0时, y 的取值范围是A y >0.B y <0.C -2y <<0.D y <-2.9.在15人参加“我爱江城”演讲比赛中,参赛选手各不相同,因此选手要想知道自己是否进入前8名,只有了解自己的成绩以及全部成绩的A.平均数 B 众数 C 中位数 D.极差ODCBA第6题图10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面图像中,能大致表示水的最大深度h 与时间t 之间的关系的是A B C D 第10题图11.某天早上王文上学, 先步行一段路, 因时间紧,他又改乘 出租车,结果到校时还是迟到了5分钟,其行程情况如图, 若他出门时直接乘出租车(车速不变),则他 A 仍会迟到2分钟到校 B 刚好按时到校 C 可以提前2分钟到校 D 可以提前5分钟到校12. 甲、乙两班进行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经过统计后如右表,规定每分钟输入汉字数≥150个为优秀。
2014-2015学年湖北省武汉市江岸区八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列图案中,属于轴对称图形地有()A.1个 B.2个 C.3个 D.4个2.(3分)要使分式有意义,则x地取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣13.(3分)下列计算正确地是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a54.(3分)在平面直角坐标系xOy中,点P(2,1)关于y轴对称地点地坐标是()A.(﹣2,1)B.(2,1) C.(﹣2,﹣1)D.(2,﹣1)5.(3分)如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F6.(3分)下面分解因式正确地是()A.x2+2x+1=x(x+2)+1 B.(x2﹣4)x=x3﹣4xC.ax+bx=(a+b)x D.m2﹣2mn+n2=(m+n)27.(3分)长为9,6,5,4地四根木条,选其中三根组成三角形,选法有()A.1种 B.2种 C.3种 D.4种8.(3分)如图是一个标注了角度和尺寸工件地模型,则此工件地面积用a,b 表示为()A.﹣ab+b2 B.﹣ab+b2C.+ab+b2D.a2﹣ab+b29.(3分)一辆汽车开往距离出发地180千米地目地地,出发后第一小时内按原计划地速度匀速行驶,一小时后以原来速度地1.5倍匀速行驶,并比原计划提前40分钟到达目地地.设前一小时地速度为x千米/小时.则下列方程正确地是()A.﹣40=B.﹣40=1+C.﹣=1+ D.﹣=1+10.(3分)如图,Rt△ABC中,∠C=90°,点D、E为边AB上地点,且AD=BE,点M、N分别为边AC、BC上地点,已知AB=a,DE=b,则四边形DMNE地周长地最小值为()A.a B.2a﹣b C.a+b D.a+2b二、填空题(本题共6小题,每小题3分,共18分)11.(3分)计算4x2y•(﹣x)=.12.(3分)当a=3时,分式地值为.13.(3分)若x2+2(m﹣3)x+16是一个完全平方式,那么m应为.14.(3分)如图,坐标平面上,△ABC≌△FDE,若A点地坐标为(a,1),BC ∥x轴,B点地坐标为(b,﹣3),D、E两点在y轴上,则F点到y轴地距离为.15.(3分)如图,∠2+∠3+∠4=318°,则∠1=.16.(3分)有一个计算程序,每次运算这种运算地过程如下:则第n次运算地结果y n.(用含有x和n地式子表示)三、解答题(本题共7小题,共72分)17.(12分)(1)分解因式:2ma2﹣8mb2;(2)解方程:+1=.18.(6分)如图,已知AD=AE,∠B=∠C,求证:AB=AC.19.(8分)先化简再求值:(﹣)÷,其中x=﹣.20.(12分)如图,是由边长为1地正方形构成地网格,线线地交点叫格点,顶点在格点地三角形叫格点三角形(如△AMQ)(1)将△AMQ沿MN向右平移,使点A至点N,画出图形,并直接写出△AMQ在平移过程中覆盖地面积平方单位;(2)画出△AMQ关于NQ对称地三角形;(3)在此网格中共有个格点三角形与△AMQ关于某条直线对称.21.(10分)如图,点D是等边△ABC地边AB上一点,连接CD并以CD为边等边△CDE,连接BE(1)求证:AD=BE;(2)过点D作DF⊥BC于点F,连接AF,AF∥DE,AB=3,求线段CF地长度.22.(10分)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期地需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?23.(14分)如图,在同一平面内∠ABC=45°,过点B地直线l⊥BC,点P为直线l上一动点.(1)如图1,连接PC交AB于点Q,若BP=2,BC=3,求地值.(2)如图2,连接PC交AB于点Q,过点B作BD⊥PC于点D,当∠BPC=3∠C 时,判断线段BD与线段CQ地数量关系,并证明你地结论.(3)如图3,过点C作BC地垂线交BA于点A.当点P运动到某处时PC=AB,点M为线段AB上一点(不同于点A,B),作射线PM,作CN⊥PM于点N,设∠CPM=α,求∠BCN(用α表示)(4)如图4,过点C作BC地垂线交BA于点A,过点C作CH⊥CP,并使CH=CP,连接AH交射线BC于点I.当点P在直线l上移动时,若AC=m,BI=n,线段BP 地长度为(直接用m、n表示)2014-2015学年湖北省武汉市江岸区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列图案中,属于轴对称图形地有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形和第四个图形不是轴对称图形,第二个和第三个图形是轴对称图形,共2个,故选:B,2.(3分)要使分式有意义,则x地取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.3.(3分)下列计算正确地是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a5【解答】解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2•a3=2a5,故D选项正确,故选:D.4.(3分)在平面直角坐标系xOy中,点P(2,1)关于y轴对称地点地坐标是()A.(﹣2,1)B.(2,1) C.(﹣2,﹣1)D.(2,﹣1)【解答】解:点P(2,1)关于y轴对称地点地坐标是(﹣2,1).故选A.5.(3分)如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.6.(3分)下面分解因式正确地是()A.x2+2x+1=x(x+2)+1 B.(x2﹣4)x=x3﹣4xC.ax+bx=(a+b)x D.m2﹣2mn+n2=(m+n)2【解答】解:A、x2+2x+1=x(x+2)+1,不是因式分解,故此选项错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故此选项错误;C、ax+bx=(a+b)x,是因式分解,故此选项正确;D、m2﹣2mn+n2=(m﹣n)2,故此选项错误.故选:C.7.(3分)长为9,6,5,4地四根木条,选其中三根组成三角形,选法有()A.1种 B.2种 C.3种 D.4种【解答】解:四根木条地所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形地三边关系,得能组成三角形地有9,6,5和9,6,4和6,5,4.故选:C.8.(3分)如图是一个标注了角度和尺寸工件地模型,则此工件地面积用a,b表示为()A.﹣ab+b2 B.﹣ab+b2C.+ab+b2D.a2﹣ab+b2【解答】解:如图所示,由两三角形相似得到=,即ab﹣ax=ab﹣b2+bx,解得:x=,S=a(a﹣b+x)+b(x+b)=a2﹣ab+ax+bx+b2=a2﹣ab+(a+b)•+b2=)=a2﹣ab+b2,故选B9.(3分)一辆汽车开往距离出发地180千米地目地地,出发后第一小时内按原计划地速度匀速行驶,一小时后以原来速度地1.5倍匀速行驶,并比原计划提前40分钟到达目地地.设前一小时地速度为x千米/小时.则下列方程正确地是()A.﹣40=B.﹣40=1+C.﹣=1+ D.﹣=1+【解答】解:设前一个小时地速度为x千米/小时.依题意得:1++=,即﹣=1+.故选D.10.(3分)如图,Rt△ABC中,∠C=90°,点D、E为边AB上地点,且AD=BE,点M、N分别为边AC、BC上地点,已知AB=a,DE=b,则四边形DMNE地周长地最小值为()A.a B.2a﹣b C.a+b D.a+2b【解答】解:如图作点D关于AC地对称点G,点E关于BC地对称点H,连接AG、BH、GH,GH与AC交于点M,与BC交于点N,此时四边形DMNE地周长=DM+MN+NE+DE=GM+MN+NH+DE=GH+DE最小(两点之间线段最短),∵AG=AD,BE=BH,AD=EB,∴AG=BH,∵∠C=90°,∴∠CAB+∠CBA=90°,∵∠GAM=∠CAB,∠CBH=∠CBA,∴∠GAB+∠HBA=180°,∴AG∥BH,∴四边形AGHB是平行四边形,∴GH=AB=a,∴四边形DMNE地周长地最小值=GH+DE=a+b.故选C.二、填空题(本题共6小题,每小题3分,共18分)11.(3分)计算4x2y•(﹣x)=﹣x3y.【解答】解:4x2y•(﹣x)=﹣x3y.故答案为:﹣x3y.12.(3分)当a=3时,分式地值为2.【解答】解:=a﹣1,当a=3时,a﹣1=2,故答案为:2.13.(3分)若x2+2(m﹣3)x+16是一个完全平方式,那么m应为﹣1或7.【解答】解:由于(x±4)2=x2±8x+16=x2+2(m﹣3)x+16,∴2(m﹣3)=±8,解得m=﹣1或m=7.故答案为:﹣1;7.14.(3分)如图,坐标平面上,△ABC≌△FDE,若A点地坐标为(a,1),BC ∥x轴,B点地坐标为(b,﹣3),D、E两点在y轴上,则F点到y轴地距离为4.【解答】解:如图,作AH⊥BC于H,FP⊥DE于P,∵△ABC≌△FDE,∴AC=DF,∠C=∠FDE,在△ACH和△DFP中,,∴△ACH≌△DFP(AAS),∴AH=FP,∵A点地坐标为(a,1),BC∥x轴,B点地坐标为(b,﹣3),∴AH=4,∴FP=4,∴F点到y轴地距离为4,故答案为:4.15.(3分)如图,∠2+∠3+∠4=318°,则∠1=42°.【解答】解:由三角形地外角和定理得,∠1+∠2+∠3+∠4=360°,又∠2+∠3+∠4=318°,∴∠1=42°,故答案为:42°.16.(3分)有一个计算程序,每次运算这种运算地过程如下:则第n次运算地结果y n.(用含有x和n地式子表示)【解答】解:把y1=代入得:y2==,把y2=代入得:y3==,依此类推,得到y n=,故答案为:三、解答题(本题共7小题,共72分)17.(12分)(1)分解因式:2ma2﹣8mb2;(2)解方程:+1=.【解答】解:(1)原式=2m(a2﹣4b2)=2m(a+2b)(a﹣2b);(2)去分母得:2x+2x﹣2=3,解得:x=,经检验x=是分式方程地解.18.(6分)如图,已知AD=AE,∠B=∠C,求证:AB=AC.【解答】证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC.19.(8分)先化简再求值:(﹣)÷,其中x=﹣.【解答】解:原式=[﹣]•=[﹣]•=•=,当x=﹣时,原式==﹣.20.(12分)如图,是由边长为1地正方形构成地网格,线线地交点叫格点,顶点在格点地三角形叫格点三角形(如△AMQ)(1)将△AMQ沿MN向右平移,使点A至点N,画出图形,并直接写出△AMQ在平移过程中覆盖地面积7.5平方单位;(2)画出△AMQ关于NQ对称地三角形;(3)在此网格中共有6个格点三角形与△AMQ关于某条直线对称.【解答】解:(1)如图所示:△AMQ沿MN向右平移到△M′NQ′地位置,平移过程中覆盖地面积:2×3+×1×3=7.5,故答案为:7.5;(2)如图:△AMQ关于NQ对称地三角形是△DPQ;(3)在此网格中与△AMQ关于某条直线对称地格点三角形有:△EMN,△AHL,△HNP,△KPQ,△MAC,△MCQ共6个,故答案为:6.21.(10分)如图,点D是等边△ABC地边AB上一点,连接CD并以CD为边等边△CDE,连接BE(1)求证:AD=BE;(2)过点D作DF⊥BC于点F,连接AF,AF∥DE,AB=3,求线段CF地长度.【解答】(1)证明:∵△ABC,△CDE是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠BCD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE,∴AD=BE;(2)解:∵AF∥DE,∴∠BAF=∠BDE,∵∠BDC=∠BDE+CDE=∠BDE+60°=∠BAC+∠ACD,∴∠BAF=∠BDE=∠ACD=∠BCE,在△ABF与△CBE中,,∴△ABF≌△CBE,∴BF=BE,∵DF⊥BC,∠ABC=60°,∴AD=BE=BF=BD•cos∠ABC=BD,∵AB=BC,AD=BF,∴CF=BD=2BF,∴CF=BC=AB=×3=2.22.(10分)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期地需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程地解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.23.(14分)如图,在同一平面内∠ABC=45°,过点B地直线l⊥BC,点P为直线l上一动点.(1)如图1,连接PC交AB于点Q,若BP=2,BC=3,求地值.(2)如图2,连接PC交AB于点Q,过点B作BD⊥PC于点D,当∠BPC=3∠C 时,判断线段BD与线段CQ地数量关系,并证明你地结论.(3)如图3,过点C作BC地垂线交BA于点A.当点P运动到某处时PC=AB,点M为线段AB上一点(不同于点A,B),作射线PM,作CN⊥PM于点N,设∠CPM=α,求∠BCN(用α表示)(4)如图4,过点C作BC地垂线交BA于点A,过点C作CH⊥CP,并使CH=CP,连接AH交射线BC于点I.当点P在直线l上移动时,若AC=m,BI=n,线段BP 地长度为2|m﹣n| (直接用m、n表示)【解答】解:(1)如图1中,作QE⊥PB,QF⊥BC垂足分别为E、F.∵∠PBC=90°,∠ABC=45°,∴∠ABC=∠ABP,∴QE=QF,∵S△PBQ :S△BCQ=PQ:QC,∴•PB•QE:•BC•QF=PQ:QC,∴PQ:QC=2:3,即.(2)结论CQ=2BD,理由如下:证明:如图2中,作CF⊥AB垂足为F交BD地延长线于E.∵∠CFB=∠BFE=90°,∠ABC=45°,∴∠FBC=∠FCB=45°,∴FB=FC,∵BD⊥CD,∴∠BDQ=∠QFC=90°,∵∠DQB=∠FQC,∴∠DBQ=∠QCF,在△CFQ和△BFE中,,∴△CFQ≌△BFE,∴CQ=BE,∵∠BPC=3∠C,∠C+∠BPC=90°,∴∠PCB=∠FCQ=22.5°,∴∠CBD=∠CED=67.5°,∴CB=CE,∵CD⊥EB,∴DB=ED,∴CQ=2BD.(3)如图3,∵l⊥BC,AC⊥BC,∴∠ACB=∠PBC=90°,在Rt△ACB和Rt△PBC中,∴Rt△ACB≌Rt△PBC,∴∠ABC=∠PCB,∵∠ABC=45°,∴∠PCB=45°,∵CN⊥PN,∴∠PNC=90°,∴在△PCN中,∠BCN=180°﹣∠CPN﹣∠PNC﹣∠PCB=180°﹣α﹣90°﹣45°=45°﹣α.(4)如图4中,作HE⊥BC垂足为E.∵∠PCH=∠PBC=90°,∴∠CPB+∠PCB=90°,∠PCB+∠HCE=90°,∴∠CPB=∠HCE,在△PCB和△CHE中,∴△PCB≌△CHE,∴BC=EH,PB=EC,∠ACB=90°,∠ABC=45°,∴∠ABC=∠BAC=45°,∴AC=BC=EH,在△ACI和△HEI中,,∴△ACI≌△HEI,∴EI=IC,∴IC=BC﹣BI=AC﹣BI=m﹣n,BP=2EI=2(m﹣n),当点I在BC地延长线时,IC=BI﹣BC=BI﹣AC=n﹣m,BP=2IC=2(n﹣m).综上所述:BP=2|m﹣n|.故答案为2|m﹣n|.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2014-2015学年度第二学期期中考试八年级数学试卷及答案第Ⅰ卷(选择题,共36分)一、选择题(每题3分,共36分)1. 二次根式2+x 有意义,则x 的取值范围为A.x >-2B.x≥-2C. x≠-2D. x≥22.若b b -=-3)3(2,则b 满足的条件是A .b>3B .b<3C .b≥3D .b≤3 3.下列各式中计算正确的是 A .3)3()1(91)9)(1(=-⋅-=-⋅-=--; B.2)2(2-=-;347=+=; D.71724252425242522=⨯=-⋅+=-.4.下列各组线段中,能够组成直角三角形的是A .6,7,8 .B .5,6,7.C .4,5,6.D .3,4,5. 5.已知△ABC 中,∠A=12∠B=13∠C ,则它的三条边之比为A .1:1.B .1 2 .C .1D .1:4:1.6.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是A .88°,108°,88°.B .88°,104°,108°.C .88°,92°,92° .D .88°,92°,88°.7、平行四边形的一边长为10cm ,那么这个平行四边形的两条对角线长可以是A.4cm 和 6cm .B.6cm 和 8cm.C.20cm 和 30cm .D.8cm 和12cm. 8、给定不在同一直线上的三点,则以这三点为顶点的平行四边形有A.1个 .B.2个 .C.3个.D.4个.9.A 、B 、C 、D 在同一平面内,从①AB ∥CD ;②AB =CD ;③BC ∥AD ;④BC =AD ;这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法共有A.3种 .B.4种 .C.5种.D.6种. 10.已知ab <0,则b a 2化简后为A .b a .B . b a -.C .b a - .D .b a --.11. 如图,铁路MN 和公路PQ 在点O 处交汇,30QON ∠=︒.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒. 12. 如图,在平面直角坐标系xOy 中,Rt △OA 1C 1,Rt △OA 2C 2,Rt △OA 3C 3,Rt △OA 4C 4…的斜边都在坐标轴上,∠A 1OC 1=∠A 2OC 2=∠A 3OC 3=∠A 4OC 4=…=30°.若点A 1的坐标为(3,0),OA 1=OC 2,OA 2=OC 3,OA 3=OC 4…,则依此规律,点A 2015的纵坐标为A.0.B. ﹣3×()2013.C. (2)2014. D. 3×()2013.第Ⅱ卷(非选择题 共84分)二、填空题(每题3分,共18分)13.在实数范围内分解因式22-x =14.已知正方形ABCD 的面积为8,则对角线AC =15.矩形的两条对角线的一个交角为60o ,两条对角线的和为8cm ,则这个矩形的一条较短边为 cm.16.菱形的一个内角为︒120 ,且平分这个内角的对角线长为8cm ,则这个菱形的面积为 . 17.已知x =1﹣,y =1+,则x 2+y 2-xy -2x -2y 的值为 .18. 如图,四边形ABCD 中,AC 、BD 是对角线,△ABC 是等边三角形,∠ADC =30°,AD =3,BD =5,则四边形ABCD 的面积为______ _.三、解答题(共8题,共66分)19.(本题满分8分)计算(1)204554-+ (2)32241÷20. (本题满分8分)如图,在平行四边形ABCD 中,AC ,BD 相交于点O,点E,F 在AC 上,且OE=OF.第20题图第12题图第11题图第18题图(1)求证BE=DF ;(2)线段OE 满足什么条件时,四边形BEDF 为矩形(不必证明). 21.(本题满分8分) 如图,在直角坐标系中,A (0,4),C(3,0).(1) 以AC 为边,在其上方作一个四边形,使它的面积为22OC OA +; (2) 画出线段AC 关于y 轴对称线段AB,并计算点B 到AC 的距离.22. (本题满分10分) 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,CE =41BC ,F 为CD 的中点,连接AF 、AE 、EF , (1)判定△AEF 的形状,并说明理由;(2)设AE 的中点为O,判定∠BOF 和∠BAF 的数量关系,并证明你的结论.23. (本题满分10分)(1)叙述三角形中位线定理,并运用平行四边形的知识证明;(2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD 中,AD ∥BC,E,F 分别是AB,CD 的中点,求证EF=)(21BC AD +. 24. (本题满分10分) 小明在解决问题:已知a=321+,求1822+-a a 的值.他是这样分析与解的:∵a=321+=32)32)(32(32-=-+-,∴a-2=3-,∴,3)2(2=-a 3442=+-a a∴142-=-a a ,∴1822+-a a =2(1)42+-a a =2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题: (1)化简1191211571351131++++++++(2)若a=121-,①求1842+-a a 的值;②直接写出代数式的值1323++-a a a = ; 21522++-aa a = . 25. (本题满分12分)如图,在矩形ABCD 中,AB=8cm,BC=20cm,E 是AD 的中点.动点PC第22题图从A 点出发,沿A-B-C 路线以1cm/秒的速度运动,运动的时间为t 秒.将∆APE 以EP 为折痕折叠,点A 的对应点记为M.(1) 如图(1),当点P 在边AB 上,且点M 在边BC 上时,求运动时间t; (2) 如图(2),当点P 在边BC 上,且点M 也在边BC 上时,求运动时间t; (3) 直接写出点P 在运动过程中线段BM 长的最小值 .题号 1 2345答案 BD D D B 二、填空题(共6小题,每小题3分,共18分)13, )2)(2(-+x x ; 14. 4; 15.2; 16.316;17.3;18.63425- 三、解答下列各题(本大题共9小题,共72分) 19.解:(1)原式=525354-+=55 …………………………………4分(2)原式=4123241=⨯ ………………………8分 20. (1)证四边形BEDF 是平行四边形或一对三角形全等;… …………5分 (2)OE=OD ………………………8分 21.(1)略; …………………4分 (2)AC=5,面积法求得点B 到AC 的距离524…………………8分 22.(1)设正方形的边长为4a,则22222225,5,20a AE a EF a AF === ∴222AE EFAF =+∴△AE F 是直角三角形。
2014-2015学年湖北省武汉市汉阳区八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.下列几何图形不一定是轴对称图形的是()A.线段 B.角 C.等腰三角形 D.直角三角形2.当分式的值为零时,x的值为()A. 0 B. 2 C.﹣2 D.±23.若等腰三角形的两内角度数比为1:4,则它的顶角为()度.A. 36或144 B. 20或120 C. 120 D. 204.下列各式由左边到右边的变形中,是分解因式的为()A. a(x+y)=ax+ay B. x2﹣4x+4=x(x﹣4)+4C. 10x2﹣5x=5x(2x﹣1) D. x2﹣16+3x=(x﹣4)(x+4)+3x5.下列计算错误的是()A. 5a3﹣a3=4a3 B.(a2b)3=a6b3C.(a﹣b)3(b﹣a)2=(a﹣b)5 D. 2m•3n=6m+n6.已知x m=6,x n=3,则的x2m﹣n值为()A. 9 B. C. 12 D.7.若代数式的值是负数,则x的取值范围是()A. x<﹣ B. x<﹣ C. x>﹣ D. x8.一项工程需在规定日期完成,如果甲队独做,就要超规定日期1天,如果乙队单独做,要超过规定日期4天,现在由甲、乙两队共做3天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为()A. 6天 B. 8天 C. 10天 D. 7.5天9.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B 的度数是()A. 45° B. 50° C. 55° D. 60°10.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=()A. 40° B. 45° C. 50° D. 55°二、填空题:(每题3分,共18分)11.若x﹣y=5,xy=6,则x2y﹣xy2= .12.计算:(2m+3n)(3n﹣2m)= .13.如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则AD= .14.若,则= .15.观察:l×3+1=222×4+1=323×5+1=424×6+1=52…,请把你发现的规律用含正整数n(n≥2)的等式表示为(n=2时对应第1个式子,…)16.在平面直角坐标系中,A(4,0),B(0,4),D在第一象限,且DO=DB,△DOA为等腰三角形,则∠OBD的度数为.三、解答题(共72分)17.解分式方程:.18.(1)分解因式:(p﹣4)(p+1)+3p(2)利用因式分解计算:7552﹣2552.19.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.20.计算(1)(2).21.已知x+=4,求(1)x2+;(2)(x﹣2)2.22.某次动车平均提速50km/h.用相同的时间,动车提速前行驶150km,提速后比提速前多行驶50km,求动车提速后的平均速度.23.如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC 边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.24.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD 是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.25.四边形ABCD是由等边△ABC和顶角为120°的等腰△ABD拼成,将一个60°角顶点放在D处,将60°角绕D点旋转,该60°角两边分别交直线BC、AC于M、N.交直线AB于E、F 两点,(1)当E、F分别在边AB上时(如图1),求证:BM+AN=MN;(2)当E、F分别在边BA的延长线上时如图2,求线段BM、AN、MN之间又有怎样的数量关系;(3)在(1)的条件下,若AC=5,AE=1,求BM的长.2014-2015学年湖北省武汉市汉阳区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.下列几何图形不一定是轴对称图形的是()A.线段 B.角 C.等腰三角形 D.直角三角形考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:线段、角、等腰三角形一定为轴对称图形,直角三角形不一定为轴对称图形.故选D.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.当分式的值为零时,x的值为()A. 0 B. 2 C.﹣2 D.±2考点:分式的值为零的条件.专题:计算题.分析:要使分式的值为0,必须使分式分子的值为0,并且分母的值不为0.解答:解:∵|x|﹣2=0,∴x=±2,而x=﹣2时,分母x﹣2=﹣2﹣2=﹣4≠0;x=2时分母x﹣2=0,分式没有意义.故选C.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.3.若等腰三角形的两内角度数比为1:4,则它的顶角为()度.A. 36或144 B. 20或120 C. 120 D. 20考点:等腰三角形的性质.分析:设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.解答:解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为20°或120°.故选:B.点评:本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.已知中若有比出现,往往根据比值设出各部分,利用部分和列式求解.4.下列各式由左边到右边的变形中,是分解因式的为()A. a(x+y)=ax+ay B. x2﹣4x+4=x(x﹣4)+4C. 10x2﹣5x=5x(2x﹣1) D. x2﹣16+3x=(x﹣4)(x+4)+3x考点:因式分解的意义.专题:因式分解.分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解答:解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选:C.点评:这类问题的关键在于能否正确应用分解因式的定义来判断.5.下列计算错误的是()A. 5a3﹣a3=4a3 B.(a2b)3=a6b3C.(a﹣b)3(b﹣a)2=(a﹣b)5 D. 2m•3n=6m+n考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:A、5a3﹣a3=4a3,计算正确,故本选项错误;B、(a2b)3=a6b3,计算正确,故本选项错误;C、(a﹣b)3(b﹣a)2=(a﹣b)5,计算正确,故本选项错误;D、2m•3n≠6m+n,计算错误,故本选项正确.故选D.点评:本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.6.已知x m=6,x n=3,则的x2m﹣n值为()A. 9 B. C. 12 D.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.解答:解:∵x m=6,x n=3,∴x2m﹣n=(x m)2÷x n=62÷3=12.故选C.点评:本题考查了同底数的幂的除法,幂的乘方的性质,把原式化成(x m)2÷x n是解题的关键.7.若代数式的值是负数,则x的取值范围是()A. x<﹣ B. x<﹣ C. x>﹣ D. x考点:分式的值.专题:计算题.分析:根据分式的值为负数,求出x的范围即可.解答:解:根据题意得:<0,即5x+2<0,解得:x<﹣.故选B.点评:此题考查了分式的值,熟练掌握不等式的解法是解本题的关键.8.一项工程需在规定日期完成,如果甲队独做,就要超规定日期1天,如果乙队单独做,要超过规定日期4天,现在由甲、乙两队共做3天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为()A. 6天 B. 8天 C. 10天 D. 7.5天考点:分式方程的应用.专题:工程问题.分析:首先设工作总量为1,未知的规定日期为x.则甲单独做需x+1天,乙队需x+4天.由工作总量=工作时间×工作效率这个公式列方程易求解.解答:解:设工作总量为1,规定日期为x天,则若单独做,甲队需x+1天,乙队需x+4天,根据题意列方程得3(+)+=1,解方程可得x=8,经检验x=8是分式方程的解,故选B.点评:本题涉及分式方程的应用,难度中等.考生需熟记工作总量=工作时间×工作效率这个公式.9.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B 的度数是()A. 45° B. 50° C. 55° D. 60°考点:线段垂直平分线的性质.分析:首先连接AC,由AE的垂直平分线MN交BE于点C,可得AC=EC,又由AB+BC=BE,易证得AB=AC,然后由等腰三角形的性质与三角形内角和定理,求得∠BAE=∠BAC+∠CAE=180°﹣4∠E+∠E=105°,继而求得答案.解答:解:连接AC,∵MN是AE的垂直平分线,∴AC=EC,∴∠CAE=∠E,∵AB+BC=BE,BC+EC=BE,∴AB=EC=AC,∴∠B=∠ACB,∵∠ACB=∠CAE+∠E=2∠E,∴∠B=2∠E,∴∠BAC=180°﹣∠B﹣∠ACB=180°﹣4∠E,∵∠BAE=∠BAC+∠CAE=180°﹣4∠E+∠E=105°,解得:∠E=25°,∴∠B=2∠E=50°.故选B.点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=()A. 40° B. 45° C. 50° D. 55°考点:轴对称-最短路线问题.分析:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.解答:解:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°﹣2×50°=80°,∴∠AOB=40°,故选A.点评:本题考查了对称的性质,正确作出图形,证得△P1OP2是等腰三角形是解题的关键.二、填空题:(每题3分,共18分)11.若x﹣y=5,xy=6,则x2y﹣xy2= 30 .考点:因式分解-提公因式法.分析:将原式首先提取公因式xy,进而分解因式,将已知代入求出即可.解答:解:∵x﹣y=5,xy=6,∴x2y﹣xy2=xy(x﹣y)=6×5=30.故答案为:30.点评:此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.12.计算:(2m+3n)(3n﹣2m)= 9n2﹣4m2.考点:平方差公式.专题:计算题.分析:先整理得到原式=(3n+2m)(3n﹣2m),然后利用平方差公式计算.解答:解:原式=(3n+2m)(3n﹣2m)=9n2﹣4m2.故答案为9n2﹣4m2.点评:本题考查了平方差公式:(a+b)(a﹣b)=a2﹣b2.13.如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则AD= 3 .考点:含30度角的直角三角形.分析:求出∠BCD=30°,根据含30°角的直角三角形的性质求出BC=2,求出AB=4,即可得出答案.解答:解:∵△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=30°,∵BD=1,∴BC=2BD=2,∵在△ACB中,∠ACB=90°,∠A=30°,∴AB=2BC=4,∴AD=AB﹣BD=4﹣1=3,故答案为:3.点评:本题考查了三角形的内角和定理,含30度角的直角三角形的性质的应用,解此题的关键是得出BC=2BD和AB=2BC,难度适中.14.若,则= 7 .考点:分式的化简求值.专题:计算题.分析:已知等式左边通分并利用同分母分式的减法法则计算,整理得到x﹣y=2xy,原式变形后代入计算即可求出值.解答:解:∵﹣==﹣2,∴x﹣y=2xy,则原式===7.故答案为:7点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.观察:l×3+1=222×4+1=323×5+1=424×6+1=52…,请把你发现的规律用含正整数n(n≥2)的等式表示为(n﹣1)(n+1)+1=n2(n≥2,且n 为正整数)(n=2时对应第1个式子,…)考点:规律型:数字的变化类.分析:观察不难发现,比n小1的数与比n大1的数的积加上1的和等于n的平方,依此可以求解.解答:解:n=2时,l×3+1=22,即(2﹣1)(2+1)+1=22,n=3时,2×4+1=32,即(3﹣1)(3+1)+1=32,n=4时,3×5+1=42,即(4﹣1)(4+1)+1=42,n=5时,4×6+1=52,即(5﹣1)(5+1)+1=52,…n=n时,(n﹣1)(n+1)+1=n2,故答案为(n﹣1)(n+1)+1=n2(n≥2,且n为正整数).点评:此题主要考查了数字变化规律,根据已知数据得出数据的变与不变是解题关键.16.在平面直角坐标系中,A(4,0),B(0,4),D在第一象限,且DO=DB,△DOA为等腰三角形,则∠OBD的度数为75°.考点:等腰三角形的判定;坐标与图形性质.分析:根据△DOA为等腰三角形,分三种情况:①OD=AD;②OD=OA③OA=OD分别求得各边的长度,再利用三角函数即可得出答案.解答:解:如图,∵D在第一象限,且DO=DB,△DOA为等腰三角形,∴点D分三种情况:①OD1=AD1;②OD2=OA;③OA=OD3;∴∠OBD1=45°,∠OBD2=60°,∠OBD3=15°+60°=75°,故答案为:75°点评:本题考查了等腰三角形的判定以及坐标与图形的性质,熟练利用等腰三角形的性质是解题关键.三、解答题(共72分)17.解分式方程:.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣1+2x+2=7,移项合并得:3x=6,解得:x=2,经检验x=2是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(1)分解因式:(p﹣4)(p+1)+3p(2)利用因式分解计算:7552﹣2552.考点:因式分解的应用.分析:(1)首先利用整式的乘法计算,进一步整理后分解因式即可;(2)利用平方差公式因式分解计算即可.解答:解:(1)原式=p2﹣3p﹣4+3p=p2﹣4=(p+2)(p﹣2);(2)原式=(755+255)×(755﹣255)=1010×500=50005000.点评:此题考查因式分解的运用,掌握平方差公式是解决问题的关键.19.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.考点:等腰三角形的性质.专题:计算题.分析:(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.解答:(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.点评:本题考查了等腰三角形的性质和判定定理:等腰三角形的两底角相等;有两个角相等的三角形为等腰三角形.也考查了三角形的内角和定理.20.计算(1)(2).考点:分式的加减法;分式的乘除法.专题:计算题.分析:(1)原式约分即可得到结果;(2)原式通分并利用同分母分式的减法法则计算即可得到结果.解答:解:(1)原式=•=2;(2)原式=+==.点评:此题考查了分式的加减法,以及分式的乘除法,熟练掌握运算法则是解本题的关键.21.已知x+=4,求(1)x2+;(2)(x﹣2)2.考点:分式的混合运算;完全平方公式.专题:计算题.分析:(1)原式利用完全平方公式变形,把已知等式代入计算即可求出值;(2)原式利用完全平方公式化简,把已知等式变形后代入计算即可求出值.解答:解:(1)把x+=4两边平方得:(x+)2=x2++2=16,即x2+=14;(2)把x+=4,去分母得:x2﹣4x+1=0,即x2﹣4x=﹣1,原式=x2﹣4x+4=﹣1+4=3.点评:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则是解本题的关键.22.某次动车平均提速50km/h.用相同的时间,动车提速前行驶150km,提速后比提速前多行驶50km,求动车提速后的平均速度.考点:分式方程的应用.分析:设动车提速后的平均速度为xkm/h,则提速前的平均速度为(x﹣50)km/h,根据相同的时间,动车提速前行驶150km,提速后比提速前多行驶50km,列方程求解.解答:解:设动车提速后的平均速度为xkm/h,则提速前的平均速度为(x﹣50)km/h,由题意得,=,解得:x=200,经检验,x=200是原分式方程的解,且符合题意.答:动车提速后的平均速度为200km/h.点评:本题考查了分式方程的应用,解答本题的关键是读懂原题,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC 边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.考点:全等三角形的判定与性质;等边三角形的性质.分析:(1)利用平行线的性质结合全等三角形的判定与性质得出即可;(2)过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.解答:(1)证明:如图1,过点P作PF∥BC交AC于点F;∵PF∥BC,∴△APF∽△ABC,∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,∵,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=2,∴DE=1.点评:本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.24.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD 是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.考点:四边形综合题.专题:压轴题.分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在中点时构成的四边形ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD 的度数.解答:解:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;(2)由题意作图为:图2,图3(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.点评:本题是一道四边形的综合试题,考查了和谐四边形的性质的运用,和谐四边形的判定,等边三角形的性质的运用,正方形的性质的运用,30°的直角三角形的性质的运用.解答如图6这种情况容易忽略,解答时合理运用分类讨论思想是关键.25.四边形ABCD是由等边△ABC和顶角为120°的等腰△ABD拼成,将一个60°角顶点放在D处,将60°角绕D点旋转,该60°角两边分别交直线BC、AC于M、N.交直线AB于E、F 两点,(1)当E、F分别在边AB上时(如图1),求证:BM+AN=MN;(2)当E、F分别在边BA的延长线上时如图2,求线段BM、AN、MN之间又有怎样的数量关系MN=BM﹣AN ;(3)在(1)的条件下,若AC=5,AE=1,求BM的长.考点:全等三角形的判定与性质;等腰直角三角形.专题:几何综合题.分析:(1)把△DBM绕点D逆时针旋转120°得到△DAQ,根据旋转的性质可得DM=DQ,AQ=BM,∠ADQ=∠BDM,然后求出∠QDN=∠MDN,利用“边角边”证明△MND和△QND全等,根据全等三角形对应边相等可得MN=Q N,再根据AQ+AN=QN整理即可得证;(2)把△DAN绕点D顺时针旋转120°得到△DBP,根据旋转的性质可得DN=DP,AN=BP,根据∠DAN=∠DBP=90°可知点P在BM上,然后求出∠MDP=60°,然后利用“边角边”证明△MND和△MPD全等,根据全等三角形对应边相等可得MN=MP,从而得证;(3)过点M作MH∥AC交AB于G,交DN于H,可以证明△BMG是等边三角形,根据等边三角形的性质可得BM=MG=BG,根据全等三角形对应角相等可得∠QND=∠MND,再根据两直线平行,内错角相等可得∠QND=∠MHN,然后求出∠MND=∠MHN,根据等角对等边可得MN=MH,然后求出AN=GH,再利用“角角边”证明△ANE和△GHE全等,根据全等三角形对应边相等可得AE=GE,再根据BG=AB﹣AE﹣GE代入数据进行计算即可求出BG,从而得到BM的长.解答:(1)证明:把△DBM绕点D逆时针旋转120°得到△DAQ,则DM=DQ,AQ=BM,∠ADQ=∠BDM,∵∠QDN=∠ADQ+∠ADN=∠BDM+∠ADN=∠ABD﹣∠MDN=120°﹣60°=60°,∴∠QDN=∠MDN=60°,∵在△MND和△QND中,,∴△MND≌△QND(SAS),∴MN=QN,∵QN=AQ+AN=BM+AN,∴BM+AN=MN;(2)MN+AN=BM.理由如下:如图,把△DAN绕点D顺时针旋转120°得到△DBP,则DN=DP,AN=BP,∵∠DAN=∠DBP=90°,∴点P在BM上,∵∠MDP=∠ADB﹣∠ADM﹣∠BDP=120°﹣∠ADM﹣∠ADN=120°﹣∠MDN=120°﹣60°=60°,∴∠MDP=∠MDN=60°,∵在△MND和△MPD中,,∴△MND≌△MPD(SAS),∴MN=MP,∵BM=MP+BP,∴MN+AN=BM;(3)如图,过点M作MH∥AC交AB于G,交DN于H,∵△ABC是等边三角形,∴△BMG是等边三角形,∴BM=MG=BG,根据(1)△MND≌△QND可得∠QND=∠MND,根据MH∥AC可得∠QND=∠MHN,∴∠MND=∠MHN,∴MN=MH,∴GH=MH﹣MG=MN﹣BM=AN,即AN=GH,∵在△ANE和△GHE中,,∴△ANE≌△GHE(AAS),∴AE=EG=1,∵AC=5,∴AB=AC=5,∴BG=AB﹣AE﹣EG=5﹣1﹣1=3,∴BM=BG=3.点评:本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边三角形的性质,旋转变换的性质作辅助线构造全等三角形是解题的关键,(3)作平行线并求出AN=GH是解题的关键,也是本题的难点.。
武昌区2014~2015学年度第二学期部分学校八年级期中联合测试数学试卷参考答案一、选择题(共10小题,每小题3分,共30分)7.提示:在Rt △AOB 中,AO =AB -BO Rt △DOC 中可得:DO 2=DC 2-CO 2∴可得AD 2=AO 2+DO 2=AB 2-BO 2+DC 2-CO 2=18 即可得AD =23二、填空题(共6小题,每小题3分,共18分) 11.665-12.213.54或4414.22或2615.516.2310.提示:连接BE∵梯形ABCD 中,AB =DC ∴AC =BD ,可证△ABC ≌△DCB ∴∠GCB =∠GBC 又∵∠BGC =∠AGD =60° ∴△BCG 为等边三角形 ∵BE 为△BCG 的中线 ∴BE ⊥AC在Rt △ABE 中,EF 为斜边AB 上的中线, ∴EF =AB =5cm三、解答题(本大题共72分) 17.解:原式=2221-=--x 18.证明:在□ABCD 中 AD =BC ,AD ∥BC ∵DE =BF∴AD -DE =BC -BF 即AE =CF∴四边形AECF 为平行四边形 ∴OE =OF ,AF ∥CE 19.解:(1) x +y =62,xy =1(2) 原式=xy (x +y )+(x +y )2-2xy =22+6220.解:(1) (3,1)或(1,3)(2) 略(提示:一条直角边为2,一条直角边为3)(3) 2521.证明:(1) 由翻折可知:∠DBE =∠DBC ∵AD ∥BC ∴∠BDF =∠DBC ∴∠FBD =∠FDB ∴DF =BF(2) 设BF =DF =x ,则EF =8-x ,DE =4 在Rt △DEF 中,DE 2+EF 2=DF 2∴(8-x )2+42=x 2,解得x =5 ∴DF =5,EF =3 ∴S △DEF =21×EF ×DE =21×3×4=6 (3) 过点E 作EG ⊥AD 于G S △DEF =21×DF ×EG =21×5×EG =6,EG =512 在Rt △DEG 中,51622=-=EG DE DG ∴AG =8-516=524 在Rt △AEG 中,551222=+=EG AG AE 22.解:(1) 由已知0152=+-x x 得51=+xx (2) 32)1(1222=-+=+x x x x(3) 72)1(122244=-+=+xx xx(4) 55)112)(1(12233=+∙∙++=+x x x x x x x x 1232)1(123366=-+=+xx x x ∵55332211)1)(1(xx x x xx xx +++=++ ∴5145553155=-⨯=+xx23.证明:(1) 过点N 作NF ⊥AB 于F根据“八字型”可得:∠MNF =∠PAB 可证:△ABP ≌△NFM (ASA ) ∴AP =MN(2) 延长EG 至K ,使KGEG ,连接CK 、DK 可证:△CKG ≌△EFG (SAS ) ∴CK =EF =EA ,CD =AD 又∵CK ∥BF∴∠KCD=∠CNE=∠DAE可证:△CDK≌△DAE∴DK=DE,DK⊥DE∴DE=2DG(3) 延长MN交AD的延长线于点P,则DP=DE=AD过M作MP⊥CD于T3则TN=DN=2∴AB=AD=DE=2+3=55∴DG=2224.解:(1) AB=10(2) (6,-2)(3) 连接FC交AP于M,∵AB=BC,∠ABC=90°∴∠ACB=45°∵EF⊥AC∴∠BDF=∠EDC=45°∵∠ABC=90°∴∠BFD=∠BDF=45°∴BD=BF可证:△ABD≌△CBF(SAS)∴∠BAD=∠DCM∴∠DMC=∠ABD=90°∴PF2-PC2=(FM2+MP2)-(CM2+MP2)=FM2-CM2=(DF2-DM2)-(CD2-DM2)=DF2-CD2∵D是BC的中点,∴BD=CD=5∴BF=5∴DF=25。
、12-、2中,绝对值最小的实数是(中,绝对值最小的实数是( ) A .5- B .0 C .12-D .2 2.式子1+x 在实数范围内有意义,则x 的取值范围是(的取值范围是( ) A .x >-1 B .x >1 C .x ≥1 D .x ≥-1 3.下列计算正确的是(.下列计算正确的是( ) A .523=+B .1052=´ C .628=-D .428=¸4.56B .5 C .25D .562 5.化简11)1(--x x 的结果为(的结果为( ) A .1-xB .x -1C .1--xD .28B .24 C .8 D.6 7.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为(的长为( )A .23B .4 C .24 D (23-,13+) B .(13+,23-) C .(31-,31+) D .(31+,31-) 9.下列说法中,正确的个数为(.下列说法中,正确的个数为( )武昌区2014~2015学年度第二学期部分学校八年级期中联合测试数学试卷一、选择题(共10小题,每题3分,共30分)武汉教育资源网 1.在.在实数实数5-、0.已知.已知直角三角形直角三角形的两直角边的长分别是62和1,则,则斜边斜边上的高的长为(上的高的长为( ) A .x --16.如图,已知.如图,已知正方形正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图形中阴影部分的影部分的周长周长为(为( ) A .328.如图,已知边长为2的正方形OABC 在平面直角坐标系中位于x 轴的上方,OA 与x 轴正半轴的轴的夹角夹角为60°,则B 点坐标为(点坐标为( ) A .① 已知直角三角形的面积是2,两直角边的比为1∶2大边长为3,最短边长为1=2AC ;②;② CM 2+DN 2=NC 2+MD 2;③;③ AM 2+BN 2=MN 2;④;④ AN 2+BN 2=2CN 2 A .1 B .2 C .3 D .4 二、填空题(共6小题,每题3分,共18分)11.计算:546124-+=__________ 12.化简并求值:24)2121(+¸--+x x x ,其中22+=x18.如图,□ABCD 中,点E 在AD 上,点F 在BC 上,且DE =BF (1) 求证:OE =OF (2) 求证:AF ∥CE19.已知:561+=x ,561-=x(1) x +y =__________,xy =__________ (2) 利用上面的结果求x 2y +xy 2+x 2+y 2的值的值,则,则斜边斜边长为10;②;② 直角三角形的最,则另一边长为2;③;③ △ABC 中,∠A ∶∠B ∶∠C =1∶5∶6,则△ABC 为直角三角形;④为直角三角形;④ 等腰三角形面积为12,底边上的高为4,则腰长为5 A .1 B .2 C .3 D .4 10.△ABC 中,∠ACB =90°,AC =BC ,M 、N 是AB 上两点且∠MCN =45°,D 是AB 的中点,则下列正确的个数为(则下列正确的个数为( )① AB .最简二次根式ab b -3和22+-a b 是同类二次根式,则a +b 的值为_________ 13.△ABC 中,BC 边上的高AD =12,BD =16,CD =5,则△ABC 的周长为_________ 14.矩形的一内.矩形的一内角平分线角平分线把矩形的一边分为长3和5的两部分,则该矩形的周长为_________ 15.等腰.等腰梯形梯形ABCD 中,AD ∥BC ,AB =DC =10 cm ,AC 、BD 相交于点G ,∠AGD =60°,E 是CG 的中点,F 是AB 的中点,则EF 的长为_________ 16.如图,正方形ABCD 的面积为18,△ABE 是等边三角形,P 是对角线AC 上一动点,则PD+PE 的最小值为_________ 三、解答题(共8小题,共72分) 17=10,并写出点A 的坐标的坐标(2) 在格点上找出点B 和C ,使得BC 在图中作出长度分别为42+x 和9)5(2+-x22.已知0152=+-x x(1) 求xx 1+的值的值(2) 求221x x +的值的值(3) 求441x x +的值的值 (4) 直接写出551x x +=_________,661x x +=_________ 20.如图,在4×4的小的小正方形正方形网格中,小正方形的边长为1,点O 在格点(在格点(网格线网格线的交点)上的交点)上 (1) 试在格点上找点A ,使得OA =13(只画出一条符合条件的(只画出一条符合条件的线段线段BC )(3) 点M (5,0),点P (x ,0)是线段OM 上一动点,的线段,并求9)5(422+-++x x 的最小值21.矩形ABCD 中,将△BCD 沿BD 翻折到△BED ,BE 交AD 于F ,AB =4,BC =8 (1) 求证:DF =BF (2) 求△DEF 的面积的面积 (3) 求AE 的长=2DG (3) 在(2)的条件下,若DA =DE ,DN =23,BM =2,求DG 的长的长23.正方形ABCD 中,点M 在AB 上,点N 在CD 上,点P 在BC 上,MN ⊥AP 于E (1) 求证:AP =MN(2) 点F 在MN 上,若EF =EA ,连CF ,点G 为CF 的中点,连DG ,求证:DE24.如图,.如图,平面直角坐标系平面直角坐标系中,A (a ,0)、B (0,b ),其中a 、b 满足b a b --+=-6)8(62 (1) 求线段AB 的长度武汉教育资源网 (2) 过点B 作CB ⊥AB ,且CB =AB ,画出图形并求点C 的坐标的坐标(3) 在(2)的条件下,连接AC (点C 在第四在第四象限象限),D 是BC 的中点,过点D 作AC 的垂线EF 交AC 于E ,交,交直线直线AB 于F ,连AD .若P 是射线AD 上的动点,连接PC 、PF ,当点P 在射线AD 上运动时,PF 2-PC 2的值是否发生变化?若改变,求出其变化范围;若不变,求值并说明理由武昌区2014~2015学年度第二学期部分学校八年级期中联合测试数学试卷参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BDBD CCACDD7.提示:在Rt △AOB 中,AO 2=AB 2-BO 2Rt △DOC 中可得:DO 2=DC 2-CO 2∴可得AD 2=AO 2+DO 2=AB 2-BO 2+DC 2-CO 2=18 即可得AD =23二、填空题(共6小题,每小题3分,共18分) 11.665- 12.2 13.54或44 14.22或26 15.5 16.2310.提示:连接BE∵梯形ABCD 中,AB =DC∴AC =BD ,可证△ABC ≌△DCB ∴∠GCB =∠GBC又∵∠BGC =∠AGD =60° ∴△BCG 为等边三角形∵BE 为△BCG 的中线 ∴BE ⊥AC在Rt △ABE 中,EF 为斜边AB 上的中线,上的中线, ∴EF =AB =5cm三、解答题(本大题共72分) 17.解:原式=2221-=--x18.证明:在□ABCD 中AD =BC ,AD ∥BC ∵DE =BF∴AD -DE =BC -BF 即AE =CF∴四边形AECF 为平行四边形 ∴OE =OF ,AF ∥CE 19.解:(1) x +y =62,xy =1 (2) 原式=xy (x +y )+(x +y )2-2xy =22+62 20.解:(1) (3,1)或(1,3) (2) 略(提示:一条直角边为2,一条直角边为3)(3) 2521.证明:(1) 由翻折可知:∠DBE =∠DBC ∵AD ∥BC ∴∠BDF =∠DBC ∴∠FBD =∠FDB ∴DF =BF(2) 设BF =DF =x ,则EF =8-x ,DE =4 在Rt △DEF 中,DE 2+EF 2=DF 2∴(8-x )2+42=x 2,解得x =5 ∴DF =5,EF =3 ∴S △DEF =21×EF ×DE =21×3×4=6 (3) 过点E 作EG ⊥AD 于G S △DEF =21×DF ×EG =21×5×EG =6,EG =512 在Rt △DEG 中,51622=-=EG DE DG∴AG =8-516=524 在Rt △AEG 中,551222=+=EG AG AE22.解:(1) 由已知0152=+-x x 得51=+xx(2) 32)1(1222=-+=+x x xx(3) 72)1(122244=-+=+xx xx(4) 55)112)(1(12233=+··++=+x x x x x x x x1232)1(123366=-+=+x x x x ∵55332211)1)(1(x x x x x x x x +++=++∴5145553155=-´=+xx23.证明:(1) 过点N 作NF ⊥AB 于F 根据“根据“八字八字型”可得:∠MNF =∠P AB 可证:△ABP ≌△NFM (ASA ) ∴AP =MN(2) 延长EG 至K ,使KGEG ,连接CK 、DK 可证:△CKG ≌△EFG (SAS ) ∴CK =EF =EA ,CD =AD 又∵CK ∥BF∴∠KCD =∠CNE =∠DAE 可证:△CDK ≌△DAE ∴DK =DE ,DK ⊥DE ∴DE =2DG(3) 延长MN 交AD 的延长线于点P ,则DP =DE =AD 过M 作MP ⊥CD 于T 则TN =DN =23 ∴AB =AD =DE =2+3=5 ∴DG =25=22524.解:(1) AB =10 (2) (6,-2) (3) 连接FC 交AP 于M , ∵AB =BC ,∠ABC =90° ∴∠ACB =45°∵EF ⊥AC∴∠BDF =∠EDC =45° ∵∠ABC =90°∴∠BFD =∠BDF =45° ∴BD =BF可证:△ABD ≌△CBF (SAS )∴∠BAD =∠DCM∴∠DMC =∠ABD =90°∴PF 2-PC 2=(FM 2+MP 2)-(CM 2+MP 2)=FM 2-CM 2 =(DF 2-DM 2)-(CD 2-DM 2) =DF 2-CD 2 ∵D 是BC 的中点, ∴BD =CD =5 ∴BF =5 ∴DF。
2014-2015学年湖北省武汉市青山区八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)如下书写的四个美术字,其中为轴对称的是()A.B.C.D.2.(3分)要使分式有意义,则x的取值应满足()A.x≠2B.x≠1C.x=2D.x=﹣13.(3分)PM2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为()A.2.5×106B.0.25×10﹣5C.2.5×10﹣6D.25×10﹣7 4.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.6D.无法确定5.(3分)如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD 的是()A.AC=AD B.BC=BD C.∠C=∠D D.∠ABC=∠ABD6.(3分)下列计算正确的是()A.a3•a2=a6B.3a(a﹣2b)=3a2﹣2abC.a4÷a5=a﹣1D.30=07.(3分)信息技术的储存设备常用B、K、M、G等作为储存量的单位,其中1G=210M,1M=210K,1K=210B(字节),对于一个储存量为4G的闪存盘,其容量是()A.230B B.232B C.21000B D.21002B8.(3分)如图,从边长为a+2的正方形纸片中剪去一个边长为a﹣1的正方形(a>1),剩余部分沿虚线剪开,再拼成一个长方形(不重叠无缝隙),则该长方形的面积是()A.4a+1B.4a+3C.6a+3D.a2+19.(3分)观察规律:(1﹣)=,,…若(1﹣)(1﹣)(1﹣)…(1﹣)=,n为正整数,则n的值为()A.1008B.1009C.2015D.201610.(3分)如图,在MN的同侧作△AMN和△BMN,BM平分∠AMN,AN平分∠BNM,AN交BM于点C.设∠A=α°,∠B=β°,下列结论不正确的是()A.若α=β,则点C在MN的垂直平分线上B.若α+β=180°,则∠AMB=∠NMBC.∠MCN=°D.当∠MCN=120°时,延长MA、NB交于点O,则OA=OB二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)一辆汽车b小时行驶了a千米,则它的平均速度为千米/小时.12.(3分)分解因式:x2﹣2x+1=.13.(3分)如图1,已知三角形纸片ABC,AB=AC,∠A=50°,将其折叠,如图2,使点A与点B重合,折痕为ED,点E、D分别在AB、AC上,则∠DBC=.14.(3分)计算:(xy2)2÷xy3=.15.(3分)已知a+b=,那么a2﹣b2+b的值为.16.(3分)在△ABC中,∠A=120°,AB=AC=m,BC=n,CD是△ABC的边AB的高,则△ACD的面积为(用含m,n的式子表示).三、解答题(共9题,共72分)17.(6分)解方程:.18.(6分)求值:x2(x﹣1)﹣x(x2+x﹣1),其中x=.19.(6分)如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.20.(7分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5)、B(﹣4,3)、C(﹣1,1)(1)作出△ABC关于直线x=1对称的△A1B1C1;(2)B1点的坐标,C1点的坐标;(3)C点与C2点关于直线x=n对称,则C2的坐标(用含有n的式子表示)21.(8分)在一块a平方公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,要比10个人插秧提前3天完成.(1)一个人一天能在稻田上插秧平方公顷;(2)一台插秧机天完成这块稻田的插秧工作;(3)一台插秧机的工作效率是一个人工作效率的多少倍?22.(7分)在Rt△ABC中,∠ACB=90°,BD是△ABC的角平分线.(1)如图1,若AD=BD,求∠A的度数;(2)如图2,在(1)的条件下,作DE⊥AB于E,连接EC.求证:△EBC是等边三角形.23.(10分)某校为美化校园,计划对面积为2000m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为480m2区域的绿化时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成绿化的面积分别是多少m2?(2)在该次校园绿化工程中,设安排甲队工作y天①再安排乙队工作天,完成该工程(用含有y的式子表示)②若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.12万元,要使这次的绿化总费用不超过7.6万元,乙队的工作天数不超过34天,如何安排甲队的工作天数?24.(10分)在△ABC中,∠ACB=2∠ABC,∠BAC的平分线AQ交BC于点D,点P为AQ上一动点,过点P作直线l⊥AQ于P,分别交直线AB、AC、BC于点E、F、M.(1)当直线l经过点B时(如图1),求证:AB=AF;(2)当M在BC延长线上时(如图2),写出BE、CF、CD之间的数量关系,并加以证明;(3)当M是BC中点时,请补全图3,并直接写出=(不需证明)25.(12分)等腰Rt△ABC中,∠BAC=90°,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)如图1,若A(0,1),B(2,0),求C点的坐标.(2)如图2,当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE.(3)如图3,M为y轴上一点,连接CM,以CM为直角边向右作等腰Rt△CMN,其中CM=MN,连接NB,若AM=7,求五边形ACMNB的面积.2014-2015学年湖北省武汉市青山区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)如下书写的四个美术字,其中为轴对称的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、C、D都不是轴对称图形,只有B是轴对称图形,故选:B.2.(3分)要使分式有意义,则x的取值应满足()A.x≠2B.x≠1C.x=2D.x=﹣1【分析】根据分式有意义的条件是分母不为0列出不等式,解可得自变量x的取值范围,【解答】解:由题意得,x﹣2≠0,解得,x≠2,故选:A.3.(3分)PM2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为()A.2.5×106B.0.25×10﹣5C.2.5×10﹣6D.25×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6;故选:C.4.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.6D.无法确定【分析】过点P作PF⊥AB于F,根据角平分线上的点到角的两边的距离相等可得PF=PE.【解答】解:如图,过点P作PF⊥AB于F,∵AD是∠BAC的平分线,PE⊥AC,∴PF=PE=3.故选:A.5.(3分)如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD 的是()A.AC=AD B.BC=BD C.∠C=∠D D.∠ABC=∠ABD【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,已知有∠DAB=∠CAB 和隐含条件AB=AB,看看再添加的条件和以上两个条件是否符合全等三角形的判定定理即可.【解答】解:A、∵在△ABC和△ABD中∴△ABC≌△ABD(SAS),正确,故本选项错误;B、根据BC=BD,AB=AB和∠CAB=∠DAB不能推出两三角形全等,错误,故本选项正确;C、∵在△ABC和△ABD中∴△ABC≌△ABD(AAS),正确,故本选项错误;D、∵在△ABC和△ABD中∴△ABC≌△ABD(ASA),正确,故本选项错误;故选:B.6.(3分)下列计算正确的是()A.a3•a2=a6B.3a(a﹣2b)=3a2﹣2abC.a4÷a5=a﹣1D.30=0【分析】根据同底数幂的除法,底数不变指数相减;单项式乘以多项式,用单项式与多项式的每一项分别相乘,再把所得的结果相加;同底数幂的乘法,底数不变指数相加;0指数幂,任何不等于0的数的0次幂都等于1,对各选项计算后利用排除法求解.【解答】解:A、a3•a2=a5,故本选项错误;B、3a(a﹣2b)=3a2﹣6ab,故本选项错误;C、a4÷a5=a﹣1,故本选项正确;D、30=1,故本选项错误;故选:C.7.(3分)信息技术的储存设备常用B、K、M、G等作为储存量的单位,其中1G=210M,1M=210K,1K=210B(字节),对于一个储存量为4G的闪存盘,其容量是()A.230B B.232B C.21000B D.21002B【分析】根据B、K、M、G之间的进制,将4G化为B为单位即可.【解答】解:根据题意得:4G=4×210M=4×220K=4×230B=232B,故选:B.8.(3分)如图,从边长为a+2的正方形纸片中剪去一个边长为a﹣1的正方形(a>1),剩余部分沿虚线剪开,再拼成一个长方形(不重叠无缝隙),则该长方形的面积是()A.4a+1B.4a+3C.6a+3D.a2+1【分析】依据长方形的面积等于大正方形的面积﹣小正方形的面积求解即可.【解答】解:长方形的面积=(a+2)2﹣(a﹣1)2=a2+4a+4﹣a2+2a﹣1=6a+3.故选:C.9.(3分)观察规律:(1﹣)=,,…若(1﹣)(1﹣)(1﹣)…(1﹣)=,n为正整数,则n的值为()A.1008B.1009C.2015D.2016【分析】根据题意直接将原式变形得出×=,进而求出答案.【解答】解:∵(1﹣)(1﹣)(1﹣)…(1﹣)=,∴(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=,×××…×=,则×=,则2016n=2015n+2015,解得:n=2015.故选:C.10.(3分)如图,在MN的同侧作△AMN和△BMN,BM平分∠AMN,AN平分∠BNM,AN交BM于点C.设∠A=α°,∠B=β°,下列结论不正确的是()A.若α=β,则点C在MN的垂直平分线上B.若α+β=180°,则∠AMB=∠NMBC.∠MCN=°D.当∠MCN=120°时,延长MA、NB交于点O,则OA=OB【分析】A.若α=β,易得∠AMC=∠BNC,由角平分线的性质易得∠CMN=∠CNM,由等腰三角形的性质,可得CM=CN,利用垂直平分线的判定定理可得结论;B、BM平分∠AMN,即∠AMB=∠NMB,与α、β无关;C、由三角形内角和等于180°易得∠A+∠AMN+∠ANM=180°和∠B+∠BMN+∠BNM=180°,由角平分线定义可知∠AMN=2∠BMN和∠BNM=2∠ANM,套入前面两等式相加可得出∠BMN+∠ANM=120°﹣,在△CMN中由三角形内角和为180°即可得出结论;D、当∠MCN=120°时,延长MA、NB交于点O,只能得出∠MON=60°,从而得出D答案不成立.【解答】答:A、∵α=β,∠MCA=∠NCB,∴△MCA∽△NCB,∴∠AMC=∠BNC,∵BM平分∠AMN,AN平分∠BNM,∴∠MNC=∠CNM,∴点C在MN的垂直平分线上.即A成立;B、∵BM平分∠AMN,∴∠AMB=∠NMB.即B成立;C、∵∠A+∠AMN+∠ANM=180°,∠B+∠BMN+∠BNM=180°,且BM平分∠AMN,AN平分∠BNM,∴∠A+2∠BMN+∠ANM=180°,∠B+∠BMN+2∠ANM=180°,,两式相加得:∠A+2∠BMN+∠ANM+∠B+∠BMN+2∠ANM=360°,即α°+β°+3(∠BMN+∠ANM)=360°,∴∠BMN+∠ANM=120°﹣°.由三角形的内角和为180°可知:∠BMN+∠ANM+∠MCN=180°,即C成立;由排除法可知D选项不成立.故选:D.二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)一辆汽车b小时行驶了a千米,则它的平均速度为千米/小时.【分析】根据除法的意义列出这辆汽车行驶的平均速度即可.【解答】解:根据题意,可得:.故答案为:.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.13.(3分)如图1,已知三角形纸片ABC,AB=AC,∠A=50°,将其折叠,如图2,使点A与点B重合,折痕为ED,点E、D分别在AB、AC上,则∠DBC=15°.【分析】先根据等腰三角形的性质求出∠ABC的度数,再由翻折变换的性质得出∠ABD的度数,进而可得出结论.【解答】解:∵△ABC中,AB=AC,∠A=50°,∵△EBD由△EAD折叠而成,∴∠EBD=∠A=50°,∴∠DAB=∠ABC﹣∠EBD=65°﹣50°=15°.故答案为:15°.14.(3分)计算:(xy2)2÷xy3=xy.【分析】先算积的乘方,再进行单项式的除法运算即可.【解答】解:原式=x2y4÷xy3=xy.故答案为xy.15.(3分)已知a+b=,那么a2﹣b2+b的值为.【分析】先根据a+b=得出a=﹣b,再代入代数式进行计算即可.【解答】解:∵a+b=,∴a=﹣b,∴原式=(﹣b)2﹣b2+b=+b2﹣b﹣b2+b=.故答案为:.16.(3分)在△ABC中,∠A=120°,AB=AC=m,BC=n,CD是△ABC的边AB的高,则△ACD的面积为(用含m,n的式子表示).【分析】画出图形,求出CD长,根据三角形面积公式求出即可.【解答】解:∵∠BAC=120°,∴∠DAC=60°,∵CD是△ABC的边AB的高,∴∠D=90°,∴∠DCA=30°,∴AD=AC=m,CD=BC=n,∴△ACD的面积是AD×CD=×m•n=,故答案为:.三、解答题(共9题,共72分)17.(6分)解方程:.【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.18.(6分)求值:x2(x﹣1)﹣x(x2+x﹣1),其中x=.【分析】先去括号,然后合并同类项,在将x的值代入即可得出答案.【解答】解:原式=x3﹣x2﹣x3﹣x2+x=﹣2x2+x,将x=代入得:原式=0.故答案为:0.19.(6分)如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.【分析】根据条件证明△AOB≌△COD就可以得出∠A=∠C就可以得出结论.【解答】证明:在△AOB和△COD中,∴△AOB≌△COD(SAS),∴∠A=∠C,∴AB∥CD.20.(7分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5)、B(﹣4,3)、C(﹣1,1)(1)作出△ABC关于直线x=1对称的△A1B1C1;(2)B1点的坐标(6,3),C1点的坐标(3,1);(3)C点与C2点关于直线x=n对称,则C2的坐标(2n+1,1)(用含有n 的式子表示)【分析】(1)利用已知坐标系结合△ABC关于直线x=1对称得出各点坐标进而得出答案;(2)利用所画图形,进而得出对应点坐标;(3)利用关于x=n对称点的坐标性质,设C2的横坐标为x,则=n,进而得出答案.【解答】解:(1)如图:(2)B1点的坐标为:(6,3),C1点的坐标为:(3,1);故答案为:(6,3),(3,1);(3)∵C点与C2点关于直线x=n对称,∴设C2的坐标为:(x,1),则=n,解得:x=2n+1,则C2的坐标为:(2n+1,1).故答案为:(2n+1,1).21.(8分)在一块a平方公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,要比10个人插秧提前3天完成.(1)一个人一天能在稻田上插秧平方公顷;(2)一台插秧机天完成这块稻田的插秧工作;(3)一台插秧机的工作效率是一个人工作效率的多少倍?【分析】(1)设一个人一天能在稻田上插秧x平方公顷,根据在一块a平方公顷的稻田上插秧,如果10个人插秧,要用m天完成列出方程,求出x的值即可;(2)设一台插秧机y天完成这块稻田的插秧工作,根据如果一台插秧机工作,要比10个人插秧提前3天完成列出方程,求出y的值即可;(3)求出的值即可.【解答】解:(1)设一个人一天能在稻田上插秧x平方公顷,根据题意得10mx=a,解得x=.答:一个人一天能在稻田上插秧平方公顷;(2)设一台插秧机y天完成这块稻田的插秧工作,根据题意得(m﹣3)y=a,解得y=.答:一台插秧机天完成这块稻田的插秧工作;(3)==.答:一台插秧机的工作效率是一个人工作效率的倍.故答案为;.22.(7分)在Rt△ABC中,∠ACB=90°,BD是△ABC的角平分线.(1)如图1,若AD=BD,求∠A的度数;(2)如图2,在(1)的条件下,作DE⊥AB于E,连接EC.求证:△EBC是等边三角形.【分析】(1)根据角平分线和等腰三角形的性质求得∠A=∠DBA=∠DBC,由∠A+∠DBA+∠DBC=90°,即可求得∠A=30°;(2)根据等腰三角形三线合一的性质得出CE=BE,由∠EBC=60°,即可证得△EBC 是等边三角形.【解答】(1)解:∵AD=BD,∴∠A=∠DBA,∵∠DBA=∠DBC,∴∠A=∠DBA=∠DBC,∵∠ACB=90°,∴∠A+∠DBA+∠DBC=90°,∴∠A=30°;(2)证明:∵AD=BD,DE⊥AB,∴AE=BE,∴CE=BE,∵∠A=30°,∴∠EBC=60°,∴△EBC是等边三角形.23.(10分)某校为美化校园,计划对面积为2000m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为480m2区域的绿化时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成绿化的面积分别是多少m2?(2)在该次校园绿化工程中,设安排甲队工作y天①再安排乙队工作(50﹣2y)天,完成该工程(用含有y的式子表示)②若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.12万元,要使这次的绿化总费用不超过7.6万元,乙队的工作天数不超过34天,如何安排甲队的工作天数?【分析】(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为480m2区域的绿化时,甲队比乙队少用6天,列方程求解;(2)①用总工作量减去甲队的工作量,然后除以乙队的工作效率即可求解;②设应安排甲队工作a天,根据绿化总费用不超过7.6万元,乙队的工作天数不超过34天,列不等式组求解.【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=6,解得:x=40,经检验,x=40是原方程的解,则甲工程队每天能完成绿化的面积是40×2=80(m2).答:甲、工程队每天能完成绿化的面积是80m2,乙工程队每天能完成绿化的面积是40m2;(2)①再安排乙队工作=50﹣2y天,完成该工程;故答案为:(50﹣2y).②设应安排甲队工作a天,根据题意得:,解得:8≤a≤10.答:应安排甲队工作8或9或10天.24.(10分)在△ABC中,∠ACB=2∠ABC,∠BAC的平分线AQ交BC于点D,点P为AQ上一动点,过点P作直线l⊥AQ于P,分别交直线AB、AC、BC于点E、F、M.(1)当直线l经过点B时(如图1),求证:AB=AF;(2)当M在BC延长线上时(如图2),写出BE、CF、CD之间的数量关系,并加以证明;(3)当M是BC中点时,请补全图3,并直接写出=2(不需证明)【分析】(1)根据ASA可以证明△APB≌△APF得到AB=AF.(2)通过辅助线构造△ADB≌△ADG,得到∠B=∠G,由∠ACB=2∠B,得到∠CDG=∠G,得到CD=CG,再证明BE=FG可以得到结论.(3)根据中点M,构造△CNM≌△BEM,得到BE=CN,BE=FG,再证明CN=NF,进而得到结论.【解答】证明:(1)∵∠BAC的平分线AQ交BC于点D,∴∠BAD=∠CAD,∵直线l⊥AQ,∴∠APE=∠APF=90°,在△ABP与△AFP中,,∴△ABP≌△AFP,∴AB=AF;(2)如图2,延长AC到G使CG=CD,连接CD,∴∠CDG=∠G,∵∠ACB=∠G+∠CDG,∴∠ACB=2∠G,∵∠ACB=2∠ABC,∴∠B=∠G,在△ABD与△AGD中,,∴△ABD≌△AGD,∴AB=AG,在△EAP与△FAP中,,∴△EAP≌△FAP,∴AE=AF,∴BE=GF,∵GF=CG+CF=CF+CD,∴BE=CF+CD;(3)如图,作CN∥AB交EF于N,∵CN∥BA,∠BEM=∠VNM,在△BEM和△CMN中,∴△BME≌△CMN,∴BE=CN,由(2)可知CD=CG,AB=AG,AE=AF,∴BE=FG,∠AEF=∠AFE,∵∠CNF=∠AEF,∴∠CNF=∠CFN,∴CN=CF=FG,∵CD=2CF,∴=2.故答案为2.25.(12分)等腰Rt△ABC中,∠BAC=90°,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)如图1,若A(0,1),B(2,0),求C点的坐标.(2)如图2,当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE.(3)如图3,M为y轴上一点,连接CM,以CM为直角边向右作等腰Rt△CMN,其中CM=MN,连接NB,若AM=7,求五边形ACMNB的面积.(1)过点C作CF⊥y轴于点F通过证△ACF≌△ABO得CF=OA=1,AF=OB=2,【分析】求得OF的值,就可以求出C的坐标;(2)过点C作CG⊥AC交y轴于点G,先证明△ACG≌△ABD就可以得出CG=AD=CD,∠DCE=∠GCE=45°,再证明△DCE≌△GCE就可以得出结论;【解答】(1)解:过点C作CF⊥y轴于点F如图1所示:∴∠AFC=90°,∴∠CAF+∠ACF=90°.∵△ABC是等腰直角三角形,∠BAC=90°,∴AC=AB,∠CAF+∠BAO=90°,∠AFC=∠BAC,∴∠ACF=∠BAO.在△ACF和△ABO中,∴△ACF≌△ABO(AAS)∴CF=OA=1,AF=OB=2∴OF=1∴C(﹣1,﹣1);(2)证明:过点C作CG⊥AC交y轴于点G,如图2所示:∴∠ACG=∠BAC=90°,∴∠AGC+∠GAC=90°.∵∠CAG+∠BAO=90°,∴∠AGC=∠BAO.∵∠ADO+∠DAO=90°,∠DAO+∠BAO=90°,∴∠ADO=∠BAO,∴∠AGC=∠ADO.在△ACG和△ABD中∴△ACG≌△ABD(AAS),∴CG=AD=CD.∵∠ACB=∠ABC=45°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE;(3)作CP⊥y轴,NQ⊥y轴,分别交y轴于点P,点Q,如图3所示:同(2)得:△ACP≌△BAO,△MCP≌△NMQ,∴CP=MQ=AO,QN=PM,AP=OB,设CP=x,则MQ=AO=x,∴△ACM的面积=×AM×CP=,∴△AOB的面积+△MQN的面积=△ACP的面积+△MCP的面积=△ACM的面积=,∵BO∥QN,OQ不平行BN,∴四边形BOQN的面积=(OB+QN)×OQ=(AP+PM)×OQ=×AM×OQ=×7×(7﹣2x)=﹣7x,∴五边形ACMNB的面积=△ACM的面积+△AOB的面积+△MQN的面积+四边形BOQN的面积=++﹣7x=.。
2015年4月武汉市部分学校八年级联考
数学试题
一、选择题(3′×10=30′)
1、下列各式属于最简二次根式的有( ) A.8 B .12+x C.3y D.
2
1
2、下列各式计算正确的是( )
A .23×33=63 B.2+3=5 C .53-22=33 D .2÷3=3
6 3、在平面直角坐标系中,已知点P 的坐标为(5、12),则OP 的长为( ) A .5 B .12 C .13 D .14
4、等腰直角三角形的直角边为2,则斜边的长为( ) A .2 B .22 C .1 D .2
5、代数式
2
1-x 有意义的x 取值范围是( )
A .x ≥2
B .>2
C .x ≠2
D .x <2
6、以下各组数为边的三角形中,是直角三角形的有( )个 ①3、4、5 ②3、4、5 ③32、
、42
、5
2
④0.03、0.04、0.05
A .1个
B .2个
C .3个
D .4个
7、如果一个三角形的三边分别为1、2、3,则其面积为( )
A .2
B .
22 C.23 D .2
6
8、对于二次根式92+x ,以下说法不正确的是( )
A .它是一个无理数
B .它是一个正数
C .它是最简二次根式
D .它有最小值为3 9、观察下组数据,寻找规律:0、3、6、3、23、15……那么第10个数据是( ) A .26 B .33 C .7 D .30
10、如图所示,∠DAB =∠DCB =90°,CB =CD ,且AD =3,AB =4,
则AC 长为( ) A .
227 B .5 C .7
2
D .7
二、填空(3′×6=18′)
11、在实数范围内分解因式:x 4
-4= 12 、计算:3÷3×
3
1=
13、如图,∠ACB =90°,AB =5,分别以AC 、BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2=
14、已知直角三角形的两条边长为3和4 ,则第三条边长为
15、化简:3x =
16、如图,四边形ABCD 中,AD =3,CD =4,∠ABC =∠ACB =∠ADC =45°,则BD 的长为 三、解答题。
17、(8′)计算: (1)(12-
3
2
)÷3
(2)27-(53
1
+75)
18、(8′)先化简,再求值:3
2x 9+6
4x -2x x
1将你喜欢的x 值代入求值。
19、(8′) R t △ABC 中,∠C =90°,AC =3+2,BC =3-2。
(1)求△ABC 的面积。
(2)求AB 的长。
20、(8′)△ABC是武汉市在拆除违章建筑后的一块三角形空地,已知∠A=150°,AB=30m,AC=20m,如果要在这块空地上种草皮,按每平方米a元计算,则需要资金多少元?
21、(8′)已知长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点D与B重合,折痕为EF。
(1)求△ABE的面积。
(2)求EF的长。
22、(10′)如图,A、B两个小镇在河流的同侧,它们到河流的距离AC=10千米,BD=30千米,且CD=30千米,现要在河流边修建一自来水厂向两镇供水,铺设水管的费用为每千米3万元。
(1)请在河流上选择水厂的位置M,使铺设水管
的费用最少。
(不写作法,保留作图痕迹)
(2)最低费用为多少?
23、(10′)
(1)如左图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A、B、C的距离分别为3、4、5,求∠AEB的度数。
(2)如右图,在△ABC中,∠CAB=90°,AB=AC,E、F为BC上的两点,且∠EAF=45°,MN2与NC2+BM2有何关系?说明理由。
24、(12′)
a +∣a-32∣=0,P是线段已知在平面直角坐标系中, A(a、o)、B(o、b)满足b
AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E。
(1)求a、b的值。
(2)当P点运动时,PE的值是否发生变
化?若变化,说明理由;若不变,请求PE
的值。
(3)若∠OPD=45°,求点D的坐标。
八年级数学参考答案
一、选择题(3′×10=30′)。
二、
11、(x 2
+2)(x +2)(x -2) 12、1
13、
4
25π
14、5或7 15、-x x - 16、34 三、 17、(1)2-
3
2
(2)-3311 18、原式=3x 19、(1)
2
1
(2)10 20、150a
21、(1)6 (2)10
22、(1)略 (2)150万元
23、(1)∠AEB =150° (2)MN 2=BM 2+NC 2
24、(1)a =32 b =32
(2)PE =3 (3)D (62-6 ,0)。