2018-2019学年湖北省武汉市八年级(上)期中数学试卷
- 格式:docx
- 大小:383.96 KB
- 文档页数:27
2018-2019学年湖北省武汉市蔡甸区八年级(上)期中数学试卷一、选择题(10×3分30分)1.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()A.0<x<8B.2<x<8C.0<x<6D.2<x<62.如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2的度数为()A.150°B.180°C.240°D.270°3.已知凸n边形有n条对角线,则此多边形的内角和是()A.360°B.540°C.720°D.900°4.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE 的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC5.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL6.如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中最多能画出()个格点三角形与△ABC 成轴对称.A.6个B.5个C.4个D.3个7.如图,点O是△ABC内一点,∠A=80°,BO、CO分别是∠ABC和∠ACB的角平分线,则∠BOC等于(等于( )A.140°B.120°C.130°D.无法确定8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则等于( )∠α+∠β等于(A.180°B.210°C.360°D.270°9.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE的度数为( )相交于点P,则∠BPD的度数为(A.110°B.125°C.130°D.155°10.如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是(的面积是( )A.8B.9C.10D.11二、填空题(6×3分=18分)11.凸多边形的外角和等于.凸多边形的外角和等于 .12.已知两点A(﹣a,5),B(﹣3,b)关于x轴对称,则a+b=.13.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠ADE的度数为的度数为 .14.如图,在△ABC中,AD是高,AE平分∠BAC,∠B=50°,∠C=80°,则∠DAE=.15.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,,下面说法中正确的序号是 .交BE于点H,下面说法中正确的序号是①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.16.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN 的度数是 .的度数是三、解答题(共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形?18.(8分)如图,点B、E、C、F在同一直线上,BE=CF,AB=DE,AC=DF.求证:AB∥DE.19.(8分)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.20.(8分)如图,AD为△ABC的中线,F在AC上,BF交AD于E,且BE=AC.求证:AF=EF.21.(8分)如图,AB>AC,∠BAC的平分线与BC边的中垂线GD相交于点D,过点D作DE ⊥AB于点E,DF⊥AC于点F,求证:BE=CF.22.(10分)如图,在平面直角坐标系中有一个轴对称图形,A(3,2),B(3,﹣6)两点在此图形上且互为对称点,若此图形上有一个点C(﹣2,+1).(1)求点C的对称点的坐标.(2)求△ABC的面积.23.(10分)如图,在△ABC中,∠BAC=120°,AD,BE分别为△ABC的角平分线,连结DE.(1)求证:点E到DA,DC的距离相等;(2)求∠DEB的度数.24.(12分)已知射线AP是△ABC的外角平分线,连结PB、PC.(1)如图1,若BP平分∠ABC,且∠ACB=30°,直接写出∠APB=.(2)如图1,若P与A不重合,求证:AB+AC<PB+PC.(3)如图2,若过点P作NM⊥BA,交BA延长线于M点,且∠BPC=∠BAC,求:的值.2018-2019学年湖北省武汉市蔡甸区八年级(上)期中数学试卷参考答案与试题解析一、选择题(10×3分30分)1.若三角形的三边长分别为3,4,x ﹣1,则x 的取值范围是(的取值范围是( ) A .0<x <8B .2<x <8C .0<x <6D .2<x <6【分析】三角形的三边关系是:任意两边之和>第三边,任意两边之差<第三边.已知两边时,第三边的范围是>两边的差,<两边的和.这样就可以确定x 的范围,从而确定x 的值. 【解答】解:依据三角形三边之间的大小关系,列出不等式组,解得2<x <8.故选:B .【点评】考查了三角形的三边关系,能够熟练解不等式组.2.如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2的度数为(为( )A .150°B .180°C .240°D .270°【分析】首先根据三角形内角和定理算出∠3+∠4的度数,再根据四边形内角和为360°,计算出∠1+∠2的度数. 【解答】解:∵∠5=90°, ∴∠3+∠4=180°﹣90°90°=90°=90°, ∵∠3+∠4+∠1+∠2=360°, ∴∠1+∠2=360°﹣90°90°=270°=270°, 故选:D .【点评】此题主要考查了三角形内角和定理,多边形内角和定理,关键是利用、三角形的内角和180°,四边形的内角和360°.3.已知凸n 边形有n 条对角线,则此多边形的内角和是(条对角线,则此多边形的内角和是( ) A .360°B .540°C .720°D .900°【分析】根据多边形的对角线公式得出方程,求出n ,再根据多边形的内角和公式求出内角和即可.【解答】解:∵凸n 边形有n 条对角线, ∴=n ,解得:n=0(舍去),n=5,即多边形的边数是5,所以这个多边形的内角和=(5﹣2)×180°180°=540°=540°, 故选:B .【点评】本题考查了多边形的外角和内角、多边形的对角线,本题考查了多边形的外角和内角、多边形的对角线,能熟记多边形的对角线公式和多能熟记多边形的对角线公式和多边形内角和公式是解此题的关键,注意:n 边形的内角和等于(n ﹣2)×180°,n (n >3)边形的对角线的总条数=.4.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE的是(的是( )A .∠A=∠CB .AD=CBC .BE=DFD .AD ∥BC【分析】求出AF=CE ,再根据全等三角形的判定定理判断即可. 【解答】解:∵AE=CF , ∴AE +EF=CF +EF , ∴AF=CE ,A 、∵在△ADF 和△CBE 中∴△ADF ≌△CBE (ASA ),正确,故本选项错误;B 、根据AD=CB ,AF=CE ,∠AFD=∠CEB 不能推出△ADF ≌△CBE ,错误,故本选项正确;C 、∵在△ADF 和△CBE 中∴△ADF ≌△CBE (SAS ),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选:B.【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是(的依据是( )A.SSS B.SAS C.AAS D.HL【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D.【点评】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.6.如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点为格点三角形,在图中最多能画出( )个格点三角形与△ABC 三角形,图中的△ABC为格点三角形,在图中最多能画出(成轴对称.A.6个B.5个C.4个D.3个【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解【解答】解:如图,最多能画出6个格点三角形与△ABC成轴对称.故选:A.【点评】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.7.如图,点O是△ABC内一点,∠A=80°,BO、CO分别是∠ABC和∠ACB的角平分线,则∠BOC等于(等于( )A.140°B.120°C.130°D.无法确定【分析】根据三角形内角和定理求出∠ABC+∠ACB=100°,根据角平分线求出∠OBC=∠ABC,∠OCB=∠ACB求出∠OBC+∠OCB=50°,根据三角形的内角和定理求出即可.【解答】解:∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∵BO、CO分别是∠ABC和∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC +∠OCB=50°,∴∠BOC=180°﹣(∠OBC +∠OCB )=130°, 故选:C .【点评】本题考查了三角形的内角和定理和角平分线定义的应用,注意:本题考查了三角形的内角和定理和角平分线定义的应用,注意:三角形的内角和等于三角形的内角和等于180°.8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于(等于( )A .180°B .210°C .360°D .270°【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可. 【解答】解:∠α=∠1+∠D , ∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D +∠4+∠F =∠2+∠D +∠3+∠F =∠2+∠3+30°+90° =210°, 故选:B .【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.如图,在△ACD 和△BCE 中,AC=BC ,AD=BE ,CD=CE ,∠ACE=55°,∠BCD=155°,AD 与BE 相交于点P ,则∠BPD 的度数为(的度数为( )A .110°B .125°C .130°D .155°【分析】由条件可证明△ACD ≌△BCE ,可求得∠ACB ,再利用三角形内角和可求得∠APB=∠ACB ,则可求得∠BPD . 【解答】解: 在△ACD 和△BCE 中∴△ACD ≌△BCE (SSS ), ∴∠ACD=∠BCE ,∠A=∠B , ∴∠BCA +∠ACE=∠ACE +∠ECD ,∴∠ACB=∠ECD=(∠BCD ﹣∠ACE )=×(155°﹣55°)=50°, ∵∠B +∠ACB=∠A +∠APB , ∴∠ABP=∠ACB=50°, ∴∠BPD=180°﹣50°50°=130°=130°, 故选:C .【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.10.如图,在△ABC 中,E 为AC 的中点,AD 平分∠BAC ,BA :CA=2:3,AD 与BE 相交于点O ,若△OAE 的面积比△BOD 的面积大1,则△ABC 的面积是(的面积是( )A .8B .9C .10D .11【分析】作DM ⊥AC 于M ,DN ⊥AB 于N .首先证明BD :DC=2:3,设△ABC 的面积为S .则S △ADC =S ,S △BEC =S ,构建方程即可解决问题; 【解答】解:作DM ⊥AC 于M ,DN ⊥AB 于N .∵AD 平分∠BAC ,DM ⊥AC 于M ,DN ⊥AB 于N , ∴DM=DN ,∴S△ABD:S△ADC=BD:DC=•AB•DN:•AC•DM=AB:AC=2:3,设△ABC的面积为S.则S△ADC=S,S△BEC=S,∵△OAE的面积比△BOD的面积大1,∴△ADC的面积比△BEC的面积大1,∴S﹣S=1,∴S=10,故选:C.【点评】本题考查三角形的面积、角平分线的性质定理、三角形的中线等知识,解题的关键是学会利用参数构建方程解决问题.二、填空题(6×3分=18分)11.凸多边形的外角和等于.凸多边形的外角和等于 360°.【分析】根据多边形的外角和=360度解答即可.【解答】解:凸多边形的外角和等于360°,故答案为:360°【点评】本题考查多边形的内角与外角,利用多边形的外角和等于360°即可解决问题.12.已知两点A(﹣a,5),B(﹣3,b)关于x轴对称,则a+b=﹣2.【分析】直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.【解答】解:∵两点A(﹣a,5),B(﹣3,b)关于x轴对称,∴﹣a=﹣3,b=﹣5,则a=3,故a+b=﹣2.故答案为:﹣2.【点评】此题主要考查了关于x轴对称点的性质,正确把握点的坐标特点是解题关键.13.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠ADE的度数为的度数为 70°.【分析】根据全等三角形的性质,即可得到∠BAC=∠DAE,AB=AD,∠ADE=∠B,再根据∠EAC=40°,即可得到∠BAD的度数,最后根据三角形内角和定理以及全等三角形的对应角相等,即可得到结论.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∠ADE=∠B,∴∠EAC=∠DAB=40°,∴△ABD中,∠B=(180°﹣∠BAD)=70°,∴∠ADE=∠B=70°,故答案为:70°.【点评】本题主要考查了全等三角形的性质,解题时注意:全等三角形的对应边相等,全等三角形的对应角相等.14.如图,在△ABC中,AD是高,AE平分∠BAC,∠B=50°,∠C=80°,则∠DAE=15°.【分析】根据题意和图形,可以求得∠CAE和∠CAD的度数,从而可以求得∠DAE的度数.【解答】解:∵在△ABC中,AD是高,∠B=50°,∠C=80°,∴∠ADC=90°,∠BAC=180°﹣∠B﹣∠C=50°,∴∠CAD=10°,∵AE平分∠BAC,∴∠CAE=25°,∴∠DAE=∠CAE﹣∠CAD=15°,故答案为:15°.【点评】本题考查三角形内角和,解答本题的关键是明确题意,利用数形结合的思想解答.15.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法中正确的序号是①②③ .,下面说法中正确的序号是 ①②③①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【解答】解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故答案为:①②③.【点评】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.16.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN 的度数是 50°.的度数是【分析】过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,NF ⊥CM 于F ,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF ,再根据到角的两边距离相等的点在角的平分线上判断出MN 平分∠BMC ,然后根据三角形内角和等于180°求出∠ABC +∠ACB ,再根据角的三等分求出∠MBC +∠MCB 的度数,然后利用三角形内角和定理求出∠BMC 的度数,从而得解. 【解答】解:如图,过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,NF ⊥CM 于F , ∵∠ABC 的三等分线与∠ACB 的三等分线分别交于点M 、N , ∴BN 平分∠MBC ,CN 平分∠MCB , ∴NE=NG ,NF=NG , ∴NE=NF ,∴MN 平分∠BMC , ∴∠BMN=∠BMC , ∵∠A=60°,∴∠ABC +∠ACB=180°﹣∠A=180°﹣60°60°=120°=120°,根据三等分,∠MBC +∠MCB=(∠ABC +∠ACB )=×120°120°=80°=80°, 在△BMC 中,∠BMC=180°﹣(∠MBC +∠MCB )=180°﹣80°80°=100°=100°, ∴∠BMN=×100°100°=50°=50°, 故答案为:50°.【点评】本题考查了三角形的内角和定理,角平分线的性质与判定,作辅助线,判断出MN 平分∠BMC 是解题的关键,注意整体思想的利用.三、解答题(共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形?【分析】设这个多边形的边数为n ,根据内角和公式和外角和公式,列出等式求解即可. 【解答】解:设这个多边形的边数为n , ∴(n ﹣2)•180°=2×360°, 解得:n=6.故这个多边形是六边形.【点评】本题考查了多边形的内角和与外角和,是基础知识要熟练掌握.18.(8分)如图,点B、E、C、F在同一直线上,BE=CF,AB=DE,AC=DF.求证:AB∥DE.【分析】欲证明AB∥DE,只要证明∠B=∠DEF.【解答】证明:∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠B=∠DEF,∴AB∥DE.解题的关键是正确寻找全本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,等三角形全等条件,属于中考常考题型.19.(8分)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.【分析】根据全等三角形对应角相等可得∠B=∠DEC,全等三角形对应边相等可得BC=EC,根据等边对等角可得∠B=∠BEC,从而得到∠BEC=∠DEC,再根据角平分线的定义证明即可.【解答】证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.熟练掌握全等三角形的性质并准【点评】本题考查了全等三角形的性质,等边对等角的性质,本题考查了全等三角形的性质,等边对等角的性质,熟练掌握全等三角形的性质并准确识图是解题的关键.20.(8分)如图,AD为△ABC的中线,F在AC上,BF交AD于E,且BE=AC.求证:AF=EF.【分析】延长AD至P使DP=AD,连接BP,利用全等三角形的判定和性质证明即可.【解答】证明:延长AD至P使DP=AD,连接BP,在△PDB与△ADC中,∴△PDB≌△ADC(SAS),∴BP=AC,∠P=∠DAC,∵BE=AC,∴BE=BP,∴∠P=∠BEP,∴∠AEF=∠EAF,∴AF=EF.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.(8分)如图,AB>AC,∠BAC的平分线与BC边的中垂线GD相交于点D,过点D作DE⊥AB于点E,DF⊥AC于点F,求证:BE=CF.【分析】连结BD,CD,由角平分线的性质和中垂线的性质就可以得出△BED≌△CFD就可以得出结论;【解答】证明:连结BD,CD.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠AED=∠BED=∠AFD=90°,DE=DF.∵DG垂直平分BC,∴DB=DC.在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL),∴BE=CF;本题考查了角平分线的性质的运用,线段的垂直平分线的运用,全等三角形的判定及全等三角形的判定及【点评】本题考查了角平分线的性质的运用,线段的垂直平分线的运用,性质的运用,解答时证明三角形全等是关键.22.(10分)如图,在平面直角坐标系中有一个轴对称图形,A(3,2),B(3,﹣6)两点在此图形上且互为对称点,若此图形上有一个点C(﹣2,+1).(1)求点C的对称点的坐标.(2)求△ABC的面积.【分析】(1)根据A、B的坐标,求出对称轴方程,即可据此求出C点对称点坐标.(2)根据三角形面积公式可得结论.【解答】解:∵A、B关于某条直线对称,且A、B的横坐标相同,∴对称轴平行于x轴,又∵A的纵坐标为2,B的纵坐标为﹣6,∴故对称轴为y==﹣2,∴y=﹣2.则设C(﹣2,1)关于y=﹣2的对称点为(﹣2,m),于是=﹣2,解得m=﹣5.则C的对称点坐标为(﹣2,﹣5).(2)如图所示,S△ABC=×(﹣2+6)×(3+2)=10.【点评】此题考查了坐标与图形变化﹣对称,要知道,以关于x轴平行的直线为对称轴的点的横坐标不变,纵坐标之和的平均数为对称轴上点的纵坐标.23.(10分)如图,在△ABC中,∠BAC=120°,AD,BE分别为△ABC的角平分线,连结DE.(1)求证:点E到DA,DC的距离相等;(2)求∠DEB的度数.【分析】(1)过E 作EH ⊥AB 于H ,EF ⊥BC 于F ,EG ⊥AD 于G ,求出∠HAE=∠CAD ,根据角平分线性质求出EH=EG ,EF=EH ,即可得出答案;(2)根据角平分线性质求出∠ADE=∠CDE ,根据三角形外角性质得出即可.【解答】(1)证明:过E 作EH ⊥AB 于H ,EF ⊥BC 于F ,EG ⊥AD 于G , ∵AD 平分∠BAC ,∠BAC=120°, ∴∠BAD=∠CAD=60°, ∵∠CAH=180°﹣120°120°=60°=60°, ∴AE 平分∠HAD , ∴EH=EG ,∵BE 平分∠ABC ,EH ⊥AB ,EF ⊥BC , ∴EH=EF , ∴EF=EG ,∴点E 到DA 、DC 的距离相等;(2)解:∵由(1)知:DE 平分∠ADC , ∴∠EDC=∠DEB +∠DBE , ∴=∠DEB +∠ABC ,∴∠DEB=(∠CDA ﹣∠ABC )=∠BAD=30°.【点评】本题考查了角平分线性质,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,到角的两边距离相等的点在角的平分线上;角平分线上的点到角两边的距离相等.24.(12分)已知射线AP 是△ABC 的外角平分线,连结PB 、PC .(1)如图1,若BP 平分∠ABC ,且∠ACB=30°,直接写出∠APB= 15° . (2)如图1,若P 与A 不重合,求证:AB +AC <PB +PC .(3)如图2,若过点P 作NM ⊥BA ,交BA 延长线于M 点,且∠BPC=∠BAC ,求:的值.【分析】(1)根据三角形的角平分线的定义和三角形外角的性质即可得到结论;(2)在射线AD上取一点H,是的AH=AC,连接PH.则△APH≌△APC,根据三角形的三边关系即可得到结论.(3)过P作PN⊥AC于N,根据角平分线的性质得到PM=PN,根据全等三角形的性质得到AM=AN,BM=CN,于是得到结论.【解答】解:(1)∵∠DAC=∠ABC+∠ACB,∠1=∠2+∠APB,∵AE平分∠DAC,PB平分∠ABC,∴∠1=DAC,∠2=∠ABC,∴∠APB=∠1﹣∠2=DAC﹣ABC=∠ACB=15°,故答案为:15°;(2)在射线AD上取一点H,是的AH=AC,连接PH.则△APH≌△APC,∴PC=PD,在△BPH中,PB+PH>BH,∴PB+PC>AB+AC.(3)过P作PN⊥AC于N,∵AP平分∠MAN,PM⊥BA,∴PM=PN,在Rt△APM与Rt△APN中,,∴Rt△APM≌Rt△APN(HL),∴AM=AN,∵∠BPC=∠BAC,∴A,B,C,P四点共圆,∴∠ABP=∠PCN,在△PMB与△PNC中,,∴BM=CN,∵AM=AN,∴AC﹣AB=2AM,∴.【点评】本题考查了全等三角形的判定和性质,四点共圆,圆周角定理,三角形的三边关系,角平分线的定义和性质,三角形额外角的性质,正确的作出辅助线是解题的关键.**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删除**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**司将予以删。
2018-2019学年上学期武汉市江岸区八年级期中数学试卷一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.86.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=cm.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为.12.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则AE = .13.如图,在△ABC 中,∠C =90°,AB 的垂直平分线分别交AB 、AC 于点D 、E ,AE =5,AD =4,线段CE 的长为 .14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程. 已知:直线l 和l 外一点P .求作:直线l 的垂线,使它经过点P作法:如图,(1)在直线l 上任意两点A 、B ; (2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ; (3)作直线PQ ,所以直线PQ 就是所求作的垂线.该作图的依据是 .16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、有四条对称轴,B、有六条对称轴,C、有四条对称轴,D、有二条对称轴,综上所述,对称轴最少的是D选项.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,7【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、52+62≠72,不能组成直角三角形,故此选项错误;故选:C.【点评】此题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°【分析】根据全等三角形的判定方法可知只有C能画出唯一三角形.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.【点评】本题考查了全等三角形的判定方法;一般三角形全等的判定方法有SSS、SAS、ASA、AAS,熟练掌握全等三角形的判定方法是解题的关键.4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.【点评】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.8【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:D.【点评】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.6.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4【分析】根据条件能证明△ABC≌△A1B1C1,和△AC D≌△A1B1C1,的条件.【解答】解:有一组邻边和三个角对应相等的两个四边形全等,故①②③正确.故选:C.【点评】本题考查了三角形全等的判定与性质,解题的关键是注意:多边形的全等可以通过作辅助线转化为证明三角形全等的问题.二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为5.【分析】根据勾股定理求CD,根据角平分线性质得出DE=CD,即可得出答案.【解答】解:在Rt△ACD中,AD=13,AC=12,由勾股定理得:CD=5,过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=5,即点D到AB的距离为5,故答案为:5.【点评】本题考查了角平分线性质和勾股定理,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,角平分线上的点到角两边的距离相等.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=3cm.【分析】只要证明MN=BM+CN即可解决问题;【解答】解:∵∠ABC、∠ACB的平分线相交于点O,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠OCN,∴BM=MO,ON=CN,∴MN=MO+ON,即MN=BM+CN,∵MN=5cm,CN=2cm,∴BM=5﹣2=3cm,故答案为3cm.【点评】此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BMO,△CNO是等腰三角形.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.【分析】由△ABC的三边长,可证明△ABC为直角三角形,作DH⊥AC于H,利用角平分线的性质得DH=DE,根据三角形的面积公式得×DE•AB+×DH•AC=AB•AC,于是可求出DE的值.【解答】解:作DH⊥AC于H,∵AD是△ABC的角平分线,DE⊥AB于点E,∴DH=DE,∵AB=4,AC=3,BC=5,∴△ABC为直角三角形,∴DE•AB+DH•AC=AB•AC,∴DH=DE=,故答案为:【点评】本题考查了勾股定理的逆定理运用以及角平分线的性质,能够证明ABC为直角三角形,得到DE•AB+ DH•AC=AB•AC是解题的关键.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.【分析】延长BC交HG于点M,延长HG交DE于点N,先计算出不规则铁皮的面积,再计算面积相等的正方形的面积.【解答】解:如图所示,延长BC交HG于点M,延长HG交DE于点N,则四边形ABMH、CDNM为矩形,四边形GFEN为正方形.所以“Z”字形的铁皮的面积=S矩形ABMH+S矩形CDNM+S正方形GFEN=AH•AB+CD•DN+GF•EF=3×1+3×2+1×1=10.∴正方形的边长=故答案为:.【点评】本题考查了矩形、正方形的判定和面积及算术平方根.解决本题的关键是利用割补的办法计算出不规则铁皮的面积.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为2.【分析】根据等腰直角三角形的性质和等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵△ABC,△ADE均是等腰直角三角形,∴∠B=∠D=45°,∠BEF=∠DCF=90°,∴△BEF,△DCF均是等腰直角三角形,∴BE=EF=CF=CD,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC,∵AC=AE=1,∴AB=AD=,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC=2,故答案为:2.【点评】本题考查了等腰直角三角形的性质,熟练掌握等腰直角三角形的判定与性质是解题的关键.12.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=2.【分析】在Rt△BED中,求出BE即可解决问题;【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠EDB=90°,∵BD=2,∴EB=2BD=4,∴AE=AB﹣BE=6﹣4=2,故答案为2【点评】本题考查等边三角形的性质、直角三角形的30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,AD=4,线段CE 的长为 1.4.【分析】由AB的垂直平分线DE交AC于点D,垂足为E,根据线段垂直平分线的性质,求得AB,根据相似三角形的性质得到结论.【解答】解:∵DE是AB的垂直平分线,∴AB=2AD=8,∠ADE=∠C=90°,∴△ADE∽△ACB,∴,∴AC=6.4,∴CE=1.4,故答案为:1.4.【点评】此题考查了线段垂直平分线的性质、相似三角形的判定和性质,熟练掌握的线段垂直平分线性质是解决问题的关键.14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P作法:如图,(1)在直线l上任意两点A、B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ,所以直线PQ就是所求作的垂线.该作图的依据是到线段两端点距离相等的点在线段的垂直平分线上.【分析】由AP=AQ、BP=BQ,依据到线段两端点距离相等的点在线段的垂直平分线上知点A、B在线段PQ 的中垂线上,据此可得PQ⊥l.【解答】解:由作图可知AP=AQ、BP=BQ,所以点A、B在线段PQ的中垂线上(到线段两端点距离相等的点在线段的垂直平分线上),所以PQ⊥l,故答案为:到线段两端点距离相等的点在线段的垂直平分线上.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的性质及过直线外一点作已知直线的垂线的尺规作图.16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=22°.【分析】根据折叠的性质即可得到AD=PD=BD,可得CD=AB=AD=BD,根据∠ACD=∠A=34°,∠BCD=∠B=56°,即可得出∠BCP=2∠BCD=112°,即可得出∠ACP=112°﹣90°=22°.【解答】解:由折叠可得,AD=PD=BD,∴D是AB的中点,∴CD=AB=AD=BD,∴∠ACD=∠A=34°,∠BCD=∠B=56°,∴∠BCP=2∠BCD=112°,∴∠ACP=112°﹣90°=22°,故答案为:22°.【点评】本题主要考查了折叠的性质以及三角形内角和定理的运用,解题时注意:三角形内角和是180°.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.【分析】(1)根据等腰三角形、直角三角形、锐角三角形的特点和网格特点,再根据勾股定理画出即可;(2)根据直角三角形的全等判定证明即可.【解答】解:(1)如图所示:(2)证明:∵AC⊥BC,BD⊥AD,在Rt△ADB与Rt△BCA中,,∴Rt△ADB≌Rt△BCA(HL),∴BC=AD.【点评】此题考查了等腰三角形的性质,全等三角形的判定和性质,关键是根据直角三角形的全等判定即可.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,根据勾股定理解答即可.【解答】解:根据题意知∠AOB=90°,OB=2×15=30海里,AB=50海里,由勾股定理得,OA====40海里,则甲轮船每小时航行=20海里.答:甲轮船每小时航行20海里.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A、B、C对应点A1、B1、C1的位置,然后顺次连接即可;(2)过BC中点D作DP⊥BC交直线l于点P,使得PB=PC;(3)S四边形PABC=S△ABC+S△APC,代入数据求解即可.【解答】解:(1)所作图形如图所示:(2)如图所示,过BC中点D作DP⊥BC交直线l于点P,此时PB=PC;(3)S四边形PABC=S△ABC+S△APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点,然后顺次连接.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.【分析】由折叠的性质可知BE=EF,设BE=EF=x,然后再依据勾股定理的逆定理可证明△ADF为直角三角形,则E、D、F在一条直线上,最后,在Rt△CED中,依据勾股定理列方程求解即可.【解答】解:∵将△ABE沿AE折叠,使点B落在长方形内点F处,∴∠AFE=∠B=90°,AB=AF=8,BE=FE.在△ADF中,∵AF2+DF2=62+82=100=102=AD2,∴△ADF是直角三角形,∠AFD=90°.∴D,F,E在一条直线上.设BE=x,则EF=x,DE=6+x,EC=10﹣x,在Rt△DCE中,∠C=90°,∴CE2+CD2=DE2,即(10﹣x)2+82=(6+x)2.∴x=4.∴BE=4.【点评】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x的方程是解题的关键.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=7cm,即可得出答案.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.【分析】(1)根据“等角三角形”的定义解答;(2)根据三角形内角和定理求出∠ACB,根据角平分线的定义得到∠ACD=∠DCB=∠ACB=40°,根据“等角三角形”的定义证明;(3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BC、DC=BD四种情况,根据等腰三角形的性质、三角形内角和定理计算.【解答】解:(1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°﹣∠A﹣∠B=80°∵CD为角平分线,∴∠ACD=∠DCB=∠ACB=40°,∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°﹣∠DCB﹣∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°,当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°,当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°,当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°﹣2x,则∠ACD=∠B=180°﹣2x,由题意得,180°﹣2x+42°=x,解得,x=74°,∴∠ACD=180°﹣2x=32°,∴∠ACB=106°,∴∠ACB的度数为111°或84°或106°或92°.【点评】本题“等角三角形”的定义、等腰三角形的性质、三角形内角和定理,灵活运用分情况讨论思想是解题的关键.- 21 -。
湖北省武汉市八年级(上)期中数学试卷(人教版)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.(3分)已知三角形的两边分别为5和8,则此三角形的第三边可能是()A.2B.3C.5D.132.(3分)人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间线段最短B.三角形的稳定性C.两点确定一条直线D.垂线段最短3.(3分)直角坐标系中,点A(2,﹣3)关于x轴对称的点的坐标是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)4.(3分)五边形的对角线的条数是()A.2B.3C.5D.105.(3分)在3×3的正方形网格中,把3个小正方形涂上阴影.下列各图中,这三个小正方形组成的图案不是轴对称图形的是()A.B.C.D.6.(3分)等腰三角形有一个角为100°,则其底角是()A.40°B.80°C.40°或100°D.80°或100°7.(3分)如图,两个三角形全等,则∠1的度数是()A.76°B.60°C.54°D.50°8.(3分)如图,线段AD与BC相交于O点,∠A=∠B=90°,添加以下的一个条件仍不能判定△ACD≌△BDC的是()A.∠ACD=∠BDC B.AD=BC C.OC=OD D.∠OCA=∠ODB 9.(3分)尺规作图中蕴含着丰富的数学知识和思想方法.如图,为了得到∠P'O'Q'=∠POQ,在用直尺和圆规作图的过程中,得到△AOB≌△A'O'B'的依据是()A.SAS B.SSS C.ASA D.AAS10.(3分)如图,有三条公路两两相交,现要修建一个货栈,使它到三条公路的距离相等,则满足修建货栈条件的地点有()A.一处B.三处C.四处D.无数处二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.(3分)等边三角形是轴对称图形,它有条对称轴.12.(3分)如图,在△ABC中,∠A=70°,∠ACD是△ABC的外角.若∠ACD=130°,则∠B=°.13.(3分)若n边形的每个内角都等于150°,则n=.14.(3分)如图,在△ABC中,∠ACB=90°,∠B=30°,CD是高.若AD=2,则BD =.15.(3分)如图,在△ABC中,AB=AC,点D在AC上,且AD=BD=BC,则∠C的度数是.16.(3分)如图,DF为四边形ACDB外角∠BDE的平分线,CF平分∠ACD,若∠A=140°,∠B=110°,则∠CFD的度数是.三、解答题(共5小题,共52分)17.(10分)如图,已知∠1=∠2,∠3=∠4.求证:BD=BC.18.(10分)(1)五边形的内角和为°;(2)在五边形ABCDE中,五个角的度数表示如图,求x的值.19.(10分)已知点C在线段BE上,且△ABC和△DCE都是等边三角形,连接BD,AE,分别交AC,DC于点M,N.(1)求证:△AEC≌△BDC;(2)求证:CM=CN.20.(10分)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,则∠NMA的度数是;(2)连接MB,若BC=6,△MBC的周长是14.①求△ABC的周长;②若P是直线MN上一个动点,则PB+PC的最小值是.21.(12分)如图在由正方形组成的7×8网格中,每个小正方形的顶点叫做格点,点A,B,C都是格点,仅用无刻度直尺,在给定的网格中完成画图.(1)在图(1)中,另画出△MNC,使△MNC≌△ABC(M为A的对应点);(2)在图(1)中,画出△ABC的中线CD;(3)在图(2)中,画出△ABC的高BE;再在高BE上画点F,使得∠AFE=45°.四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.22.(4分)如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=65°,则∠A的度数是.23.(4分)若等腰三角形一腰上的高与另一腰的夹角为48°,则底角的度数为.24.(4分)如图,先将正方形纸片对折,折痕为MN,再沿AE折叠,使点B落在MN上的点H处.下列结论:①DH=DA;②∠BHD=135°;③NE=BE;④EB=2HN.其中正确结论是.(填序号)25.(4分)如图,在△ABC中,AP平分∠BAC交BC于点P,AQ平分∠BAC的外角∠BAD 交CB的延长线于点Q,∠ABC=2∠C,AB=4cm,BP=3cm,则AC=cm,BQ =cm.五、解答题(共3小题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形26.(10分)已知△ABC的三边长分别为a,b,c.(1)化简式子|a﹣b+c|+|a﹣b﹣c|=;(2)若a=x+8,b=3x﹣2,c=x+2.①x的取值范围是;②当△ABC为等腰三角形时,求a,b,c的值.27.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,H为AB上一点,连接CH.(1)若AC=AH,①如图(1),求∠BCH的度数;②如图(2),G为AH上一点,GH=BH,GF⊥AB交AC于点E,交HC的延长线于点F,求证:EF=BH;(2)如图(3),AH=3BH,过A作AD⊥CH于点D,若CD=m,AC=n,直接用含m,n的式子写出△ADH的面积.28.(12分)如图,A,B分别为x轴,y轴的正半轴上的点,作AB关于坐标轴的对称线段CB和AD.(1)如图(1),若OA=6,OB=8,直接写出点C,D的坐标;(2)如图,E是OB上一点,直线AE交BC于点F,BE=BF.①如图(2),求证:CF=2OE;②如图(3),CH平分∠ACB交AB于点H,交AF于点G,若四边形COEG的面积等于△ACF面积的一半,判断△ABC的形状,并证明你的结论.。
.2019-2020学年湖北省武汉市汉阳区八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是(中,属于轴对称图形的是( )A .B .C .D .2.(3分)下列四个图形中,线段BE 是△ABC 的高的是(的高的是( )A .B .C .D .3.(3分)下列长度的三条线段能组成三角形的是(分)下列长度的三条线段能组成三角形的是( ) A .1,2,3 B .1,,3 C .3,4,8 D .4,5,6 4.(3分)一定能确定△ABC ≌△DEF 的条件是(的条件是( ) A .∠A=∠D ,AB=DE ,∠B=∠E B .∠A=∠E ,AB=EF ,∠B=∠D C .AB=DE ,BC=EF ,∠A=∠DD .∠A=∠D ,∠B=∠E ,∠C=∠F5.(3分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSSB .SASC .ASAD .AAS6.(3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(,则这个等腰三角形的周长为( ) A .11 B .16 C .17 D .16或17 7.(3分)如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为(的度数为( )A .40°B .45°C .60°D .70°8.(3分)如图,在△ABC 中,AB=AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若△ABC 与△EBC 的周长分别是40,24,则AB 为(为( )A .8B .12C .16D .20 9.(3分)如图,四边形ABCD 是直角梯形,AB ∥CD ,AD ⊥AB ,点P 是腰AD 上的一个动点,要使PC +PB 最小,则点P 应该满足(应该满足( )A .PB=PCB .PA=PDC .∠BPC=90°D .∠APB=∠DPC10.(3分)在平面直角坐标系中,已知A (0,2),B (2,0),若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是(的个数是( ) A .6B .7C .8D .9二、填空题(每题3分,共18分)11.(3分)已知点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是的坐标是 . 12.(3分)如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3的度数是度数是.13.(3分)如图,在△ABC 中,AB=AC ,AE ⊥AB 交BC 于点E ,∠BAC=120°,AE=3,则BC 的长是长是.14.(3分)如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数度数.15.(3分)在△ABC 中,AB=2cm ,AC=4cm ,则BC 边上的中线AD 的取值范围是的取值范围是 . 16.(3分)请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:点到三边距离的数学事实:.三、解答题(共8道小题,共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形? 18.(8分)如图,点B 、E 、C 、F 在同一直线上,BE=CF ,AB=DE ,AC=DF . 求证:AB ∥DE .19.(8分)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F . (1)∠ABC=40°,∠A=60°,求∠BFD 的度数; (2)直接写出∠A 与∠BFD 的数量关系.20.(8分)如图,在平面直角坐标系中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)在图中作出△ABC 关于直线m (直线m 上各点的横坐标都为﹣2)对称的图形△A 1B 1C 1;(2)线段BC 上有一点P (﹣,),直接写出点P 关于直线m 对称的点的坐标; (3)线段BC 上有一点M (a ,b ),直接写出点M 关于直线m 对称的点的坐标.21.(8分)如图△ABC是等边三角形.(1)请按要求完成图形,分别作∠ABC,∠ACB的平分线,交点为O;再分别作OB,OC的垂直平分线分别交BC于点D,E;(2)在(1)的条件下,判断△ODE的形状,并证明你的结论.22.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°.(1)教材中有这样的结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.请结合图1,证明该结论;(2)若将图2分割成三个全等的三角形,请你画出图形,并简单描述辅助线的作法.23.(10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.24.(12分)(1)问题解决:如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.;个性质是①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD,这个性质是②在图2中,求证AD=CD;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证BD+AD=BC.2019-2020学年湖北省武汉市汉阳区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是(中,属于轴对称图形的是( )A. B. C. D.【解答】解:A不属于轴对称图形,故错误;B不属于轴对称图形,故错误;C不属于轴对称图形,故错误;D属于轴对称图形,故正确;故选:D.2.(3分)下列四个图形中,线段BE是△ABC的高的是(的高的是( )A. B.C.D.【解答】解:线段BE是△ABC的高的图是选项D.故选D.3.(3分)下列长度的三条线段能组成三角形的是(分)下列长度的三条线段能组成三角形的是( )A .1,2,3 B.1,,3 C.3,4,8 D.4,5,6【解答】解:A、1+2=3,不能组成三角形,故本选项错误;B、1+<3,不能组成三角形,故本选项错误;C、3+4<8,不能组成三角形,故本选项错误;D、4+5>6,能组成三角形,故本选项正确.故选D.4.(3分)一定能确定△ABC≌△DEF的条件是(的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【解答】解:A 、根据ASA 即可推出△ABC ≌△DEF ,故本选项正确;B 、根据∠A=∠E ,∠B=∠D ,AB=DE 才能推出△ABC ≌△DEF ,故本选项错误; C 、根据AB=DE ,BC=EF ,∠B=∠E 才能推出△ABC ≌△DEF ,故本选项错误;D 、根据AAA 不能推出△ABC ≌△DEF ,故本选项错误; 故选A .5.(3分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSSB .SASC .ASAD .AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形. 故选:C .6.(3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(,则这个等腰三角形的周长为( ) A .11 B .16 C .17 D .16或17【解答】解:①6是腰长时,三角形的三边分别为6、6、5, 能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5, 能组成三角形, 周长=6+5+5=16.综上所述,三角形的周长为16或17. 故选D .7.(3分)如图,在△ABC 中,A B=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为(的度数为( )A.40° B.45° C.60° D.70°【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.8.(3分)如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若)为(△ABC与△EBC的周长分别是40,24,则AB为(A.8 B.12 C.16 D.20【解答】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=AB,∴AB=40﹣24=16.故选:C.9.(3分)如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,)应该满足(要使PC+PB最小,则点P应该满足(A.PB=PC B.PA=PD C.∠BPC=90° D.∠APB=∠DPC【解答】解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选D.10.(3分)在平面直角坐标系中,已知A(0,2),B(2,0),若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()的个数是(A.6 B.7 C.8 D.9【解答】解:如图所示:当AB=AC时,符合条件的点有3个;当BA=BC时,符合条件的点有3个;当点C在AB的垂直平分线上时,符合条件的点有一个.故符合条件的点C共有7个.故选:B .二、填空题(每题3分,共18分)11.(3分)已知点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是的坐标是 (2,﹣1) . 【解答】解:点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是(2,﹣1), 故答案为:(2,﹣1).12.(3分)如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3的度数是度数是 20° .【解答】解:由题意得:∠4=∠2=40°; 由三角形外角的性质得:∠4=∠1+∠3, ∴∠3=∠4﹣∠1=40°﹣20°20°=20°=20°, 故答案为:20°.13.(3分)如图,在△ABC 中,AB=AC ,AE ⊥AB 交BC 于点E ,∠BAC=120°,AE=3,则BC 的长是长是 9 .【解答】解:过点A 作AF ⊥BC 交BC 于F ,∵AB=AC ,∠BAC=120°,∴∠B=∠C=30°,BC=2BF , 在Rt △BAE 中, AB=AE•cot30°=3×=3,在Rt △AF B 中,BF BF=AB•cos30°=3=AB•cos30°=3×=, ∴BC=2BF=2×=9, 故答案为:9.14.(3分)如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数度数 15°或75° .【解答】解:解:(1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD=AB ,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角为30°,此时底角为75°;(2)当等腰三角形是钝角三角形时,腰上的高在三角形外部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD=AB ,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为30°,此时顶角是150°, 底角为15°.故答案为:15°或75°.15.(3分)在△ABC 中,AB=2cm ,AC=4cm ,则BC 边上的中线AD 的取值范围是的取值范围是 1cm <AD <3cm .【解答】解:延长AD 到E ,使AD=DE ,连接BE , ∵AD 是△ABC 的中线, ∴BD=CD ,在△ADC 与△EDB 中, ∵,∴△ADC ≌△EDB , ∴EB=AC ,根据三角形的三边关系定理:4cm ﹣2cm <AE <4cm +2cm , ∴1cm <AD <3cm ,故答案为:1cm <AD <3cm .16.(3分)请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:点到三边距离的数学事实: 等边三角形内任意一点到三边的距离之和等于该等边三角形的高 .【解答】解:由图可知,等边三角形里任意一点到三边的距离和等于它的高.三、解答题(共8道小题,共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形? 【解答】解:设这个多边形的边数为n ,∴(n ﹣2)•180•180°°=2×360°, 解得:n=6.故这个多边形是六边形.18.(8分)如图,点B 、E 、C 、F 在同一直线上,BE=CF ,AB=DE ,AC=DF . 求证:AB ∥DE .【解答】证明:∵BE=CF , ∴BC=EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (SSS ), ∴∠B=∠DEF , ∴AB ∥DE .19.(8分)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F . (1)∠ABC=40°,∠A=60°,求∠BFD 的度数; (2)直接写出∠A 与∠BFD 的数量关系.【解答】解:(1)∵∠ABC=40°,∠A=60°, ∴∠ACB=180°﹣40°﹣60°60°=80°=80°, ∵∠B 、∠C 的平分线BE ,CD 相交于点F ,∴∠BFD=∠FBC +∠FCB=∠ABC +∠ACB=20°+40°40°=60°=60°.(2)∵∠B 、∠C 的平分线BE ,CD 相交于点F ,∴∠BFD=∠FBC +∠FCB=∠ABC +∠ACB=(∠ABC +∠ACB )=(180°﹣∠A )=90°﹣∠A .20.(8分)如图,在平面直角坐标系中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)在图中作出△ABC 关于直线m (直线m 上各点的横坐标都为﹣2)对称的图形△A 1B 1C 1;(2)线段BC 上有一点P (﹣,),直接写出点P 关于直线m 对称的点的坐标; (3)线段BC 上有一点M (a ,b ),直接写出点M 关于直线m 对称的点的坐标.【解答】解:(1)如图所示,(2)线段BC 上有一点P (﹣,),点P 关于直线m 对称的点的坐标是(﹣,), (3)线段BC 上有一点M (a ,b ),点M 关于直线m 对称的点的坐标是(﹣4﹣a ,b ).21.(8分)如图△ABC是等边三角形.(1)请按要求完成图形,分别作∠ABC,∠ACB的平分线,交点为O;再分别作OB,OC的垂直平分线分别交BC于点D,E;(2)在(1)的条件下,判断△ODE的形状,并证明你的结论.【解答】解:(1)如图,(2)△ODE为等边三角形.理由如下:∵△ABC是等边三角形.∴∠ABC=∠ACB=60°,∵OB平分∠ABC,OC平分∠AC B,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=30°,∵OB,OC的垂直平分线分别交BC于点D,E,∴DB=DO,EC=EO,∴∠ODB=∠DBO=30°,∠EOC=∠ECO=30°,∴∠ODE=∠ODB+∠DBO=60°,∠OED=∠EOC+∠ECO=60°,∴△ODE为等边三角形.22.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°.(1)教材中有这样的结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.请结合图1,证明该结论;(2)若将图2分割成三个全等的三角形,请你画出图形,并简单描述辅助线的作法.【解答】解:(1)证法一:如答图所示,延长BC到D,使CD=BC,连接AD,易证AD=AB,∠BAD=60°.∴△ABD为等边三角形,∴AB=BD,∴BC=CD=AB,即BC=AB.证法二:如答图所示,取AB的中点D,连接DC,有CD=AB=AD=DB,∴∠DCA=∠A=30°,∠BDC=∠DCA+∠A=60°.∴△DBC为等边三角形,∴BC=DB=AB,即BC=AB.证法三:如答图所示,在AB 上取一点D ,使BD=BC , ∵∠B=60°,∴△BDC 为等边三角形,∴∠DCB=60°,∠ACD=90°﹣∠DCB=90°﹣60°60°=30°=30°=30°==∠A .∴DC=DA ,即有BC=BD=DA=AB ,∴BC=AB .证法四:如图所示,作△ABC 的外接圆⊙D ,∠C=90°,AB 为⊙O 的直径, 连DC 有DB=DC ,∠BDC=2∠A=2×30°=60°, ∴△DBC 为等边三角形,∴BC=DB=DA=AB ,即BC=AB .(2)如图2,作∠ACB 平分线交AC 于点D ,作DE ⊥AB 于点E , 则△ADE ≌△BDE ≌△BDC由作图知∠DBC=∠DBE=∠A=30°,∠AED=∠BED=∠C=90°, ∴AD=BD ,∴AE=BE=AB , 又∵BC=AB , ∴AE=BE=BC ,在△ADE 、△BDE 、△BDC 中,∵,∴△ADE≌△BDE≌△BDC.23.(10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【解答】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE 时, ∵2x +x=30°+30°, ∴x=20°; ②当AD=DE 时, ∵30°+30°+2x +x=180°, ∴x=40°;综上所述,∠C 为20°或40°的角.24.(12分)(1)问题解决:如图,在四边形ABCD 中,∠BAD=α,∠BCD=180°﹣α,BD 平分∠ABC .①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD ,这个性质是,这个性质是 角平分线上的点到角的两边距离相等点到角的两边距离相等 ; ②在图2中,求证AD=CD ;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC 中,∠BAC=100°,BD 平分∠ABC ,求证BD +AD=BC .【解答】解:(1)①根据角平分线的性质定理可知AD=CD . 所以这个性质是角平分线上的点到角的两边距离相等. 故答案为角平分线上的点到角的两边距离相等. ②如图2中,作DE ⊥BA 于E ,DF ⊥BC 于F .∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,∵∠E=∠DFC=90°,∴△DEA≌△DFC,∴DA=DC.(2)如图3中,在BC时截取BK=BD,BT=BA,连接DK.∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∵BD=BD,BA=BT,∠DBA=∠DBT,∴△DBA≌△DBT,∴AD=DT,∠A=∠BTD=100°,∴∠DTK=∠DKT=80°,∴DT=DK=CK,∴BD+AD=BK+CK=BC.。
2018-2019学年上学期期中教学质量调研八年级数学一.精心选择,一锤定音(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中)序号 1 2 3 4 5 6 7 9 10答案1.下面四个手机应用图标中是轴对称图形的是2.已知图中的两个三角形全等,则的大小为A.B. C. D.3.如图,三角形被木板遮住一部分,这个三角形是A.锐角三角形B.直角三角形C.钝角三角形 D.以上都有可能4.如图,∠ACB=90,CD⊥AB,垂足为D,下列结论错误的是A.图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D.∠2=∠A5.已知n边形从一个顶点出发可以作9条对角线,则n=A.9B.10C.11D.126.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有A.1个B.2个C.3个D.4个7.如图,点O在△ABC内,且到三边的距离相等,若∠A=60,则∠BOC的大小为A. B. C. D.608.如图,在Rt△ABC中,∠BAC=90,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=2A.30B.C.60D.759.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,……,照这样走下去,他第一次加到出发地A点时,一共走的路程是A.140米B.150米C.160米D.240米10.如图,在Rt△ABC中,∠ACB=90,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD 于E,过点D作DF⊥AB于 F.下列结论①∠CED=;②;③∠ADF=;④CE=DF.正确的是A.①②④B.②③④C.①③D.①②③④二.细心填一填,试试自己的身手!(本大题共10个小题;每小题3分,共30分)11.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.三角形三边长分别为3,,7,则的取值范围是.13.一个正多边形的内角和为540,则这个正多边形的每个外角的度数为.14.如图,已知AB⊥BD,AB∥DE,AB=ED。
2018-2019学年湖北省武汉市黄陂区八年级(上)期中数学试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2、(3分) 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7B.7或9C.7D.93、(3分) 点P(2,3)关于x轴的对称的点的坐标是()A.(-2,3)B.(2,-3)C.(2,3)D.(-2,-3)4、(3分) 已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C=2∠A,则此三角形()A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形5、(3分) 如图,A、B、C、D 在一条直线上,MB=ND,∠MBA=∠D,添加下列某一条件后不能判定△ABM≌△CDN的是()A.∠M=∠NB.AB=CDC.AM=CND.AM∥CN6、(3分) 在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点7、(3分) 工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线.这种作法的道理是()A.HLB.SSSC.SASD.ASA8、(3分) 如图,△ABC中,D、E分别为BC、AD的中点,S△ABC=20,则阴影部分的面积是()A.18B.10C.5D.19、(3分) 如图,AP平分∠NAM,PC=PB,AB>AC,PD⊥AB于D,∠DPB=50°,则∠ACP=()A.120°B.130°C.140°D.150°10、(3分) 如图,△ABC中,AC=DC=3,BD垂直∠BAC的角平分线于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为()A.1.5B.3C.4.5D.9二、填空题(本大题共 6 小题,共 18 分)11、(3分) 过九边形的一个顶点有______条对角线.12、(3分) 如果一个多边形的每一个外角都等于60°,则它的内角和是______.13、(3分) 等腰三角形一腰上的高与另一腰的夹角为50°,它的底角为______.14、(3分) 如图,锐角△ABC的高AD,BE相交于F,若BF=AC,BC=9,DF=4,则S△ADC=______.15、(3分) 如图,点D、E、F为△ABC三边上的点,则∠1+∠2+∠3+∠4+∠5+∠6=______.16、(3分) 如图Rt△ABC,AB=CB,将△A BC绕A点旋转的度数为a(45°<a<180°),连接BD交AC于F,AH平分∠CAD交BD于点H,若△FHA为等腰三角形,则a=______.三、解答题(本大题共 8 小题,共 72 分)17、(8分) 用一条长为20cm的细绳围成一个等腰三角形,能围成有一边的长是5cm的等腰三角形吗?如果能,求出其他两边的长;如果不能,说明理由.18、(8分) 如图,△ABC和△DEF,B、E、C、F在一条直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.19、(8分) 如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.20、(8分) (1)直接写出A点关于y轴对称的点的坐标是______.(2)将△ABC向右平移六个单位后得△A1B1C1,则线段AB平移扫过的面积是______.(3)作出△A1B1C1关于x轴对称的图形△A2B2C2,画出△A2B2C2,连接A2B交y轴于点D,直接写出D点的坐标______ .21、(10分) 已知,如图,等腰Rt△ABC,等腰Rt△ADE,AB⊥AC,AD⊥AE,AB=AC,AD=AE,CD交AE、BE分别于点M、F(1)求证:△DAC≌△EAB;(2)若∠AEF=15°,EF=4,求DE的长.22、(8分) 如图,在等边三角形ABC的三边上,分别取点D、E、F,使AD=BE=CF,(1)求证:△DEF是等边三角形.(2)若2BE=EC,求∠FEC的度数.23、(10分) 在△ABC中,AD是它的角平分线.(1)如图1,求证:S△ABD:S△ACD=AB:AC=BD:CD;(2)如图2,E是AB上的点,连接ED,若BD=3,BE=CD=2,AE=2CD,求证:△BED是等腰三角形;(3)在图1中,若3∠BAC=2∠C,∠ADB>∠B>∠BAD,直接写出∠BAC的取值范围______.24、(12分) 如图,在平面直角坐标系中,A(a,0),B(b,0),C(b,-2a).且√ab+4+|b-l|=0.CD∥AB,AD∥BC(1)直接写出B、C、D各点的坐标:B______、C______、D______;(2)如图1,P(3,10),点E,M在四边形ABCD的边上,且E在第二象限.若△PEM是以PE为直角边的等腰直角三角形,请直接写出点E的坐标,并对其中一种情况计算说明;(3)如图2,F为y轴正半轴上一动点,过F的直线j∥x轴,BH平分∠FBA交直线j于点H.G 为BF上的点,且∠HGF=∠FAB,F在运动中FG的长度是否发生变化?若变化,求出变化范围;若不变,求出定值.2018-2019学年湖北省武汉市黄陂区八年级(上)期中数学试卷【第 1 题】【答案】C解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【第 2 题】【答案】B【解析】解:根据三角形的三边关系,得第三边大于8-3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.【第 3 题】【答案】B【解析】解:点P(2,3)关于x轴的对称的点的坐标为(2,-3).故选:B.根据点P(a,b)关于x轴的对称的点的坐标为P1(a,-b)易得点P(2,3)关于x轴的对称的点的坐标.本题考查了关于x轴、y轴对称的点的坐标特定:点P(a,b)关于x轴的对称的点的坐标为P1(a,-b);P(a,b)关于y轴的对称的点的坐标为P2(-a,b).【第 4 题】B【解析】解:在△ABC中,∠B+∠C=2∠A,∴∠A+2∠A=180°,∴∠A=60°,故选:B.利用三角形的内角和定理即可得出结论.此题是三角形内角和定理,解本题的关键是熟记三角形的内角和定理,并能灵活运用.【第 5 题】【答案】C【解析】解:A、根据ASA可以判定△ABM≌△CDN;B、根据SAS可以判定△ABM≌△CDN;C、SSA无法判定三角形全等;D、根据AAS即可判定△ABM≌△CDN;故选:C.根据全等三角形的判定方法即可一一判断.本题考查全等三角形的判定方法,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【第 6 题】【答案】B【解析】解:∵在△ABC内一点P满足PA=PB=PC,∴点P一定是△ABC三边垂直平分线的交点.故选:B.由在△ABC内一点P满足PA=PB=PC,可判定点P在AB,BC,AC的垂直平分线上,则可求得答案.此题考查了线段垂直平分线的性质.此题比较简单,注意熟记定理是解此题的关键.【第 7 题】【答案】B【 解析 】解:由图可知,CM=CN ,又OM=ON ,OC 为公共边,∴△COM≌△CON ,∴∠AOC=∠BOC ,即OC 即是∠AOB 的平分线.故选:B .由三边相等得△COM≌△CON ,即由SSS 判定三角全等.做题时要根据已知条件结合判定方法逐个验证.本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.【 第 8 题 】【 答 案 】C【 解析 】解:∵D 、E 分别为BC 、AD 的中点,∴S △ADC =12S △ABC ,S △ACE =12S △ACD ,∴S △ACE =12×12S △ABC =20÷2÷2=2÷2=5.答:阴影部分的面积等于5.故选:C .根据中线将三角形面积分为相等的两部分可知:△ADC 是阴影部分的面积的2倍,△ABC 的面积是△ADC 的面积的2倍,依此即可求解.本题考查了三角形的面积和中线的性质:三角形的中线将三角形分为相等的两部分.【 第 9 题 】【 答 案 】C【 解析 】解:如图,作PT⊥AN 于T .∵PA 平分∠MAN ,PT⊥AN ,PD⊥AM ,∴PT=PD ,∠PTC=∠PDB=90°,∵PC=PB ,∴Rt△PTC≌Rt△PDB (HL ),∴∠PCT=∠PBD ,∵∠PBD=90°-50°=40°,∴∠PCT=40°,∴∠ACP=180°-40°=140°,故选:C .如图,作PT⊥AN 于T .由Rt△PTC≌Rt△PDB (HL ),推出∠PCT=∠PBD ,只要求出∠PBD 即可解决问题;本题考查全等三角形的判定和性质,角平分线的性质定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【 第 10 题 】【 答 案 】C【 解析 】解:延长BD 交AC 于点H .设AD 交BE 于点O .∵AD⊥BH ,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD ,∴∠ABD=∠H ,∴AB=AH ,∵AD⊥BH ,∴BD=DH ,∵DC=CA ,∴∠CDA=∠CAD ,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H ,∴CD=CH=AC ,∵AE=EC , ∴S △ABE =14S △ABH ,S △CDH =14S △ABH ,∵S △OBD -S △AOE =S △ADB -S △ABE =S △ADH -S △CDH =S △ACD ,∵AC=CD=3, ∴当DC⊥AC 时,△ACD 的面积最大,最大面积为12×3×3=92.故选:C .首先证明两个阴影部分面积之差=S △ADC ,当CD⊥AC 时,△ACD 的面积最大.本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.【 第 11 题 】【 答 案 】6【 解析 】解:从九边形的一个顶点出发,可以向与这个顶点不相邻的6个顶点引对角线,即能引出6条对角线,故答案为:6根据多边形的对角线的定义:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线,得出n 边形从一个顶点出发可引出(n-3)条对角线.本题考查多边形的性质,从n 边形的一个顶点出发,能引出(n-3)条对角线.【 第 12 题 】【 答 案 】720°【 解析 】解:多边形边数为:360°÷60°=6,则这个多边形是六边形;∴内角和是:(6-2)•180°=720°.故答案为:720°.根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n 边形的内角和是(n-2)•180°,因而代入公式就可以求出内角和.本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.【 第 13 题 】【 答 案 】20°或70°解:①如图1,∵△ABC 是等腰三角形,BD⊥AC ,∠ADB=90°,∠ABD=50°,∴在直角△ABD 中,∠A=90°-50°=40°, ∴∠C=∠ABC=180∘−40∘2=70°;②如图2, ∵△ABC 是等腰三角形,BD⊥AC ,∠ADB=90°,∠ABD=50°,∴在直角△ABD 中,∠BAD=90°-50°=40°,又∵∠BAD=∠ABC+∠C ,∠ABC=∠C ,∴∠C=∠ABC=12∠BAD=12×40°=20°. 故答案为:70°或20°.根据题意,等腰三角形一腰上的高与另一腰的夹角为50°,分两种情况讨论,①如图1,当一腰上的高在三角形内部时,即∠ABD=50°时,②如图2,当一腰上的高在三角形外部时,即∠ABD=50°时;根据等腰三角形的性质,解答出即可.本题主要考查了等腰三角形的性质,知道等腰三角形一腰上的高与另一腰的夹角为50°,有两种情况,一种是高在三角形内部,另一种是高在三角形外部,读懂题意,是解答本题的关键.【 第 14 题 】【 答 案 】10【 解析 】解:∵AD⊥BC ,BE⊥AC∴∠BDF=∠ADC=∠BEC=90°∵∠DAC+∠C=90°,∠DBF+∠C=90°,∴∠DAC=∠DBF ,在△BDF 与△ADC 中,∵{∠DBF =∠DAC ∠BDF =∠ADC BF =AC ,∴BD=AD=BC -CD=5, ∴S △ADC =12×CD×AD=12×4×5=10,故答案为10.先证出∠DBF=∠DAC ,由AAS 证明△BDF≌△ADC ,得出对应边相等BD=AD ,再求出BD 即可解决问题.本题考查了全等三角形的判定和性质,证明三角形的相似是解此题的关键.【 第 15 题 】【 答 案 】360°【 解析 】解:∵∠7=∠2+∠3,∠8=∠1+∠6,又∵∠4+∠5+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.利用三角形的内角和外角的关系,将∠2、∠3和∠1、∠6转化到四边形AGHE 内,再利用四边形的内角定理解答.解答此题的关键是通过三角形内角和外角的关系将各角转化到四边形内解决.【 第 16 题 】【 答 案 】135°或157.5°【 解析 】解:∵△ABC 是等腰直角三角形,∴∠BAC=45°,∵将△ABC 绕A 点旋转的度数为a 得到△ADE ,∴∠BAD=α,AB=AD ,∴∠DAF=α-45°,∵AH 平分∠CAD 交BD 于点H ,∴∠FAH=12∠DAF=α−45∘2,∵AB=AD ,∴∠AFH=∠ABF+∠BAC=135°-12α,若△FHA 为等腰三角形,①当AF=AH , ∴∠AFH=∠AHF=135°-12α,∵∠FAH+∠AFH+∠AHF=180°, ∴α−45∘2+2(135°-12α)=180°, 解得:α=135°,②当AF=FH 时,∴∠FAH=∠AHF=α−45∘2, ∵∠FAH+∠AFH+∠AHF=180°, ∴2×α−45∘2+135°-12α=180°, 解得:α=180°,(不合题意,舍去);③当AH=HF 时,∴∠HAF=∠HFA ,∴α−45∘2=135°-12α, 解得:α=157.5°,综上所述,△FHA 为等腰三角形,则a=135°或157.5°,故答案为:135°或157.5°.根据等腰直角三角形的性质得到∠BAC=45°,根据旋转的性质得到∠BAD=α,AB=AD ,求得∠DAF=α-45°,根据角平分线的定义得到∠FAH=12∠DAF=α−45∘2,根据等腰三角形的性质得到∠ABF=∠ADB=12(180°-α)=90°-12α,求得∠AFH=∠ABF+∠BAC=135°-12α,根据三角形的内角和列方程即可得到结论.本题考查了旋转的性质,等腰直角三角形的性质,等腰三角形的判定和性质,三角形的内角和,正确的识别图形是解题的关键.【 第 17 题 】【 答 案 】解①当5cm 为底时,腰长=7.5cm ;②当5cm 为腰时,底边=10cm ,因为5+5=10,故不能构成三角形,故舍去;故能构成有一边长为5cm 的等腰三角形,另两边长为7.5cm ,7.5cm【 解析 】题中没有指明5cm 所在边是底还是腰,故应该分情况进行分析,注意利用三角形三边关系进行检验.此题主要考查等腰三角形的性质及三角形三边关系的综合运用.【 答 案 】证明:∵BE=CF ,∴BE+EC=EC+CF ,即BC=EF ,又∵AB=DE ,∠B=∠DEF ,∴在△ABC 与△DEF 中, {AB =DE ∠B =∠DEF BC =EF ,∴△ABC≌△DEF (SAS ),∴AC=DF .【 解析 】已知△ABC 与△DEF 两边相等,通过BE=CF 可得BC=EF ,即可判定△ABC≌△DEF (SAS ),再利用全等三角形的性质证明即可.本题主要考查三角形全等的判定.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【 第 19 题 】【 答 案 】证明:∵DE⊥AB ,DF⊥AC ,∴Rt△BDE 和Rt△DCF 是直角三角形. {BD =DC BE =CF , ∴Rt△BDE≌Rt△DCF (HL ),∴DE=DF ,又∵DE⊥AB ,DF⊥AC ,∴AD 是角平分线.【 解析 】首先可证明Rt△BDE≌Rt△DCF (HL )再根据三角形角平分线的逆定理求得AD 是角平分线即可. 此题主要考查了角平分线的逆定理,综合运用了直角三角形全等的判定.由三角形全等得到DE=DF 是正确解答本题的关键.【 第 20 题 】【 答 案 】(2,3) 18 (0,-95)解:(1)如图所示,点A 关于y 轴的对称点A′的坐标为(2,3),故答案为:(2,3);(2)如图所示,△A 1B 1C 1即为所求,线段AB 扫过的面积为6×3=18,故答案为:18;(3)如图所示,△A 2B 2C 2即为所求,设过A 2(4,-3)、B (-6,0)的直线解析式为y=kx+b ,则{4k +b =−3−6k +b =0, 解得:{k =−310b =−95, 所以直线解析式为y=-310x-95,当x=0时,y=-95,∴点D 的坐标为(0,-95),故答案为:(0,-95).(1)根据关于y 轴的对称的两点横坐标互为相反数、纵坐标相等求解可得;(2)分别作出三个顶点向右平移六个单位所得对应点,再顺次连接即可得,继而根据平行四边形的面积公式可得其面积;(3)作出点A 1关于x 轴的对称点,再与B 1,C 1首尾顺次连接可得,利用待定系数法求出过A 2(4,-3)、B (-6,0)的直线解析式,再进一步求解可得答案.本题主要考查作图-平移变换、旋转变换,解题的关键是掌握平移变换与旋转变换的定义和性质,并据此得出变换后的对应点及待定系数法求函数解析式.【 第 21 题 】(1)证明:∵∠DAE=∠BAC=90°,∴∠DAC=∠EAB,在△DAC和△EAB中,{AD=AE∠DAC=∠EABAC=AB,∴△DAC≌△EAB(SAS).(2)∵△DAC≌△EAB(SAS),∴∠ADC=∠AEB,∵∠AMD=∠EMF,∴∠DAM=∠EFM=90°,∵∠AED=45°,∠AEF=15°,∴∠DEF=60°,∠FDE=30°,∴DE=2FE=8.【解析】(1)根据SAS证明△DAC≌△EAB即可;(2)利用“8字型”证明∠EFM=∠DAM=90°,再证明DE=2EF即可解决问题;本题考查全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【第 22 题】【答案】(1)证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,{AD=BE ∠A=∠B AF=BD,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.(2)解:取EC的中点H,连接FH.∵EC=2BE.EH=CH,BE=CF,∴CH=CF,∵∠C=60°,∴△CFH都是等边三角形,∴FH=CH=EH,∴∠EFC=90°∴∠FEC=30°【解析】(1)由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.(2)取EC的中点H,连接FH.只要证明FH=CH=EH,可得∠EFC=90°.本题考查等边三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考常考题型.【第 23 题】【答案】40°<∠BAC<60°【解析】证明:(1)如图1,过D作DE⊥AB于E,DF⊥AC于F,∵AD平分∠BAC,∴DE=DF,∴S△ABD S△ADC ==ABAC==BDCD;S△ABD:S△ACD=AB:AC=BD:CD;∵AE=2CD=4,∴2+4 AC =32,AC=4=AE,∵∠BAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD=2,∵BE=2,∴BE=DE=2,∴△BED是等腰三角形;(3)设∠BAD=x,则∠BAC=2x,∵3∠BAC=2∠C,∴∠C=3x,∴∠ADB=∠DAC+∠C=4x,∵∠ADB>∠B>∠BAD,∴4x>180-5x>x,解得:20°<x<30°,∴40°<∠BAC<60°.故答案为:40°<∠BAC<60°.(1)作辅助线,构建三角形的性质得:DE=DF,利用三角形面积的不同计算方法可得结论;(2)证明△AED≌△ACD,可得DE=CD=BE,可得结论;(3)设∠BAD=x,根据∠ADB>∠B>∠BAD,列不等式可解答.本题考查了角平分线定义,等腰三角形的判定,三角形全等的性质和判定,不等式的解法,三角形外角性质的应用,主要考查学生综合运用性质进行推理和计算的能力,注意利用面积法可求线段的比.【第 24 题】【答案】解:(1)(1,0)(1,8)(-4,8)∵√ab+4+|b-l|=0,∴b=1,a=-4,∴A(-4,0),B(1,0),C(1,8),∴BC⊥AB,AB=5,BC=8,∵CD∥AB,AD∥BC,∴四边形ABCD是平行四边形,且BC⊥AB∴四边形ABCD是矩形,∴AD=BC=8,CD=AB=5∴D(-4,8)故答案为:(1,0),(1,8),(-4,8)(2)如图,若点E在CD上时,过点E作EN∥y轴,过点M作MN⊥EN于N,过点P作PH⊥EN于点H,∵∠PEH+∠HPE=90°,∠PEH+∠MEN=90°,∴∠MEN=∠HPE,且PE=EM,∠PHE=∠MNE=90°,∴△PHE≌△ENM(AAS)∴PH=EN,HE=MN=2,∵CE⊥EN,MN⊥EN,∠DCB=90°,∴四边形MNEC是矩形,∴CE=MN=2,且点C(1,8)∴点E坐标(-1,8)如图,若点E在AD上,过点P作PH⊥AD,交AD的延长线于H,∵∠PEH+∠AEM=90°,∠PEH+∠HPE=90°∴∠HPE=∠AEM,且PE=EM,∠PHE=∠EAM=90°∴△PHE≌△EAM(AAS)∴AE=PH=7∴点E坐标(-4,7)(3)不发生变化,如图,过点H作HR⊥BF于点R,∵BH平分∠ABF,∴∠FBH=∠ABH,∵FH∥AB,∴∠FHB=∠ABH,∠HFR=∠ABF,∴∠FHB=∠FBH,∴HF=FB,且∠HFR=∠ABF,∠FOB=∠HRF,∴△HFR≌△FBO(AAS)∴RF=OB=1,HR=FO,∵∠HGF=∠FAB,HR=FO,∠HRG=∠AOF=90°,∴△HRG≌△FOA(AAS),∴RG=AO=4,∴FG=RG-RF=4-1=3,∴点F在运动中FG的长度不发生变化.【解析】(1)根据题意可求a=-4,b=1,可得A,B,C三点坐标,由题意可证四边形ABCD是矩形,可求CD=AB=5,AD=BC=8,即可求点D坐标;(2)分点E在CD上,点EAD上讨论,通过等腰直角三角形的性质和全等三角形的性质,可求点E坐标;(3)点H作HR⊥BF于点R,通过证△HFR≌△FBO和△HRG≌△FOA,可得RF=1,RG=4,即可求FG=3,则点F在运动中FG的长度不发生变化.本题是四边形综合题,考查了矩形的判定和性质,等腰三角形性质,全等三角形的判定和性质,以及分类思想的运用,添加恰当辅助线构造全等三角形是本题的关键.。
2018—2019学年度第二学期部分学校八年级期中联合测试 数学试卷考生注意:1.满分120分,考试用时120分钟.2.全部答案必须在答题卡上完成,答在其它位置上无效.一、选择题(本大题共10小题,共30分) 1.下列二次根式中,与是同类二次根式的是( )A. B. C. D.2.二次根式中x 的取值范围是( )A.B. 且C.D.且3.下列命题中逆命题不成立的是( )A. 两直线平行,同位角相等B. 全等三角形的对应角相等C. 四边相等的四边形是菱形D. 直角三角形中,斜边的平方等于两直角边的平方和 4.下列各组数能构成勾股数的是( )A. 2,,B. 12,16,20C.,,D.,,5.已知c b a ,,是ABC ∆的三边,且满足0))(222=---c b a b a (,则ABC ∆是( ) A. 直角三角形B.等边三角形C. 等腰直角三角形D. 等腰三角形或直角三角形6.下列说法不正确的是( )A. 一组邻边相等的矩形是正方形B. 对角线互相垂直的矩形是正方形C. 对角线相等的菱形是正方形D. 有一组邻边相等、一个角是直角的四边形是正方形 7.已知y =,则xy的值为( ) A. B.C.D.8.如图,在菱形ABCD 中,AB =13,对角线BD =24,若过点C 作CE ⊥AB ,垂足为E ,则CE 的长为( )A.B. 10C. 12D.9.如图,在ABC 中, AD 平分∠CAB 交BC 于点E . 若∠BDA =90°,E 是AD 中点,DE =2,AB =5,则AC 的长为( )A.1 B . 34C. 23D.3510.凸四边形ABCD 的两条对角线和两条边的长度都为1,则四边形ABCD 中最大内角度数为( )A.0150 B. 0135 C. 0120 D. 0105二、填空题(本大题共6小题,共18分) 11.若ab <0,则化简结果是______. 12.计算:+= ______.13.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,,则菱形ABCD 的周长是______.EDBCA14.如图,在等边三角形ABC 中,BC =6cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s 的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s )当t = s 时,以A 、C 、E 、F 为顶点四边形是平行四边形. 15.若0,0x y >>且24x y +=,求22169x y +++的最小值______.16.如图,正方形ABCD 的边长为1,点F 在线段CE 上,且四边形BFED 为菱形,则CF 的长为 .三、解答题(本大题共8小题,共72分) 17.(本小题8分)计算:(1))845(18125--+)(.(2)124648÷+)(. 18.(本小题8分)阅读下列材料,并解决相应问题:35)35)(35()35(2352+=+-+=-用上述类似的方法化简下列各式:(1)761+.(2)若a 是的小数部分,求a3的值. 19.(本小题8分)如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系,使点A (3,4)、C (4,2),则点B 的坐标为____________; (2)判断格点△ABC 的形状,并说明理由.(3)在x 轴上有一点P ,使得PA +PC 最小,则PA +PC 的最小值是__________.GECF BA FCEDBA第14题图第16题图20.(本小题8分)如图,正方形ABCD 中,点Q P ,分别为AD ,CD 边上的点,且DQ=CP ,连接BQ ,AP .求证:BQ=AP .21.(本小题8分)如图,在四边形ABCD 中,AB ∥DC ,AB =AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD ,过点C 作CE ⊥AB 交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若AB =,BD =2,求OE 的长.22.(本小题10分)阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当,时,∵,∴,当且仅当时取等号.请利用上述结论解决以下问题:(1)当时,xx 1+的最小值为_______;当时,xx 1+的最大值为__________. (2)当时,求xx x y 1632++=的最小值.(3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.23.(本小题10分)如图,ABC ∆中8,6==AC AB ,D 是BC 边上一动点,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .(1)若10=BC ,判断四边形AEDF 的形状并证明; (2)在(1)的条件下,若四边形AEDF 是正方形,求BD 的长;(3)若∠BAC =60°,四边形AEDF 是菱形,则BD =_____________.ODCBAFE DCBA24.(本小题12分)已知O 为坐标原点,B A ,分别在y 轴、x 轴正半轴上,D 是x 轴正半轴上一动点,DE AD =,∠α=ADE ,矩形AOBC 的面积为32且BC AC 2=. (1)如图1,当α=90°时,直线CE 交x 轴于点F ,求证:F 为OB 中点; (2)如图2,当α=60°时,若D 是OB 中点,求E 点坐标;(3)如图3,当α=120°时,Q 是AE 的中点,求D 点运动过程中BQ 的最小值.xy FEDCB AOxyEDOA B CxyQEOA B CD图1 图2 图3武汉市八年级第二学期部分学校期中联考数学试卷参考答案一、选择题1-5:CBBBD 6-10:DCADA 二、填空题11.b a - 12.37 13.24 14.2或6 15.25 16.226- 三、解答题17. 解:(1)原式=5+3-3+2=2+5;(2)原式=(4+)÷2=2+.18. 解:(1)67)67)(67(67671761-=-+-=+=+(2)由题意可得:a =-1,==3+3.19.(1)(0,0);(2)∵AC 2=22+12=5,BC 2=22+42=20,AB 2=42+32=25,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形.(3)17.20.证明:在正方形ABCD 中,AB =AD =CD ,∠BAQ =∠D =90°, ∵DQ =CP ,∴AQ =DP ,在△ABQ 和△ADP 中, , ∴△ABQ ≌△ADP (SAS ), ∴BQ =AP .21.解:(1)∵AB ∥CD ,∴∠OAB =∠DCA ,∵AC 为∠DAB 的平分线,∴∠OAB =∠DAC ,∴∠DCA =∠DAC ,∴CD =AD =AB , ∵AB ∥CD ,∴四边形ABCD 是平行四边形,∵AD =AB ,∴▱ABCD 是菱形; (2)∵四边形ABCD 是菱形,∴OA =OC ,BD ⊥AC ,∵CE ⊥AB ,∴OE =OA =OC , ∵BD =2,∴OB =BD =1,在Rt △AOB 中,AB =,OB =1,∴OA ==2,∴OE =OA =2.22.解:(1)2; ;(2)由3161632++=++=x x x x x y ,0>x Θ113162316=+⋅≥++=∴x x x x y ,当xx 16=时,最小值为11.(3)设x S BOC =∆,则xS AOC 36=∆∴四边形ABCD 面积,当且仅当时取等号, 即四边形ABCD 面积的最小值为25.23.(1) AEDF 是矩形,理由如下∵222222AB +AC =6+8=BC =10,由勾股定理得∠BAC=90°∵DE AF DF AE ∥、∥ ∴四边形AEDF 是平行四边形 又∵∠BAC=90°,∴四边形AEDF 是矩形(2) 由(1)得,当DE=DF 时,四边形AEDF 是正方形。
2019-2020学年湖北省武汉市江岸区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.124.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125°D.135°8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C. D.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°二、填空题(每题3分,共18分)的坐标是(1,2),则点P的坐标是.11.(3分)已知点P关于x轴的对称点P112.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为.15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为.16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为.(用含a的式子表示)三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.19.(8分)如图,已知点E,C在线段BF上,且BE=CF,AB∥DE,AC∥DF,AC与DE相交于点O,求证:S四边形ABEO =S四边形OCFD.20.(8分)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.21.(8分)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC边上一点,F 是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则= (直接写出结果)24.(12分)如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D 分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n ﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.2019-2020学年湖北省武汉市江岸区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.4.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E【解答】解:如图:A、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;B、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;C、符合直角三角形全等的判定定理HL,即能推出△ABC≌△DEF,故本选项正确;D、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;故选:C.5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:A.6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125°D.135°【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°,故选:B.8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C. D.【解答】解:∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵线段AE,AD的中垂线分别交直线DE于B和C两点,∴BA=BE,DA=DC,∴∠BEA=,∠CDA=,∴∠DAE=180°﹣﹣=,故选:A.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n【解答】解:在CM上截取CG=CA,连接DG.∵CD=CD,∠ACD=∠DCG,AC=CG,∴△ACD≌△GCD,∴AD=DG=n,在△BDG中,BD=m,BG=BC+CG=BC+AC=a+b,∴m+n>a+b,∴m﹣a>b﹣n.故选:A.10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∵∠OQN=180°﹣30°﹣∠ONQ,∠OPM=∠NPQ=30°+∠OQP,∠OQP=∠AQN=30°+∠ONQ,∴α+β=180°﹣30°﹣∠ONQ+30°+30°+∠ONQ=210°.故选:B.二、填空题(每题3分,共18分)11.(3分)已知点P关于x轴的对称点P的坐标是(1,2),则点P的坐标是(1,﹣2).1的坐标是(1,2),则点P的坐标是(1,﹣2).【解答】解:点P关于x轴的对称点P1故答案为:(1,﹣2).12.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为10 .【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=4×360°,解得n=10,答:这个多边形的边数为10,故答案为:10.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是30 .【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△A BC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为(﹣,).【解答】解:作CE⊥x轴于E,CF⊥y轴于F,则∠ECF=90°,又∠ACB=90°,∴∠ECA=∠FCB,在△ECA和△FCB中,,∴△ECA≌△FCB,∴CE=CF,AE=BF,设AE=BF=x,则x+1=4﹣x,解得,x=,∴CE=CF=,∴点C的坐标为(﹣,),故答案为:(﹣,).15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为(1,4).【解答】解:根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点.∵17÷6=2…5,∴第17次碰到长方形边上的点的坐标为(1,4),故答案为(1,4).16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为a2.(用含a的式子表示)【解答】解:∵BC⊥AC,CH⊥BA,∴BC2=BH•BA,即BH•BA=a2,∵四边形ABDE是正方形,∴BD=BA,∴四边形BDKH的面积=BH•BD=BH•BA=a2,故答案为:a2.三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.【解答】解:∵在△ABC中,∠B=∠A+10°,∠C=30°,∴∠B+∠A=150°,∴解得:,故∠A=70°,∠B=80°,∠C=30°.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.在Rt △ABD 和Rt △BAC 中,,∴在Rt △ABD ≌Rt △BAC (HL ),∴BD=AC .19.(8分)如图,已知点E ,C 在线段BF 上,且BE=CF ,AB ∥DE ,AC ∥DF ,AC 与DE 相交于点O ,求证:S 四边形ABEO =S 四边形OCFD .【解答】证明:∵BE=CF ,∴BE+CE=CF+CE即BC=EF .∵AB ∥DE ,AC ∥DF ,∴∠B=∠DEF ,∠C=∠DFE ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF ,∴S △ABC 与S DEF ,∴S △ABC ﹣S △ECO =S DEF ﹣S △ECO ,∴S 四边形ABEO =S 四边形OCFD .20.(8分)如图,点E 在AB 上,△ABC ≌△DEC ,求证:CE 平分∠BED .∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.21.(8分)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.【解答】解:(1)如图1,△AB′C即为所求;(2)如图2,直线l即为所求;(3)如图3,四边形EFGH即为所求.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC边上一点,F 是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.【解答】(1)证明:延长CF至G,使DG=BE,连接AG,如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABE=∠ADF=90°,AB=BC=CD=AD,∴∠ADG=90°,∵△CFE的周长等于正方形ABCD的周长的一半,∴CE+CF+EF=CD+BC,∴DF+BE=EF,∴DF+DG=EF,即GF=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∴∠EAG=90°,在△AEF和△AGF中,,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=×90°=45°;(2)解:∵DF=2,CF=4,CE=3,∴AB=AD=CD=BC=2+4=6,BE=BC﹣CE=3,由(1)得:△AEF的面积=△AGF的面积=△ABE的面积+△ADF的面积=×6×3+×6×2=15.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则= (直接写出结果)【解答】证明:(1)如图1,∵∠FAD+∠CAE=90°,∠FAD+∠F=90°,∴∠CAE=∠F,在△ADF和△ECA中,,∴△ADF≌△ECA(AAS),∴AD=CD,FD=AC,∴CE+CD=AD+CD=AC=FD,即EC+CD=DF;证明:(2)如图2,过F点作FD⊥AC交AC于D点,∵△ADF≌△ECA,∴FD=AC=BC,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴GD=CG,∵=3,∴=2,∴=,∵AD=CE,AC=BC∴=,∴E点为BC中点;(3)过F作FD⊥AG的延长线交于点D,如图3,∵=,BC=AC,CE=CB+BE,∴=,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD ,AD=CE ,∴=,∴=,∴==,∴=.故答案为:.24.(12分)如图1,点A 和点B 分别在y 轴正半轴和x 轴负半轴上,且OA=OB ,点C 和点D 分别在第四象限和第一象限,且OC ⊥OD ,OC=OD ,点D 的坐标为(m ,n ),且满足(m ﹣2n )2+|n ﹣2|=0.(1)求点D 的坐标;(2)求∠AKO 的度数;(3)如图2,点P ,Q 分别在y 轴正半轴和x 轴负半轴上,且OP=OQ ,直线ON ⊥BP 交AB 于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.【解答】解:(1)∵(m﹣2n)2+|n﹣2|=0,又∵(m﹣2n)2≥0,|n﹣2|≥0,∴n=2,m=4,∴点D坐标为(4,2).(2)如图1中,作OE⊥BD于E,OF⊥AC于F.∵OA=OB,OD=OC,∠AOB=∠COD=90°,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴EO=OF(全等三角形对应边上的高相等),∴OK平分∠BKC,∴∠OBD=∠OAC,易证∠AKB=∠BOA=90°,∴∠OKE=45°,∴∠AKO=135°.(3)结论:BM=MN+ON.理由:如图2中,过点B作BH∥y轴交MN的延长线于H.∵OQ=OP,OA=OA,∠AOQ=∠BOP=90°,∴△AOQ≌△BOP,∴∠OBP=∠OAQ,∵∠OBA=∠OAB=45°,∴∠ABP=∠BAP,∵NM⊥AQ,BM⊥ON,∴∠ANM+∠BAQ=90°,∠BNO+∠ABP=90°,∴∠ANM=∠BNO=∠HNB,∵∠HBN=∠OBN=45°,BN=BN,∴△BNH≌△BNO,∴HN=NO,∠H=∠BON,∵∠HBM+∠MBO=90°,∠BON+∠MBO=90°,∴∠HBM=∠BON=∠H,∴MH=MB,∴BM=MN+NH=MN+ON.。
2019-2020学年八年级(上)期中数学试卷一、选择题1.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.正方形C.等边三角形D.直角三角形2.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.6,6,6 D.9,9,193.下列各式中计算结果为x5的是()A.x3+x2B.x3•x2C.x•x3D.x7﹣x24.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去5.一个多边形的内角和等于它的外角和,则它的内角和等于()A.360°B.540°C.720°D.1080°6.等腰三角形△ABC的周长为18cm,且BC=8cm,则此等腰三角形必有一边长为()A.7cm B.2cm或5cm C.5cm D.2cm或7cm7.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°8.已知a m=2,a n=3,则a3m+2n的值是()A.24 B.36 C.72 D.6.9.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30°B.45°C.60°D.90°10.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=,CB的反向延长线上有一动点D,以AD为边在右侧作等边三角形,连CE,CE最短为()A.5 B.C.D.二、填空题(每小题3分,共18分)11.点(﹣3,﹣5)关于y轴对称的点的坐标是.12.如图,AB∥CD,点P到AB,BC,CD距离都相等,则∠P=度.13.如图,△ABC≌△DEF,在△DEF中,ED是最长边,在△ABC中,AB是最长边,FA=1.1,AC=3.3,则AD=.14.△ABC中,若∠A=∠B﹣∠C,则∠B=.15.如图,已知△ABC中,AB=AC,分别在AB的右侧、AC的左侧作等边△ABE和等边△ACD,BE与CD相交于点F,连接BD,若BD=BF,则∠BDF为度.16.如图,直角三角形ABC与直角三角形BDE中,点B,C,D在同一条直线上,已知AC=AE=CD,∠BAC和∠ACB的角平分线交于点F,连DF,EF,分别交AB、BC于M、N,已知点F到△ABC三边距离为3,则△BMN的周长为.三、解答题(共8题,共72分)17.(1)计算:(2y2)3﹣(y3)2(2)计算(x﹣2)(x+3)18.如图,△ABC中,AD为BC边上的高,CF为∠ACB的角平分线,DE⊥CF于E,已知∠CAB =40°,∠EDF=16°,求∠CBA.19.如图,AB=AC,点D、E分别在AB、AC上,AD=AE,求证:CD=BE.20.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是点E,F,连接EF,交AD于点G,求证:AD⊥EF.21.如图,在长方形网格中,我们把水平线和垂直线的交点称为“格点”,例如图中的点A、点B.(1)作出线段AB关于y轴对称的线段CD.并写出点A的对应点C的坐标.(2)在y轴上找一点P使△ABP的周长最小,请在图中画出点P(保留作图痕迹).(3)M为x轴上一点,请在x轴上找一点Q使∠BQO=∠AQM,请在图中画出点Q(保留作图痕迹).22.如图,线段BC=8,射线CG⊥BC,A为射线CG上一点,已知FA⊥AB且FA=AB,AE平分∠FAB,且E点满足∠EBA=∠ABC.(1)求证:△ABE≌△AFE.(2)证明:FD⊥BC.(3)求△BED的周长.23.如图1,∠AOB=30°,点M为射线OB上一点,平面内有一点P使∠PAM=150°且PA =AM.(1)求证:∠OMA=∠OAP.(2)如图2,若射线OB上有一点Q使∠POA=∠AQO,求证:OP=AQ.(3)如图3,在(2)的条件下,过A作AH⊥OB,且OH=AH,已知N点为MQ的中点,且ON=,则OA=.24.如图,在平面直角坐标系中,点A(n,0)是x轴上一点,点B(0,m)是y轴上一点,且满足多项式(x+m)(nx﹣2)的积中x的二次项与一次项系数均为2.(1)求出A,B两点坐标.(2)如图1,点M为线段OA上一点,点P为x轴上一点,且满足BM=MN,∠NAP=45°,证明:BM⊥MN.(3)如图2,过O作OF⊥AB于F,以OB为边在y轴左侧作等边△OBM,连接AM交OF 于点N,试探究:在线段AF,AN,MN中,哪条线段等于AM与ON差的一半?请写出这个等量关系并证明.参考答案一、选择题(每小题3分,共30分)1.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.正方形C.等边三角形D.直角三角形解:等腰三角形、正方形、等边三角形都是轴对称图形,而直角三角形不一定是轴对称图形,故选:D.2.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.6,6,6 D.9,9,19解:由3,4,8,可得3+4<8,故不能组成三角形;由5,6,11,可得6+5=11,故不能组成三角形;由6,6,6,可得6+6>6,故能组成三角形;由9,9,19,可得9+9<19,故不能组成三角形;故选:C.3.下列各式中计算结果为x5的是()A.x3+x2B.x3•x2C.x•x3D.x7﹣x2解:A.不是同类项不能合并,所以A选项不符合题意;B.x3•x2=x5.符合题意;C.x•x3=x4,不符合题意;D.不是同类项不能会并,不符合题意.故选:B.4.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.5.一个多边形的内角和等于它的外角和,则它的内角和等于()A.360°B.540°C.720°D.1080°解:∵任意多边形外角和为360°,∴它的内角和等于360°.故选:A.6.等腰三角形△ABC的周长为18cm,且BC=8cm,则此等腰三角形必有一边长为()A.7cm B.2cm或5cm C.5cm D.2cm或7cm解:分为两种情况:①当BC是底边时,腰AB=AC,∴AB=AC=(18﹣8)=5cm,∴此等腰三角形必有一边长为cm,②BC是腰时,腰是8cm,∵等腰△ABC的周长为18cm,∴等腰三角形必有是18cm﹣8cm﹣8cm=2cm,即此等腰三角形必有一边长为是5cm或2cm,故选:B.7.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选:A.8.已知a m=2,a n=3,则a3m+2n的值是()A.24 B.36 C.72 D.6.解:∵a m=2,a n=3,∴a3m+2n=(a m)3×(a n)2=23×32=72.故选:C.9.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30°B.45°C.60°D.90°解:∵,∴P在与BC平行,且到BC的距离为AD的直线l上,∴l∥BC,作点B关于直线l的对称点B',连接B'C交l于P,如图所示:则BB'⊥l,PB=PB',此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB'=2PM=AD,∵AD⊥BC,AD=BC,∴BB'=BC,BB'⊥BC,∴△BB'C是等腰直角三角形,∴∠B'=45°,∵PB=PB',∴∠PBB'=∠B'=45°,∴∠PBC=90°﹣45°=45°;故选:B.10.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=,CB的反向延长线上有一动点D,以AD为边在右侧作等边三角形,连CE,CE最短为()A.5 B.C.D.解:∵∠ACB=90°,∴∠ACD=90°,在AC的右侧作等边△ACF,连接EF,如图所示:则AC=AF=CF=AC=5,∠CAF=∠AFC═60°,∵△ADE是等边三角形,∴AD=AE,∠DAE=60°=∠CAF,∴∠CAD=∠FAE,在△DAC和△EAF中,,∴△DAC≌△EAF(SAS),∴∠ACD=∠AFE=90°,∴∠CFE=90°﹣60°=30°,当CE⊥EF时,CE有最小值,∴CE的最小值=CF=;故选:C.二、填空题(每小题3分,共18分)11.点(﹣3,﹣5)关于y轴对称的点的坐标是(3,﹣5).解:点(﹣3,﹣5)关于y轴对称的点的坐标是(3,﹣5),故答案为:(3,﹣5).12.如图,AB∥CD,点P到AB,BC,CD距离都相等,则∠P=90 度.解:∵点P到AB、BC、CD距离都相等,∴BP、CP分别是∠ABC和∠BCD的平分线,∴∠CBP=∠ABC,∠BCP=∠BCD,∴∠CBP+∠BCP=(∠ABC+∠BCD),∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠CBP+∠BCP=×180°=90°,∴∠P=180°﹣(∠CBP+∠BCP)=180°﹣90°=90°.故答案为:9013.如图,△ABC≌△DEF,在△DEF中,ED是最长边,在△ABC中,AB是最长边,FA=1.1,AC=3.3,则AD= 2.2 .解:∵△ABC≌△DEF,∴AC=DF,∵FA=1.1,AC=3.3,∴FC=AD=3.3﹣1.1=2.2.故答案为:2.2.14.△ABC中,若∠A=∠B﹣∠C,则∠B=90°.解:∵∠A+∠B+∠C=180°,∠A=∠B﹣∠C,∴∠B﹣∠C+∠B+∠C=180°即:2∠B=180°∴∠B=90°,故答案为:90°.15.如图,已知△ABC中,AB=AC,分别在AB的右侧、AC的左侧作等边△ABE和等边△ACD,BE与CD相交于点F,连接BD,若BD=BF,则∠BDF为20 度.解:∵AB=AC,∴∠ABC=∠ACB,∵△ABE和△ACD是等边三角形,∴∠ABE=∠ACD=∠ADC=60°,AD=AC,∴∠FBC=∠FCB,AB=AD,∴∠ADB=∠ABD,∵BD=BF,∴∠BDF=∠BFD=∠FBC+∠FCB,设∠FCB=∠FBC=x,则∠BDF=∠BFD=2x,∠ABD=∠ADB=60°+2x,∠ABC=60°+x,在△BCD中,由三角形内角和定理得:2x+60°+2x+60°+x+x=180°,解得:x=10°,∴∠BDF=2x=10°;故答案为:20.16.如图,直角三角形ABC与直角三角形BDE中,点B,C,D在同一条直线上,已知AC=AE=CD,∠BAC和∠ACB的角平分线交于点F,连DF,EF,分别交AB、BC于M、N,已知点F到△ABC三边距离为3,则△BMN的周长为 6 .解:作FN⊥BC于N,FH⊥AB于H,在HA上截取HK=JN,连接FK.∵点F是△ABC的内心,FH⊥AB,FJ⊥BC,∴FH=FJ,∵∠FHB=∠FJB=∠HBJ=90°,∴四边形FHBJ是矩形,∵FH=FJ,∴四边形FHBJ是正方形,∵∠AFC=180°﹣(∠BAC+∠ACB),∠BAC+∠ACB=90°,∴∠AFC=135°,∵AC=AE,∠FAC=∠FAB,AF=AF,∴△AFC≌△AFB(SAS),∴∠AFC=∠AFE=135°,∴∠EFC=90°,同法可证△ACF≌△DCF(SAS),∴∠AFC=∠AFC=135°,∴∠AFD=90°,∴∠MFN=360°﹣90°﹣135°﹣90°=45°,∵HK=JN,∠FJK=∠FJN,FH=FJ,∴△FHK≌△FJN(SAS),∴FK=FN,∠JFN=∠HFK,∵∠KFN=∠KFH+∠HFM=∠HFM+∠JFN=45°,∴∠MFK=∠MFN,∵FM=FM,FK=FN,∴△MFK≌△MFN(SAS),∴MN=MK,∴MN=MH+HK=MN+JN,∴△BMN的周长=BM+MN+BN=BN+NJ+BM+MH=2BJ=6.三、解答题(共8题,共72分)17.(1)计算:(2y2)3﹣(y3)2(2)计算(x﹣2)(x+3)解:(1)原式=8y6﹣y6=7y6;(2)原式=x2+3x﹣2x﹣6=x2+x﹣6.18.如图,△ABC中,AD为BC边上的高,CF为∠ACB的角平分线,DE⊥CF于E,已知∠CAB=40°,∠EDF=16°,求∠CBA.解:∵AD⊥BD,DE⊥CF,∴∠DEF=∠CDF=90°,∴∠DCF+∠CFD=∠CFD+∠EDF=90°,∴∠DCF=∠EDF=16°,∵CF为∠ACB的角平分线,∴∠ACD=2∠DCF=32°,∵∠CAB=40°,∴∠ABC=180°﹣∠CAB﹣∠ACB=108°.19.如图,AB=AC,点D、E分别在AB、AC上,AD=AE,求证:CD=BE.【解答】证明:在△ACD和△ABE中,,∴△ACD≌△ABE(SAS),∴CD=BE.20.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是点E,F,连接EF,交AD 于点G,求证:AD⊥EF.解:AD平分∠BAC,DE⊥AB,DF⊥AC∴DE=DF,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,又∵AD平分∠BAC,∴AD⊥EF.21.如图,在长方形网格中,我们把水平线和垂直线的交点称为“格点”,例如图中的点A、点B.(1)作出线段AB关于y轴对称的线段CD.并写出点A的对应点C的坐标(﹣4,3).(2)在y轴上找一点P使△ABP的周长最小,请在图中画出点P(保留作图痕迹).(3)M为x轴上一点,请在x轴上找一点Q使∠BQO=∠AQM,请在图中画出点Q(保留作图痕迹).解:(1)如图所示,线段CD即为所求,点C的坐标为(﹣4,3).故答案为:(﹣4,3);(2)如图所示,点P即为所求;(3)如图所示,点Q即为所求.22.如图,线段BC=8,射线CG⊥BC,A为射线CG上一点,已知FA⊥AB且FA=AB,AE平分∠FAB,且E点满足∠EBA=∠ABC.(1)求证:△ABE≌△AFE.(2)证明:FD⊥BC.(3)求△BED的周长.【解答】(1)证明:∵AE平分∠FAB,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(SAS);(2)证明:设AB交FD于点N,如图1所示:∵FA⊥AB,∴∠FAN=90°,∵△ABE≌△AFE,∴∠F=∠ABE,∵∠EBA=∠ABC,∴∠F=∠ABC,∵∠ANF=∠DNB,∴∠BDN=∠FAN=90°,∴FD⊥BC;(3)解:∵△ABE≌△AFE,∴BE=EF,∴BD+DE+BE=BD+DF,过点A作AH⊥FD于H,如图2所示:则四边形ACDH是矩形,在△ABC和△AFH中,,∴△ABC≌△AFH(AAS),∴FH=BC=8,AH=AC,∴四边形ACDH是正方形,∴AH=AC=CD,∴BD+DE+BE=BD+DF=BD+CD+FH=2BC=16,∴△BED的周长为16.23.如图1,∠AOB=30°,点M为射线OB上一点,平面内有一点P使∠PAM=150°且PA =AM.(1)求证:∠OMA=∠OAP.(2)如图2,若射线OB上有一点Q使∠POA=∠AQO,求证:OP=AQ.(3)如图3,在(2)的条件下,过A作AH⊥OB,且OH=AH,已知N点为MQ的中点,且ON=,则OA= 2 .【解答】(1)证明:延长PA交OB于E,如图1所示:∵∠PAM=150°,∴∠MAE=180°﹣150°=30°=∠AOB,∵∠OMA=∠MAE+∠AEM,∠OAP=∠AOB+∠AEM,∴∠OMA=∠OAP;(2)证明:在MQ上取一点D,使AD=AM,如图2所示:则∠AMD=∠ADM,∴∠OMA=∠QDA,由(1)得:∠OMA=∠OAP,∴∠QDA=∠OAP,∵PA=AM,∴PA=AD,在△OAP和△QDA中,,∴△OAP≌△QDA(AAS),∴OP=AQ.(3)解:在MQ上取一点D,使AD=AM,如图3所示:由(2)得:△OAP≌△QDA,∴OA=QD,∵AH⊥OB,∴MH=DH,设AH=x,MH=DH=y,则OH=x,OA=QD=2x,∴MQ=2x+2y,∵N点为MQ的中点,∴MN=MQ=x+y,∵OM=x﹣y,∴ON=OM+MN=x+y+x﹣y=x+x=1+,解得:x=1,∴OA=2;故答案为:2.24.如图,在平面直角坐标系中,点A(n,0)是x轴上一点,点B(0,m)是y轴上一点,且满足多项式(x+m)(nx﹣2)的积中x的二次项与一次项系数均为2.(1)求出A,B两点坐标.(2)如图1,点M为线段OA上一点,点P为x轴上一点,且满足BM=MN,∠NAP=45°,证明:BM⊥MN.(3)如图2,过O作OF⊥AB于F,以OB为边在y轴左侧作等边△OBM,连接AM交OF 于点N,试探究:在线段AF,AN,MN中,哪条线段等于AM与ON差的一半?请写出这个等量关系并证明.【解答】(1)解:∵(x+m)(nx﹣2)=nx2+(mn﹣2)x﹣2m,∴n=2,mn﹣2=2,∴m=2,∴点A(2,0)、点B(0,2);(2)证明:在y轴上截取一点C,使OM=OC,过B作BD⊥MC于M,过A作AE⊥CM于E,如图1所示:则△COM是等腰直角三角形,∴∠OCM=∠DCB=∠OMC=∠EMA=45°,∴△BDC和△AEM都是等腰直角三角形,∴∠MAE=45°,∵∠NAP=45°,∴N、A、E三点共线,由(1)得:OA=OB=2,∴△AOB是等腰直角三角形,BC=AM,∴∠AOB=∠OBA=45°,在△BDC和△AEM中,,∴△BDC≌△AEM(ASA),∴BD=ME,在Rt△BDM和Rt△MEN中,,∴Rt△BDM≌Rt△MEN(HL),∴∠BMD=∠MNE,∵∠MNE+∠NME=90°,∴∠BMD+∠NME=90°,∴∠BMN=180°﹣90°=90°,∴BM⊥MN;(3)解:AN=(AM﹣ON);理由如下:在AM上截取一点C使CM=ON,连接BC,延长BC交x轴于D,如图2所示:∵△OBM是等边三角形,∴OB=OM=BM,∠BOM=∠BMO=∠OBM=60°,∴∠MOA=∠BOM+∠BOA=60°+90°=150°,∴∠MOD=30°,∵OB=OA,∴OM=OA=BM,∴∠OMA=∠OAM=∠MOD=15°,∴∠BAM=30°,∠BMA=45°,∵OF⊥AB,∴∠FOA=45°,∴∠AON=∠BMC,在△OAN和△BMC中,,∴△OAN≌△BMC(SAS),∴AN=BC,∠OAN=∠MBC=15°,∴∠OBD=60°﹣15°=45°,∴∠ABC=90°,∴AN=BC=AC=(AM﹣CM)=(AM﹣ON).。
2018-2019学年度八年级上学期期中考试 数学试题第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试卷上。
3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)1.若一个正多边形一个外角是60°,则该正多边形的内角和是 A .360° B . 540° C . 720° D .900° 2. 若点A (1,1)m n +-与点B (-3,2)关于y 轴对称,则m n +的值是A .-5B .-3C .3D . 13. 已知三角形三个内角∠A 、∠B 、∠C ,满足关系式∠B+∠C=2∠A ,则此三角形 A. 一定有一个内角为45° B. 一定有一个内角为60° C. 一定是直角三角形 D. 一定是钝角三角形4. 如图,已知∠ABC=∠DCB,添加以下条件不能判定∆ABC ≌∆DCB 的是A .∠A=∠DB .∠ACB=∠DBC C .AC=DBD .AB=DC第4题 第5题第6题5.观察图中尺规作图痕迹,下列说法错误的是A.OE是∠AOB的平分线 B.OC=ODC.点C、D到OE的距离不相等 D、∠AOE=∠BOE6.如图,在Rt∆ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S∆ABD=15,则CD的长为A.3 B.4 C.5 D.67. 将一副直角三角板按如图所示位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45° B.60° C.75° D.85°第7题第8题第9题8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC②△ACE≌△BDE③点E在∠O的平分线上其中正确的结论是A. 只有①B. 只有②C. 只有①②D. 有①②③9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则等于∠ACE=A.15° B.30° C.45 D.60°10.将一个n边形变成n+1边形,内角和将A.减少180∘B.增加90∘C.增加180∘D.增加360∘11.如图,△ABC中,∠A=36∘,AB=AC,BD平分∠ABC,下列结论错误的是A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点第11题第12题第13题12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A. AB=ADB. AC平分∠BCDC. AB=BDD. △BEC≌△DEC13.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确结论有()A.1个B.2个C.3个D.4个14.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°第14题第17题第18题二、填空题(本题共4小题,每小题5分,共20分)15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是______.18. 在△ABC 中,AB=AC,CD=CB,若∠ACD=42∘,则∠BAC=______∘.19. 含角30°的直角三角板与直线1l ,2l 的位置关系如图所示,已知12l l ,∠1=60°,以下三个结论中正确的是____(只填序号)。
湖北省武汉市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·大同期末) 下列实数中是无理数的是()A .B . 0C .D .2. (2分) (2020八下·涡阳月考) 下列各组数中,能作为直角三角形三边长度的是()A . 5、12、23B . 6、8、10C . 2、3、4D . 4、5、63. (2分) (2020九上·遂宁期末) 在式子中,二次根式有()A . 2个B . 3个C . 4个D . 5个4. (2分)(2020·武侯模拟) 3的平方根是()A . 3或﹣3B . 3C .D . 或﹣5. (2分)将一个大的正方体木块锯成n个同样大小的小正方体木块,其中n的取值不可能的是()A . 216B . 343C . 25D . 646. (2分)如图是放在地面上的一个长方体盒子,其中AB=9,BB′=5,B′C′=6,在线段AB的三等分点E(靠近点A)处有一只蚂蚁,B′C′中点F处有一米粒,则蚂蚁沿长方体表面爬到米粒处的最短距离为()A . 10B .C . 5+3D . 6+7. (2分) (2016八下·吕梁期末) 已知一次函数y=ax+2的图象与x轴的交点坐标为(3,0),则一元二次方程ax+2=0的解为()A . x=3B . x=0C . x=2D . x=a8. (2分) (2020八上·三台期中) 在平面直角坐标系中,点A(7,﹣2)关于x轴对称的点A'的坐标是()A . (7,2)B . (7,﹣2)C . (﹣7,2)D . (﹣7,﹣2)9. (2分) (2020八上·滨江期末) 若y关于x的函数关系式y=kx+1,当x=1时,y=2,则当x=-3时函数值是()A . -1B . -2C . -3D . -410. (2分)如图∠AOP=∠BOP=15o ,PC∥OA,PD⊥OA,若PC=10,则PD等于A . 5B .C . 10D . 2.5二、填空题 (共8题;共9分)11. (1分) (2020八下·秦淮期末) 如图,两个正方形Ⅰ,Ⅱ和两个矩形Ⅲ,Ⅳ拼成一个大正方形,已知正方形Ⅰ,Ⅱ的面积分别为10和3,那么大正方形的面积是________.12. (1分) (2017八下·石景山期末) 点P(-3,2)到轴的距离是________13. (1分) (2018九下·尚志开学考) 用科学记数法表示370000为________.14. (1分) (2020八上·玉环期末) 图1是小明家围墙的一部分,上部分是由不锈钢管焊成的等腰三角形栅栏,底边上等距焊上一些立柱,请你根据图2所标注的尺寸,求焊成一个等腰三角形栅栏(图2中的实线部分)至少需要不锈钢管________米(焊接部分忽略不计).15. (1分) (2018七上·唐山期末) 用“●”“■”“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”________个.16. (1分) (2020八上·绍兴月考) 若点B(7a+14,a-2)在第四象限,则a的取值范围是________.17. (2分)(2020·呼和浩特) 分式与的最简公分母是________,方程的解是________.18. (1分)(2019·金华模拟) 如图,将边长为的正方形绕点顺时针旋转到的位置,旋转角为30°,则点运动到点时所经过的路径长为________.三、解答题 (共7题;共58分)19. (10分) (2018七下·玉州期末)(1)计算:(2)解方程组20. (5分) (2019七下·洛宁期中)(1)解方程组:;(2)解不等式: .21. (6分) (2019八上·黄石港期中)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.22. (5分) (2020八上·安丘月考) 如图,已知于点,于点,相交于点,若.求证:平分.23. (15分) (2019七下·北京期末) 为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.24. (7分) (2019八上·正安月考) 如图所示,△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上.(1)如图1所示,若AD于垂直x轴,垂足为点D.点C坐标是(-1,0),点A的坐标是(-3,1),求点B的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;(3)如图3,直角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,两个结论① 为定值;② 为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出这个定值.25. (10分) (2020九上·宜兴月考) 如图,一次函数y=-3x+3的图象与x轴、y轴分别交于A、B两点,直线过点A且垂直于x轴.两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止),运动速度分别是每秒1个单位长度和3个单位长度.点G、E关于直线对称,GE交AB于点F.设D、E的运动时间为t(s).(1)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;(2)当△ADF是直角三角形时,求△BEF与△BFG的面积之比.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共9分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共7题;共58分)答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-2、考点:解析:第21 页共21 页。
2018-2019学年湖北省武汉市东湖高新区八年级(上)期中数学试卷一、选择题(每小题3分,共30分,下列四个答案中,只有一个是正确的)1.(3分)如下字体的四个汉字中, 是轴对称图形的是( )A .B .C .D .2.(3分)下列线段长能构成三角形的是( )A . 3 、 4 、 8B . 2 、 3 、 6C . 5 、 6 、 11D . 5 、 6 、 103.(3分)在平面直角坐标系中, 点(4,1)A -与点B 关于x 轴对称, 则点B 的坐标是( )A .(4,1)B .(4,1)--C .(1,4)D .(4,1)-4.(3分)下列图形中具有稳定性的是( )A .B .C .D .5.(3分)若一个多边形的内角和等于1440︒,则这个多边形是( )A . 四边形B . 六边形C . 八边形D . 十边形6.(3分)如图,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 交于O ,OB OC =,则图中全等三角形共有( )A . 2 对B . 3 对C . 4 对D . 5 对7.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,则1∠等于()A .60︒B .54︒C .56︒D .66︒8.(3分)如图的三角形纸片中,8AB =,6BC =,5AC =,沿过点B 的直线折叠这个三角形, 使点C 落在AB 边上的点E 处, 折痕为BD ,则AED ∆的周长是( )A . 7B . 8C . 11D . 149.(3分)如图,ABC ∆中,BO 平分ABC ∠,CO 平分ACB ∠,MN 经过点O ,与AB 、AC 相交于点M 、N ,且//MN BC ,那么下列说法中:①MOB MBO ∠=∠;②AMN ∆的周长等于AB AC +;③2180A BOC ∠=∠-︒;④连接AO ,则::::AOB AOC BOC S S S AB AC BC ∆∆∆=;正确的有( )A .①②④B .①②③C .①③④D .①②③④10.(3分)已知(0,2)A 、(4,0)B ,点C 在x 轴上, 若ABC ∆是等腰三角形, 则满足这样条件的C 有( )个 .A . 3B . 4C . 5D . 6二、填空题(每小题3分,共18分)11.(3分)已知一个三角形有两条边长度分别是 4 、 9 ,则第三边x 的范围是 .12.(3分)若一个多边形的内角和等于其外角和的2倍,则它是 边形.13.(3分)如图, 锐角三角形ABC 和锐角三角形A B C '''中,AD 、A D ''分别是边BC 、B C ''上的高, 且AB A B ''=,AD A D ''=. 要使ABC ∆≅△A B C ''',则应补充条件: (填 写一个即可)14.(3分)如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限内交于点(,)P a b ,则a 与b 的数量关系是 .15.(3分)如图,Rt ABC ∆中,90C ∠=︒,5AB =,4BC =,3AC =,点I 为Rt ABC ∆三条角平分线的交点, 则点I 到边AB 的距离为 .16.(3分)如图,CA AB ⊥,垂足为A ,24AB =,12AC =,射线BM AB ⊥,垂足为B ,一动点E 从A 点出发以 3 厘米/秒沿射线AN 运动, 点D 为射线BM 上一动点, 随着E 点运动而运动, 且始终保持ED CB =,当点E 经过 秒时,DEB ∆与BCA ∆全等 .。
题图第3题图第4题图第52018-2019学年八年级数学上学期期中教学质量检测试题注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分)请将唯一正确答案的代号填涂在答题..卡.上 1.在下列四个交通标志图中,是轴对称图形的是A .B .C .D .2.三条线段a =5,b =3,c 的值为奇数,由a ,b ,c 为边可组成三角形A .1个B .3个C .5个D .无数个 3.如图,已知在△ABC 中,∠ABC =70°,∠C =50°,BD 是角平分线,则∠BDC 的度数为A .95°B .100°C .110°D .120°4.如图,EA ∥DF ,AE =DF ,要使△AEC ≌△DFB ,只要A .AB =BC B .EC =BF C .∠A =∠D D .AB =CD 5.一副三角板如图叠放在一起,则图中∠α的度数为A .35°B .30°C .25°D .15°6.一个多边形的内角和比其外角和的2倍多180°,则该多边形的边数是A .6B .7C .8D .10 7.下列条件中,不能判定两个直角三角形全等的是A .两直角边分别相等B .斜边和一条直角边分别相等C .两锐角分别相等D .一个锐角和斜边分别相等8.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是A .15B .30C .45D .609.在平面直角坐标系中,点P 1(,)2-关于x 轴对称的点的坐标是A .(1,2)B .(1-,2-)C .(1-,2)D .(2-,1)10.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确结论的个数是 A .1个 B .2个C .3个D .4个11.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为A .40°B .36°C .30°D .25°12.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于21BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD=AC ,∠A =50°,则∠ACB 的度数为 A .90° B .95°C .100° 13.已知:在△ABC 中,∠A =60°,如要判定△ABC 还需添加一个条件.现有下面三种说法:①如果添加条件“AB =AC ”,那么△ABC 是等边三角形; ②如果添加条件“∠B =∠C ”,那么△ABC 是等边三角形;③如果添加条件“边AB ,BC 上的高相等”,那么△ABC 是等边三角形. 其中正确的说法有 A .3个B .2个C .1个D .0个题图第8题图第10题图第1114.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是B.①②④C.①③④D.②③④二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.如图,要测量池塘两端A,B 的距离,可先在平地上取一个可以直接到达A,B 两点的C,连接AC并延长AC到点D,使CD=CA,连接BC并延长BC到点E,使CE=CB,连接DE,那么量出DE的长就等于AB的长,这是因为△ABC≌△DEC,而这个判定全等的依据是.16.如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75°,则∠D= .17.等腰三角形的一个内角为80°,则顶角的度数是.18.如图,在△ABC中,点D在BC上且AB=AD,AC=AE,∠BAD=∠CAE,DE=12,CD=4,则BD= .19. 如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,则∠AEC的度数是.三、解答题(本大题共7小题,共63分)20.(本题满分7分)如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.题图第20题图第14题图第19题图第15题图第16题图第1821.(本题满分7分)如图,点C ,F ,E ,B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.22.(本题满分8分)如图:△ABC 和△ADE 是等边三角形,AD 是BC 边上的中线.求证:BE =BD .题图第21题图第2223.(本题满分8分)将一副直角三角板如图摆放,等腰直角三角板ABC 的斜边BC 与含30°角的直角三角板DBE 的直角边BD 长度相同,且斜边BC 与BE 在同一直线上,AC 与BD 交于点O ,连接CD .求证:△CDO 是等腰三角形.24.(本题满分10分)如图,在直角坐标平面内,已知点A (8,0),点B (3,0),点C 是点A 关于直线m (直线m 上各点的横坐标都为3)的对称点.(1)在图中标出点A ,B ,C 的位置,并求出点C 的坐标;(2)如果点P 在y 轴上,过点P 作直线l ∥x 轴,点A 关于直线l 的对称点是点D ,那么当△BCD 的面积等于15时,求点P 的坐标.题图第24题图第2325.(本题满分10分)如图,四边形ABCD 中,DC ∥AB ,BD ⊥AD ,∠A =45°,E 、F 分别是AB 、CD 上的点,且BE=DF,连接EF 交BD 于O .(1)求证:BO=DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于G ,当FG =2时,求AE 的长. 26.(本题满分13分)【问题提出】学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分题图第26类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角.请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H).第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你在图③中画出△DEF,使△DEF和△ABC不全等.2017-2018学年度上学期期中教学质量监测八年级数学参考答案与评分标准一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1—5 CBADD 6—10 BCBAC 11—14BDAC二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.SAS 16.40° 17.80°或20° 18.8 19.75°.三、解答题(本大题共7小题,共63分)20.(本题满分7分)解:∵CD是AB边上高,∴∠BDF=90°,………………………………….1分∠ABE=∠BFC-∠BDF=113°-90°=23°,………………………………………3分∵BE为角平分线,∴∠CBF=∠ABE=23°,…………………………………………………………..5分∴∠BCF=180°-∠BFC-∠CBF=44°.………………………………………..7分21.(本题满分7分)解:CD∥AB,CD=AB,……………………………………………………………….2分理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,…………………………………………………………………………3分在△AEB和△CFD中,,∴△AEB≌△CFD (SAS)……5分∴CD=AB,∠C=∠B,…………………………………6分∴CD∥AB. (7)分22.(本题满分8分)证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,∴AE=AD,AD为∠BAC的角平分线,即∠CAD=∠BAD=30°, (3)分∴∠BAE=∠BAD=30°,………………………………………………………5分在△ABE和△ABD中,,∴△ABE≌△ABD (SAS),…..7分∴BE=BD.…………………………………………………………………….8分23.(本题满分8分)证明:∵在△BDC中,BC=DB,∴∠BDC=∠BCD. (2)分∵∠DBE=30°∴∠BDC=∠BCD=75°,……………………….4分∵∠ACB=45°,∴∠DOC=30°+45°=75°.……………….…6分∴∠DOC=∠BDC,∴△CDO是等腰三角形.……………………8分24.(本题满分10分)解:(1)三个点位置标注正确……………………………………………………3分点C的坐标为(﹣2,0);…………………………………………….4分(2)如图,由题意知S△BCD=21BC•AD=15,BC=5,∴AD=6,则OP=3,………..8分∴点P的坐标为(0,3)或(0,﹣3).…………………………....10分25.(本题满分10分)解:(1)证明:∵ DC ∥AB , ∴∠OBE =∠ODF . ………………1分在△OBE 与△ODF 中, ∵∴△OBE ≌△ODF(AAS ). ………3分∴BO =DO . ………………………………4分 (2)解:∵EF ⊥AB ,DC ∥AB , ∴∠GEA=∠GFD =90°. ∵∠A =45°,∴∠G =∠A =45°. ……………………6分∴AE =GE …………………………………7分 ∵BD ⊥AD , ∴∠ADB =∠GDO =90°.∴∠GOD =∠G =45°. (8)分∴DG =DO∴OF =FG = 2 ……………………………………9分 由(1)可知,OE = OF =2, ∴GE =OE +OF +FG =6 ∴AE = GE =6 ………………………10分 26.(本题满分13分)(1)解:HL ;……………………………………………………………………..1分 (2)证明:如图,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作FH ⊥DE 交DE 的延长线于H ,…………………………………………………………..2分 ∵∠ABC =∠DEF ,且∠ABC 、∠DEF 都是钝角, ∴180°﹣∠ABC =180°﹣∠DEF ,即∠CBG =∠FEH ,…………………………………………………4分 在△CBG 和△FEH 中,,∴△CBG ≌△FEH (AAS ),∴CG =FH ,……………………………………………………….…6分在Rt △ACG 和Rt △DFH 中,⎩⎨⎧==FHCG DFAC ,∴Rt △ACG ≌Rt △DFH (HL ),∴∠A=∠D, (8)分在△ABC和△DEF中,,∴△ABC≌△DEF (AAS);………………………………………..10分(3)解:如图,△DEF和△ABC不全等;………………………13分。
2019-2020学年湖北省武汉市江汉区八年级(上)期中数学试卷1.现有长度为4cm和7cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,则下列长度的小棒可选的是()A. 2cmB. 3cmC. 5cmD. 12cm2.下列多边形中,对角线是5条的多边形是()A. 四边形B. 五边形C. 六边形D. 七边形3.下列运算中,正确的是()A. a2⋅a3=a6 B. (a2)3=a5 C. (2a)3=6a3D. (−a)2⋅a=a34.图中两个三角形全等,则∠1等于()A. 40°B. 50°C. 60°D. 80°5.如图,AD是△ABC的高,AD也是△ABC的中线,则下列结论不一定成立的是()A. AB=ACB. AD=BCC. ∠B=∠CD. ∠BAD=∠CAD6.如图,已知A,D,B,E在同一条直线上,且AD=BE,AC=DF,补充下列其中一个条件后,不一定能得到△ABC≌△DEF的是()A. BC=EFB.AC//DFC. ∠C=∠FD. ∠BAC=∠EDF7.下列条件中能判断△ABC为直角三角形的是()A. ∠A+∠B=∠CB. ∠A=∠B=∠CC. ∠A−∠B=90°D. ∠A=2∠B=3∠C8.若x2+kx+4是一个完全平方式,则k为()A. 4B. −4C. ±4D. ±29.计算10012−1004×996=()A. −2017B. 2017C. −2019D. 201910.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A. 4abB. 8abC. 4a+bD. 8a+2b11.计算:(12a2−3a)÷3a=______.12.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为______.13.如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,则∠ABC的度数为______.14.如图,点E,F分别是四边形AB,AD上的点,已知△EBC≌△DFC,且∠A=80°,则∠BCF的度数是______.15.如图,△ABC的边BC上有一点D,取AD的中点E,连接BE,CE,如果△ABC的面积为2,则图中阴影部分的面积为______.16.如图,边长为n的正方形纸片剪出一个边长为n−3的正方形之后,剩余部分可剪拼成一个长方形,若该长方形一边的长为3,则另一边的长为______.17.(1)计算:a(a−1)−(a3)2÷a4(2)解不等式:(x+2)(x−3)>(x+l)(x−l)18.如图,BD是△ABC的角平分线,AE⊥BD交BD的延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.19.已知xy=5,(x−y)2=16,求x2+y2和x+y的值.20.如图,点B为AC上一点,AD//CE,∠ADB=∠CBE,BD=EB.求证:(1)△ABD≌△CEB;(2)AC=AD+CE.21.已知等腰三角形的周长是13.(1)如果腰长是底边长的4,求底边的长;5(2)若该三角形其中两边的长为3x和2x+5,求底边的长.22.已知2n=a,3n=b,n是正整数,则用含有a,b的式子表示62n的值为______.23.如图,四边形ABCD中,∠A=∠B=90°,AB边上有一点E,CE,DE分别是∠BCD和∠ADC的角平分线,如果△CDE的面积是12,CD=8,那么AB的长度为______.24.在△ABC中,AD是高,AE是角平分线,已知∠ACB=70°,∠EAD=15°,则∠ABC的度数为______.25.如图,AB⊥CD于点E,且AB=CD=AC,若点I是△ACE的角平分线的交点,点F是BD的中点.下列结论:①∠AIC=135°;②BD=BI;③S△AIC=S△BID;④IF⊥AC.其中正确的是______(填序号).26.如图,已知A(0,a),B(b,0),C(c,0)是平面直角坐标系中三点,且a,b满足|a−b|+a2−6a+9=0,c<3.(1)求A,B两点的坐标;(2)若△ABC的面积为6.①在图中画出△ABC;②若△ABP与△ABC全等,直接写出所有符合条件的P点的坐标;(3)已知∠MAB=∠ABC,BM=AC,若满足条件的M点有且只有两个,直接写出此时c的取值范围.27.以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写下表:二次项系数一次项系数常数项(2x+1)(x+2)2______ 2(2x+1)(3x−2)6______ −2(ax+b)(mx+n)am______ bn(2)已知(x+3)2(x2+mx+n)既不含二次项,也不含一次项,求m+n的值.(3)多项式M与多项式x2−3x+1的乘积为2x4+ax3+bx2+cx−3,则2a+b+c的值为______.28.已知,点A(t,1)是平面直角坐标系中第一象限的点,点B,C分别是y轴负半轴和x轴正半轴上的点,连接AB,AC,BC.(1)如图1,若OB=1,OC=3,且A,B,C在同一条直线上,求t的值;2(2)如图2,当t=1,∠ACO+∠ACB=180°时,求BC+OC−OB的值;(3)如图3,点H(m,n)是AB上一点,∠A=∠OHA=90°,若OB=OC,求m+n的值.答案和解析1.【答案】C【解析】解:设第三根小棒的长度为xcm,由题意得:7−4<x<7+4,解得:3<x<11,故选:C.根据三角形的三边关系可得7−4<第三根小棒的长度<7+4,再解不等式可得答案.此题主要考查了三角形的三边关系,关键是掌握三边关系定理:三角形两边之和大于第三边.角形的两边差小于第三边.2.【答案】B=5,【解析】解:由题意得,n(n−3)2解得:n=5,(负值舍去),故选:B.条,把5代入即可得到结论.根据n边形的对角线有n(n−3)2本题考查了多边形,掌握n边形的对角线有n(n−3)条是解题的关键.23.【答案】D【解析】解:A选项错误,结果应该是a5;B选项错误,结果应该是a6;C选项错误,结果应该是8a3;D选项正确.故选:D.根据幂的乘方与积的乘方和同底数幂的乘法进行计算即可求解.本题考查了幂的乘方与积的乘方和同底数幂的乘法,解决本题的关键是掌握各种运算法则.4.【答案】A【解析】解:∵两个三角形全等,∴∠1=180°−80°−60°=40°,由全等三角形的性质可求解.本题考查了全等三角形的性质,掌握全等三角形的对应边相等,全等三角形的对应角相等.5.【答案】B【解析】解:∵AD是△ABC的高,AD也是△ABC的中线,∴BC⊥AD,BD=CD,在△ABD和△ACD中,{AD=AD∠ADB=∠ADC=90°BD=CD,∴△ABD≌△ACD(SAS),∴AB=AC,∠B=∠C,∠BAD=∠BAD.故选:B.证明△ABD≌△ACD,可得AB=AC,∠B=∠C,∠BAD=∠BAD.则答案得出.考查了等腰三角形的性质及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.6.【答案】C【解析】解:∵AD=BE,∴AD+DB=BE+DB,∴AB=DE,又∵AC=DF,若BC=EF,则△ABC≌△DEF(SSS),故选项A不符题意;若AC//DF,∠BAC=∠EDF,则△ABC≌△DEF(SAS),故选项B不符题意;若∠C=∠F,则无法判定△ABC≌△DEF,故选项C符合题意;若∠BAC=∠EDF,则△ABC≌△DEF(SAS),故选项D不符合题意;故选:C.根据题目中的条件和各个选项中的条件,利用全等三角形的判定方法,可以判断出哪个选项中的条件不一定能得到△ABC≌△DEF,从而可以解答本题.本题考查全等三角形的判定,解答本题的关键是明确题意,利用全等三角形的判定方法解答.【解析】解:A、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,本选项不符合题意.B、∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,∴△ABC是等边三角形,本选项不符合题意.C、∵∠A−∠B=90°,∴∠A>90°,∴△ABC是钝角三角形,本选项不符合题意.D、∵∠A=2∠B=3∠C,∴可以假设∠A=6k,∠B=3k,∠C=2k,∴6k+3k+2k=180°,∴k=(180)°,11)°>90°,∴∠A=(104811∴△ABC是钝角三角形,本选项不符合题意,故选:A.利用直角三角形的定义逐项判断即可.本题考查三角形内角和定理,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】C【解析】【分析】本题考查完全平方公式,根据其结构特征得首尾两项是x和2这两个数的平方,那么中间项为加上或减去x和2乘积的2倍,故k=±4.本题考查完全平方式的应用,要注意把握好公式的结构特征进行分析,两数的平方和加上或减去它们乘积的2倍,对于这三项,任意给出其中两项,都可对第三项进行分析.【解答】解:中间项为加上或减去x和2乘积的2倍,故k=±4.故选C.9.【答案】B【解析】解:原式=(1000+1)2−(1000+4)(1000−4)=10002+2000+1−10002+16=2017.故选:B.根据完全平方公式和平方差公式先将原式转化,再进行有理数运算即可求解.本题考查了有理数的混合运算,解决本题的关键是利用转化思想将原式变形.10.【答案】D【解析】解:根据题意,得=4a,纸盒底部长方形的宽为4a2bab∴纸盒底部长方形的周长为:2(4a+b)=8a+2b.故选:D.根据长方体纸盒的容积等于底面积乘以高,底面积等于底面长方形的长与宽的乘积可以先求出宽,再计算纸盒底部长方形的周长即可.本题考查了整式的除法,解决本题的关键是先求出纸盒底部长方形的宽.11.【答案】4a−1【解析】解:(12a2−3a)÷3a=4a−1,故答案为:4a−1.根据多项式除以单项式法则求出即可.本题考查了多项式除以单项式法则,能熟记法则的内容是解此题的关键.12.【答案】5【解析】解:设这个多边形的边数是n,则(n−2)⋅180°−360°=180°,解得n=5.故答案为:5.根据多边形的内角和公式(n−2)⋅180°与外角和定理列式求解即可.本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.【解析】解:∵B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,∴∠ABC的度数为80°−44°=36°,故答案为:36°.根据方向角的定义和平行线的性质可得结果.本题主要考查了方向角,根据图正确找出各角之间的关系再计算是解答此题的关键.14.【答案】100°【解析】解:∵△EBC≌△DFC,∴∠DFC=∠B,∵∠DFC+∠AFC=180°,∴∠B+∠AFC=180°,∴∠A+∠BCF=360°−(∠B+∠AFC)=180°,∵∠A=80°,∴∠BCF=180°−80°=100°,故答案为:100°.根据全等三角形的性质得出∠DFC=∠B,根据∠DFC+∠AFC=180°求出∠B+∠AFC= 180°,根据多边形的内角和求出∠A+∠BCF=180°,即可求出答案.本题考查了全等三角形的性质和四边形的内角和定理,能根据全等三角形的性质得出∠DFC=∠B是解此题的关键.15.【答案】1【解析】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC=2,∴阴影部分的面积=S△ABE+S△ACE=12(S△ABD+S△ADC)=12S△ABC=12×2=1;故答案为:1.根据三角形的中线把三角形分为面积相等的两部分计算,得到答案.本题考查的是三角形的面积计算,掌握三角形的中线把三角形分为面积相等的两部分是解题的关键.【解析】解:设另一边长为x,根据题意得,3x=n2−(n−3)2,∴x=2n−3故答案为:2n−3.设另一边长为x,然后根据剩余部分的面积的两种表示方法列式计算即可得解.本题考查了平方差公式的几何背景,此类题目根据图形的面积的两种表示方法列出等式是解题的关键.17.【答案】解:(1)原式=a2−a−a2=−a;(2)不等式整理得:x2−x−6>x2−1,移项合并得:−x>5,解得:x<−5.【解析】(1)原式利用单项式乘以多项式法则,幂的乘方及同底数幂的的除法法则计算,合并即可得到结果;(2)不等式整理后,将x系数化为1,即可求出解集.此题考查了整式的混合运算,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.18.【答案】解:设∠C=2x,则∠ADB=3x,∵BD平分∠ABC,∠ABC=72°,∴∠ABD=∠CBD=36°,∵∠ADB=∠DBC+∠C,∴3x=36°+2x,∴x=36°,∴∠C=72°,∠ADB=108°,∴∠BAC=180°−72°−72°=36°,∵AE⊥BE,∴∠E=90°,∵∠ADB=∠E+∠DAE,∴∠DAE=108°−90°=18°.【解析】设∠C=2x,则∠ADB=3x,利用三角形内角和定理以及三角形的外角的性质解决问题即可.本题考查三角形内角和定理,三角形的外角的性质,角平分线的定义等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.19.【答案】解:∵xy=5,(x−y)2=16,∴x2+y2=(x−y)2+2xy=16+2×5=26,x+y=±√(x+y)2=±√(x−y)2+4xy=±√16+4×5=±6.【解析】根据完全平方公式得出x2+y2=(x−y)2+2xy,x+y=±√(x−y)2+4xy,代入求出即可.本题考查了完全平方公式,能灵活运用公式进行变形是解此题的关键.20.【答案】证明:(1)∵AD//CE,∴∠A=∠C,在△ABD与△CEB中,{∠A=∠C∠ADB=∠CBE BD=EB,∴△ABD≌△CEB(AAS);(2)∵△ABD≌△CEB,∴AD=BC,AB=CE,∵AC=AB+BC,∴AC=AD+CE.【解析】(1)根据平行线的性质和全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质和线段的和差即可得到结论.本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.21.【答案】解:(1)设底边的长为x,则腰长为45x,依题意得2×45x+x=13,解得x=5,∴底边的长为5;(2)分三种情况讨论:①若两腰长分别为3x和2x+5,则3x=2x+5,解得x=5,∴腰长3x=15(不合题意);②若腰长为3x,底边长为2x+5,则6x+2x+5=13,解得x=1,3x=3,2x+5=7(不合题意);③若底边长为3x,腰长为2x+5,则3x+2(2x+5)=13,,解得x=37∴底边长=3x=9;7.综上所述,底边的长为97x,依据等腰三角形的周长是13,列方程即可【解析】(1)设底边的长为x,则腰长为45得到底边长.(2)分三种情况讨论:①两腰长分别为3x和2x+5,②腰长为3x,底边长为2x+5,③底边长为3x,腰长为2x+5,依据等腰三角形的周长是13,列方程即可得到底边长.本题考查的是等腰三角形的性质及三角形的三边关系,在解答此类题目时要注意分类讨论,不要漏解.22.【答案】a2b2【解析】解:∵2n=a,3n=b,∴2n⋅3n=ab,∴6n=ab∴62n=(6n)2=(ab)2=a2b2.故答案为a2b2.根据幂的乘方与积的乘方进行计算,利用整体思想即可求解.本题考查了幂的乘方与积的乘方,解决本题的关键是利用整体思想代入求值.23.【答案】6【解析】解:作EF⊥CD于F,如图:∵∠A=∠B=90°,∴EA⊥AD,EB⊥BC,∵CE,DE分别是∠BCD和∠ADC的角平分线,∴EB=EF,EF=EA,∴AE=BE=EF,EF⋅CD,∵△CDE的面积=12∴12=1×EF×8,2∴EF=3,∴AB=AE+BE=2EF=2×3=6,故答案为:6.EF⋅CD,作EF⊥CD于F,由角平分线的性质得出AE=BE=EF,由△CDE的面积=12求出EF=3,即可得出结果.本题考查了角平分线的性质以及三角形面积的计算等知识,熟练掌握角平分线的性质是解题的关键.24.【答案】40°或100°【解析】解:①当∠B是锐角时,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°−∠C=20°,∴∠CAE=∠BAE=∠CAD+∠DAE=20°+15°=35°,∴∠CAB=70°,∴∠ABC=180°−70°−70°=40°.②当∠B是钝角时,同法可得∠CAE=∠BAE=5°,∴∠CAB=10°,∴∠ABC=180°−70°−10°=100°,故答案为40°或100°.分锐角三角形钝角三角形两种情形分别求解即可.本题考查三角形内角和定理,角平分线的定义,高的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.【答案】①③④【解析】解:如图,延长IF到G,使得FG=FI,连接DG,BG,延长FI交AC于K.∵AB⊥CD,∴∠AEC=90°,∴∠EAC+∠ECA=90°,∴∠IAC+∠ICA=12∠EAC+12∠ECB=45°,∴∠AIC=180°−45°=135°,故①正确,∵AB=AC,∠IAB=∠IAC,AI=AI,∴△AIB≌△AIC(SAS),∴∠AIB=∠AIC=135°,IA=ID,∴∠BIC=360°−135°−135°=90°,同法可证:△ICA≌△ICD(SAS),∴∠AIC=∠CID=135°,IC=ID,∴∠AID=360°−135°−135°=90°,∴∠DIB+∠AIC=180°,∵DF=FB,IF=FG,∴四边形IBGD是平行四边形,∴ID=BG=AI,ID//BG,∴∠DIB+∠IBG=180°,∴∠AIC=∠IBG,∵IA=ID,IC=IB,∴△AIC≌△GBI(SAS),∴∠GIB=∠ACI,S△AIC=S△BGI=12S平行四边形DGBI=S△BDI,故③正确,∵∠GIB+∠CIK=90°,∴∠CIK+∠ICK=90°,∴∠IKC=90°,即IF⊥AC,故④正确,不妨设BI=BD,则△BDI是等腰直角三角形,显然ID=√2IB,即AI=√2IC,显然题目不满足这个条件,故②错误.故答案为①③④.如图,延长IF到G,使得FG=FI,连接DG,BG,延长FI交AC于K.利用全等三角形的判定和性质,平行四边形的判定和性质一一判断即可.本题考查全等三角形的判定和性质,角平分线的定义,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考填空题中的压轴题.26.【答案】解:(1)∵|a−b|+a2−6a+9=0,∴|a−b|+(a−3)2=0,∵|a−b|≥0,(a−3)2≥0,∴a−b=0,a−3=0,∴a=b=3,∴A(0,3),B(3,0)(2)①∵△ABC的面积为6,∴12⋅BC⋅OA=6,∴BC=4,∵c<3,∴C(−1,0),△ABC如图所示:②满足条件的点P如图所示,P(−1,0)或(0,−1)或(3,4)或(4,3).(3)如图,由题意满足条件的点M在直线y轴上或直线y=3上,当BM>AB时,满足条件的点M只有两个,∴AC=BM>3√2,∵当AC=3√2时,C(−3,0),观察图象可知满足条件的c的范围为:c<−3.【解析】(1)利用非负数的性质求出a,b的值即可.(2)①根据A,B,C的坐标,画出三角形即可.②画出满足条件的△PAB,写出点P的坐标即可.(3)如图,由题意满足条件的点M在直线y轴上或直线y=3上,当BM>AB时,满足条件的点M只有两个.本题属于三角形综合题,考查了非负数的性质,全等三角形的判定和性质,坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.27.【答案】5 −1an+bm−4【解析】解:(1)(2x+1)(x+2)=2x2+5x+2(2x+1)(3x−2)=6x2−x−2(ax+b)(mx+n)=amx2+(an+bm)x+bn故答案为5、−1、an+bm.(2)(x+3)2(x2+mx+n)=(x2+6x+9)(x2+mx+n)=x4+(m+6)x3+(6m+n+9)x2+(9m+6n)x+9n∵既不含二次项,也不含一次项,∴6m+n+9=09m+6n=0解得:m=−2,n=3∴m+n=1.答m+n的值为1.(3)∵多项式M与多项式x2−3x+1的乘积为2x4+ax3+bx2+cx−3,∴设多项式M=2x2+mx−3,(2x2+mx−3)(x2−3x+1)=2x4−6x3+2x2+mx3−3mx2+mx−3x2+9x−3=2x4+(m−6)x3+(2−3m−3)x2+(m+9)x−3=2x4+ax3+bx2+cx−3,∴a=m−6,b=−3m−1,c=m+9∴2a+b+c=2m−12−3m−1+m+9=−4.故答案为−4.(1)根据多项式乘以多项式即可求解;(2)先用完全平方公式展开第一项,再进行多项式乘以多项式,合并同类项后使二次项系数和一次项系数为0即可求解;(3)根据多项式乘以多项式的结果可以设多项式M,再根据恒等式的意义即可求解.本题考查了多项式乘以多项式,解决本题的关键是准确进行计算,同时理解恒等变形.28.【答案】解:(1)过点A作AD⊥x轴于D,如图1所示:∵点A(t,1),∴AD=1,OD=t,∵A,B,C在同一条直线上,∴∠OCB=∠DCA,∵tan∠OCB =OB OC =132=23,∴tan∠OCB =tan∠DCA =AD CD =23,即1CD =23,解得:CD =32,∴t =OD =OC +CD =32+32=3;(2)作AD ⊥y 轴于D ,AM ⊥x 轴于M ,AN ⊥BC 于N ,如图2所示:则∠ADB =∠ANB =90°,∵t =1,∴点A(1,1),∴AD =AM =OM =1,∵∠ACO +∠ACB =180°,∠ACN +∠ACB =180°,∴∠ACO =∠ACN ,∵AM ⊥x 轴于M ,AN ⊥BC 于N ,∴AN =AM =AD =1,在Rt △ABD 和Rt △ABN 中,{AB =AB AD =AN ,∴Rt △ABD≌Rt △ABN(HL),∴BN =BD =OB +1,同理:Rt △ACM≌Rt △ACN(HL),∴CM =CN ,∵BC =BN −CN ,OC =OM +CM =1+CM ,∴BC +OC −OB =BN −CN +1+CM −OB =OB +1−CN +1+CM −OB =2;(3)作HG ⊥OC 于G ,如图3所示:∵OB =OC ,∠BOC =90°,∴△BOC 是等腰直角三角形,∠OCB =45°,∵∠OHA =90°,∴OH ⊥AB ,∴△OCH 是等腰直角三角形,∵HG ⊥OC ,∴△OGH是等腰直角三角形,∴OG=GH,即m=−n,∴m+n=0.【解析】(1)过点A作AD⊥x轴于D,则AD=1,OD=t,由∠OCB=∠DCA,tan∠OCB=OB OC =23,得出tan∠OCB=tan∠DCA=ADCD=23,即1CD=23,解得CD=32,得出t=OD=OC+CD=32+32=3;(2)作AD⊥y轴于D,AM⊥x轴于M,AN⊥BC于N,证出AD=AN,证明Rt△ABD≌Rt△ABN(HL),得出BN=BD=OB+1,同理Rt△ACM≌Rt△ACN(HL),得出CM=CN,由BC=BN−CN,OC=OM+CM=1+CM,即可得出答案;(3)作HG⊥OC于G,由题意得出△BOC是等腰直角三角形,∠OCB=45°,证出△OGH是等腰直角三角形,得出OG=GH,即m=−n,即可得出答案.本题是三角形综合题目,考查了坐标与图形性质、三角函数定义、角平分线的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.。
2019-2020学年湖北省武汉市江夏区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.(3分)有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A.1cm B.2cm C.7cm D.10cm2.(3分)如图,△ABN≌△ACM,对应边除了AB和AC,AN和AM外,还有()A.BM和CN B.BN和CM C.BC和CB D.MB和NC3.(3分)角是轴对称图形,它的对称轴是()A.角平分线B.角平分线所在的射线C.角平分线所在的线段D.角平分线所在的直线4.(3分)如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≌△ABD,补充下列其中一个条件后,不一定能推出△ABC≌△ABD的是()A.AC=BD B.BC=BD C.∠CAB=∠DAB D.∠ACB=∠ADB5.(3分)在平面直角坐标系中,点A(﹣4,﹣2)关于y轴对称的点的坐标是()A.(﹣4,2)B.(4,﹣2)C.(4,2)D.(﹣2,4)6.(3分)在锐角△ABC内一点P满足P A=PB=PC,则点P是△ABC()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点7.(3分)如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有多少条对角线?()A.5B.6C.7D.88.(3分)如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中最多能画出()个格点三角形与△ABC成轴对称.A.6个B.5个C.4个D.3个9.(3分)如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36°B.72°C.50°D.46°10.(3分)如图,锐角三角形ABC中,O为三条边的垂直平分线的交点,I为三个角的平分线的交点,若∠BOC 的度为x,∠BIC的度数为y,则x、y之间的数量关系是()A.x+y=90°B.x﹣2y=90°C.x+180°=2y D.4y﹣x=360°二、填空题(共6小题,每小题3分,共18分)11.(3分)在下列四个图形中,具有稳定性的是(填序号)①正方形②长方形③直角三角形④平行四边形12.(3分)成轴对称的两个图形是全等的(填“一定”或“不一定”).13.(3分)如图,把两根钢条的中点连在一起,可以做到一个测量工件内槽宽的工具(长钳),在图中,要测量工件内槽宽AB,只要测就可以了.14.(3分)在△ABC中,AB=4,AC=6,D为BC边的中点,则中线AD的取值范围是.15.(3分)如图△ABC中,∠A=96°,延长BC到D,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,以此类推,∠A4BC的平分线与∠A4CD的平分线交于点A5,则∠A5的大小是.16.(3分)如图,在△ABC中,∠BAC=90°,AB=AC,过C作CD垂直射线BF于点D,射线BF交AC于点O,过A作AE⊥BO于点E,若BD=13,AE=4,则CD=.三、解答题(共8小题,共72分)17.(8分)如图,在△ABC中,AD是高,AE,BF分别是∠BAC、∠ABC的角平分线,它们相于点O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度数.18.(8分)如下图,某地由于居民增多,要在公路l边增加一个公共汽车站,A,B是路边两个新建小区,这个公共汽车站C建在什么位置,能使两个小区到车站的路程一样长?(要求:尺规作图,保留作图痕迹,不写画法)19.(8分)如图,点C是AB的中点,AD=CE,CD=BE.求证:△ACD≌△CBE.20.(8分)如图,在平面直角坐标系中,△ABC的点坐标分别为A(2,3),B(1,1),C(2,1).(1)画出△ABC关于x轴对称的△A1B1C1,并写出A1,B1,C1的坐标;(2)直按写出△ABC关于直线m(直线m上各点的横坐标都为﹣1)对称的△A2B2C2的坐标:A2,B2,C2.21.(8分)如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,∠ABD的角平分线与AC 交于点E,连接DE.(1)求证:点E到DA、DC的距离相等;(2)求∠BED的度数.22.(10分)如图,小强在河的一边,要测河面的一只船B与对岸码头A的距离,他的做法如下:①在岸边确定一点C,使C与A,B在同一直线上;②在AC的垂直方向画线段CD,取其中点O;③画DF⊥CD使F、O、A在同一直线上;④在线段DF上找一点E,使E与O、B共线.他说测出线段EF的长就是船B与码头A的距离.他这样做有道理吗?为什么?23.(10分)已知AP是△ABC的外角平分线,连结PB、PC.(1)如图1①若BP平分∠ABC,且∠ACB=28°,求∠APB的度数.②若P与A不重合,请判断AB+AC与PB+PC的大小关系,并证明你的结论.(2)如图2,若过点P作PM⊥BA,交BA的延长线于M点,且∠BPC=∠BAC,求:的值.24.(12分)在平面直角坐标系中,直线AB交y轴于A(0,a),交x轴于B(b,0),且a,b满足(a﹣b)2+|3a+5b ﹣88|=0.(1)求点A,B的坐标;(2)如图1,已知点D(2,5),求点D关于直线AB对称的点C的坐标.(3)如图2,若P是∠OBA的角平分线上的一点,∠APO=67.5°,求的值.2019-2020学年湖北省武汉市江夏区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.【解答】解:设第三根小棒的长度为xcm,由题意得:6﹣4<x<6+4,解得:2<x<10,故选:C.2.【解答】解:∵△ABN≌△ACM,对应边除了AB和AC,AN和AM外,∴还有BN和CM.故选:B.3.【解答】解:角的对称轴是“角平分线所在的直线”.故选:D.4.【解答】解:A、添加AC=BD不能判定两个三角形全等,故此选项符合题;B、添加BC=BD可利用SAS判定两个三角形全等,故此选项不符合题;C、添加∠CAB=∠DAB可利用ASA判定两个三角形全等,故此选项不符合题;D、添加∠ACB=∠ADB可利用AAS判定两个三角形全等,故此选项不符合题;故选:A.5.【解答】解:点A(﹣4,﹣2)关于y轴对称的点的坐标是(4,﹣2),故选:B.6.【解答】解:∵P A=PB∴P在AB的垂直平分线上,同理P在AC,BC的垂直平分线上.∴点P是△ABC三边垂直平分线的交点.故选:D.7.【解答】解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9﹣3=6,8.【解答】解:如图,最多能画出6个格点三角形与△ABC成轴对称.故选:A.9.【解答】解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.10.【解答】解:∵O为三条边的垂直平分线的交点,∴点O为△ABC的外心,∴x=2∠A,∵I为三个角的平分线的交点,∴点I是△ABC的内心,∴y=90°+A,∴y=90°+x,∴4y﹣x=360°,二、填空题(共6小题,每小题3分,共18分)11.【解答】解:在下列四个图形中,具有稳定性的是三角形.故答案为:③12.【解答】解:成轴对称的两个图形一定是全等的.故答案为:一定.13.【解答】解:答:只要测量A'B'.理由:连接AB,A'B',如图,∵点O分别是AC、BB'的中点,∴OA=OA',OB=OB'.在△AOB和△A'OB'中,OA=OA',∠AOB=∠A'OB'(对顶角相等),OB=OB',∴△AOB≌△A'OB'(SAS).∴A'B'=AB.答:需要测量A'B'的长度,即为工件内槽宽AB,故答案为:A'B'14.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴EB=AC=6,∵AB=4,∴2<AE<10,∴1<AD<5.故答案为:1<AD<5.15.【解答】解:∠BA1C+∠A1BC=∠A1CD,2∠A1CD=∠ACD=∠BAC+∠ABC,∴2(∠BA1C+∠A1BC)=∠BAC+∠ABC,2∠BA1C+2∠A1BC=∠BAC+∠ABC,而2∠A1BC=∠ABC,∴2∠BA1C=∠BAC,同理,可得2∠BA2C=∠BA1C,2∠BA3C=∠BA2C,2∠BA4C=∠BA3C,2∠BA5C=∠BA4C,∴∠BA5C=∠BA4C=∠BA3C=∠BA2C=∠BA1C=∠BAC=96°÷32=3°,故∠A5=3°.16.【解答】解:在BO上截取BH=CD,∵CD⊥BF,∴∠BDC=90°,∵∠BAC=90°,∠AOB=∠COD,∴∠ABO=∠COD,∵AB=AC,∴△ABH≌△ACD(SAS),∴AH=AD,∠BAH=∠CAD,∴∠HAC+∠CAD=90°,∴△ADH为等腰直角三角形,∵AE⊥BO,∴AE=,∴BH=BD﹣DH=CD=13﹣8=5.故答案为:5.三、解答题(共8小题,共72分)17.【解答】解:∵AD⊥BC∴∠ADC=90°∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20°;∵∠BAC=50°,∠C=70°∴∠BAO=25°,∠ABC=60°∵BF是∠ABC的角平分线∴∠ABO=30°∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°.18.【解答】解:连接AB,作AB的垂直平分线与直线l于O,交AB于E∵EO是线段AB的垂直平分线∴点O到A,B的距离相等∴这个公共汽车站C应建在O点处,才能使到两个小区的路程一样长19.【解答】证明:∵点C是AB的中点,∴AC=CB.在△ACD和△CBE中,,(5分)∴△ACD≌△CBE(SSS).(6分)20.【解答】解:(1)如图所示,△A1B1C1即为所求;A1(2,﹣3),B1(1,﹣1),C1(2,﹣1);(2)如图所示,A2(﹣4,3),B2(﹣3,1),C2(﹣4,1).故答案为:(﹣4,3),(﹣3,1),(﹣4,1).21.【解答】证明:(1)过E作EF⊥AB于F,EG⊥AD于G,EH⊥BC于H,∵BE平分∠ABD,∴EH=EF,∵∠BAC=130°,∴∠F AE=∠CAD=50°,∴EF=EG,∴EG=EH,∴ED平分∠CDG,∴点E到DA、DC的距离相等;(2)∵ED平分∠CDG,∴∠HED=∠DEG,设∠DEG=y,∠GEB=x,∵∠EF A=∠EGA=90°,∴∠GEA=∠FEA=40°,∵∠EFB=∠EHB=90°,∠EBF=∠EBH,∴∠FEB=∠HEB,∴2y+x=80﹣x,2y+2x=80,y+x=40,即∠DEB=40°.22.【解答】解:有道理,∵DF⊥CD,AC⊥CD,∴∠C=∠D=90°,∵O为CD中点,∴CO=DO,在△ACO和△FDO中,∴△ACO≌△FDO(ASA),∴AO=FO,∠A=∠F,在△ABO和△EOF中,∴△ABO≌△FEO(ASA),∴EF=AB.23.【解答】解:(1)①∵AP平分∠DAC,PB平分∠ABC,∴∠DAP=∠DAC,∠ABP=∠ABC,∵∠DAC=∠ABC+∠ACB,∠DAP=∠ABP+∠APB,∴∠APB=∠DAP﹣∠ABP=∠DAC﹣∠ABC=∠ACB=14°;②PB+PC>AB+AC.理由如下:如图1﹣1,在射线AD上取一点H,使AH=AC,连接PH.∵AC=AH,∠P AD=∠P AC,AP=AP,∴△APH≌△APC(SAS),∴PC=PH,在△BPH中,PB+PH>BH,∴PB+PC>AB+AC.(2)过点P作PN⊥AC于N,∵AP平分∠MAN,PM⊥BA,∴PM=PN,在Rt△APM与Rt△APN中,,∴Rt△APM≌Rt△APN(HL),∴AM=AN,∵∠BAC=∠BPC,∴由“8字形”得:∠MBP=∠PCN,在△PMB与△PNC中,,∴△PMB≌△PNC(AAS)∴BM=CN,∵AM=AN,∴AC﹣AB=2AM,∴==24.【解答】解:(1)由题意得解得∴A(0,11),B(11,0)(2)如图一,延长FD交AB于点E,连结CE 因为OB=OA=11所以三角形OAB是等腰直角三角形易得△DEC,△AFE都是等腰直角三角形所以FE=AF=OA﹣OF=11﹣5=6∴CE=DE=EF﹣FD=6﹣2=4所以C的横坐标为6.,纵坐标为5+4=9故C的坐标为(6,9)(3)如上图,作PM垂直AB于点M,作PM垂直OB于点L,在L的左侧取一点N,使得NL=AM ∵PB是∠ABO的平分线所以PM=PL∴△AMP≌△NLP∴∠NLP=∠APM∴∠APN=∠MPL∵∠ABO=45°∴∠MPL=135°∴∠APN=135°又∠APO=67.5°∴∠NPO=∠APO=67.5°∵PN=P A,PO=PO∴△OPN≌OP A∴∠PON=∠POA=45°,NO=AO=11设NL=a,则MA=a,∴BL=BM=a+11∵BL=22﹣a∴22﹣a=a+11∴a=11﹣∴LO=11﹣(11﹣)=∴PO=LO=11所以=3。
2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.32.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.253.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a55.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.66.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3 D.2x27.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>09.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.110.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或111.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣112.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为.15.(4分)若x2+kx+16是完全平方式,则k的值为.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:;方法②:;(2)根据(1)写出一个等式:;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.3【解答】解:﹣3的倒数是﹣,故选:B.2.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.25【解答】解:∵52=25,∴25的算术平方根是5.故选:A.3.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C.4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a5【解答】解:A、原式=2a6,不符合题意;B、原式=a7,符合题意;C、原式=4a2,不符合题意;D、原式=a6,不符合题意,故选:B.5.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.6.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3D.2x2【解答】解:2x2+6x3=2x2(1+3x),故选:D.7.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.【解答】解:A、原式=±3,符合题意;B、原式=﹣3,不符合题意;C、原式=3,不符合题意;D、原式=±2,不符合题意,故选:A.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>0【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、|a|>4=|d|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.9.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.1【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2017=﹣1,故选:C.10.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1 C.1 D.﹣3或1【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选:D.11.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.12.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.【解答】解:|﹣|=.故本题的答案是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为2.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故答案为:2.15.(4分)若x2+kx+16是完全平方式,则k的值为±8.【解答】解:∵x2+kx+16=x2+kx+42,∴kx=±2•x•4,解得k=±8.故答案为:±8.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为﹣2.【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)【解答】解:(1)原式=3﹣4+4=3;(2)原式=m8+m8+m8=3m8;(3)原式=1﹣a2+a2﹣2a=1﹣2a.18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.【解答】解:如图,故答案为:﹣6,,0,3.1415926,,﹣;,;﹣6,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.【解答】解:原式=a2+6a+9﹣6a﹣8=a2+1,当a=﹣2时,原式=4+1=5.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.【解答】解:(1)27xy2﹣3x=3x(9y2﹣1)=3x(3y+1)(3y﹣1);(2)2x2+12x+18=2(x2+6x+9)=2(x+3)2;(3)(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:(m+n)2﹣4mn;方法②:(m﹣n)2;(2)根据(1)写出一个等式:(m+n)2﹣4mn=(m﹣n)2;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.【解答】解:(1)方法①:(m+n)2﹣4mn,方法②:(m﹣n)2;故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由①可得:(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)由②可得:(x﹣y)2=(x+y)2﹣4xy,∵x+y=﹣8,xy=3.75,∴(x﹣y)2=64﹣15=49,∴x﹣y=±7;又∵x+y=8,∴或;(4)如图,表示(2m+n)(m+2n)=2m2+5mn+2n2:。
湖北省武汉市东西湖区2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.以下列各组线段为边,能组成三角形的是()A. 1cm,2cm,4cmB. 4cm,6cm,8cmC. 5cm,6cm,12cmD. 2cm,3cm,5cm2.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是()A. 30°B. 40°C. 50°D. 60°3.在下列四个交通标志图中,不是轴对称图形的是()A. B. C. D.4.已知一个等腰三角形的一边长等于3cm,一边长等于7cm,那么它的周长为()A. 13cmB. 17cmC. 13cm或17cmD. 18cm5.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,BO=OC,CD⊥BC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,从而可通过测量CD的长度得知小河的宽度AB.在这个问题中,可作为证明△ABO≌△DCO的依据的是()A. SAS或SSSB. AAS或SSSC. ASA或AASD. ASA或SAS6.一个多边形,若它的内角和等于外角和的3倍,则它是()边形A. 6B. 7C. 8D. 97.(a,−6)关于x轴对称的点的坐标为()A. (−a,6)B. (a,6)C. (a,−6)D. (−a,−6)8.如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED′=40°,则∠DEF的度数为()A. 40°B. 50°C. 60°D. 70°9.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为()A. 6cm2B. 8cm2C. 16cm2D. 不能确定10.如图,AD⊥DC,AB⊥BC,若AB=AD,∠DAB=120°,则∠ACB的度数为()A. 60°B. 45°C. 30°D. 75°二、填空题(本大题共6小题,共18.0分)11.十边形的对角线有______ 条.12.如图,AB=AE,∠BAE=∠CAD,要使△ABC≌△AED,还需添加的条件是______(只需填一个)13.如图,在△ABC中,∠ABC=40°,∠ACB=60°,AD是∠BAC的角平分线,AE是BC边上的高,则∠DAE的度数是_________.14.如图,△ABC中,∠C=90°,BC=4,AQ⊥AC,AQ=10,PQ⊥AB,且PQ=AB,则PC的长为______ .15.已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E、F,若AB=8,AC=4,则AE=____________.16.如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在AB边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是______.三、计算题(本大题共1小题,共10.0分)17.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,求CH的长.四、解答题(本大题共7小题,共62.0分)18.如图,在△ABC中,∠A=62°,∠1=20°,∠2=35°.求∠BDC的度数.19.如图,点A,B,C,D在一条直线上,且AB=CD,若∠1=∠2,EC=FB.求证:∠E=∠F.20.如图,点D、E在△ADC的边BC上,AD=AE,BD=EC,求证:AB=AC.21.如图所示,在△ABC中,∠A=40°,BD是角平分线,CE⊥AB于E,∠BDC=70°,BD,CE交于点F,求∠BFC和∠ACB的度数.22.已知如图,M、N是△ABC的BC边上两点,且AB=AC,BM=CN(1)如图1,证明:△ABN≌△ACM;(2)如图2,当∠ANB=2∠B时,直接写出图中所有等腰三角形(△ABC除外)23.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD是∠BAC的平分线.24.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.-------- 答案与解析 --------1.答案:B解析:解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能够组成三角形;C、5+6<12,不能组成三角形;D、2+3=5,不能组成三角形.故选B.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析即可.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2.答案:D解析:本题考查了三角形的外角定理,三角形外角的性质有关知识,由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故选D.3.答案:C解析:本题考查了轴对称图形的知识,判断是否是轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.直接根据轴对称图形的定义解答即可.解:A.是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不符合题意.故选C.4.答案:B解析:解:分两种情况:当腰为3时,3+3<7,所以不能构成三角形;当腰为7时,3+7>7,所以能构成三角形,周长是:3+7+7=17.故选:B.等腰三角形有两条边长为3cm和7cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;解题时注意:没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这是解题的关键.5.答案:C解析:此题主要考查了全等三角形的判定,正确掌握全等三角形的判定方法是解题关键.直接利用全等三角形的判定方法得出符合题意的答案.解:∵AB⊥BC,CD⊥BC,∴∠ABO=∠OCD=90°,在△ABO和△DCO中{∠ABO=∠DCO BO=CO∠BOA=∠COD,∴△ABO≌△DCO(ASA),则证明△ABO≌△DCO的依据的是ASA;也可以利用AAS得出:∵AB⊥BC,CD⊥BC,∴∠AOB+∠BAO=∠COD+∠D=90°,∴∠BAO=∠D,在△ABO和△DCO中{∠BAO=∠D ∠BOA=∠COD BO=CO,∴△ABO≌△DCO(AAS),则证明△ABO≌△DCO的依据的是AAS.故选:C.6.答案:C本题考查了多边形的内角和定理以及外角和定理,正确理解定理是关键.根据多边形的外角和是360°,以及多边形的内角和定理即可求解.解:设此多边形的边数是n,则(n−2)⋅180=3×360,解得:n=8.故选C.7.答案:B解析:此题主要考查了关于x轴对称点的坐标,正确记忆横纵坐标的关系是解题关键.直接利用关于x轴对称的两个点:横坐标相同,纵坐标互为相反数进而得出答案.解:(a,−6)关于x轴对称的点的坐标为:(a,6).故选:B.8.答案:D解析:本题考查翻折变换等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.由翻折不变性可知:∠DEF=∠D′EF,求出∠DED′即可解决问题.解:由翻折不变性可知:∠DEF=∠D′EF,∵∠AED′=40°,∴∠DED′=180°−∠AED′=180°−40°=140°,∠DED′=70°,∴∠DEF=12故选:D.9.答案:B解析:本题考查了正方形的定义以及轴对称的性质.注意利用轴对称的性质,将阴影面积转化为求一个大三角形ABC的面积是解题的关键.根据正方形的定义和轴对称的性质可得阴影部分的面积等于正方形的面积的一半,然后列式进行计算即可得解.×4×4=8cm2.解:S阴影=1210.答案:C解析:本题考查了角平分线的性质及四边形的内角和定理,熟记到角的两边距离相等的点在角的平分线上是解题的关键.根据到角的两边距离相等的点在角的平分线上判断出AC平分∠BCD,再根据四边形的内角和定理求出∠BCD,然后求解即可.解:∵AD⊥DC,AB⊥BC,AB=AD,∴AC平分∠BCD,∵∠DAB=120°,∴∠BCD=360°−90°×2−120°=60°,∴∠ACB=12∠BCD=12×60°=30°.故选C.11.答案:35解析:熟记多边形的边数与对角线的条数之间的关系式是解决此类问题的关键.n边形的对角线共有n(n−3)2条,根据此关系式求解.解:当n=10时,n(n−3)2=10×(10−3)2=35.即十边形的对角线有35条,故答案为35.12.答案:AC=AD或∠C=∠D或∠B=∠AED解析:本题考查全等三角形的判定方法,解题的关键是熟练掌握基本知识,属于中考常考题型.根据全等三角形的判定方法即可判断.解:在△ABC和△AED中,∵AB=AE,∠BAE=∠CAD,∴∠BAC=∠EAD,∴根据SAS可以添加条件AC=AD,根据AAS可以添加条件∠C=∠D,根据ASA可以添加条件∠B=∠AED,故答案为AC=AD或∠C=∠D或∠B=∠AED.13.答案:10°解析:本题考查了三角形的内角和定理,掌握三角形内角和等于180°是解题的关键.根据三角形内角和定理求出∠BAC,根据角平分线的定义、高的定义计算即可.解:∵∠B=40°,∠ACB=60°,∴∠BAC=180°−40°−60°=80°,∵AD是∠BAC的平分线,∴∠BAD=∠CAD=12∠BAC=40°,∵AE是BC边上的高,∠ACB=60°,∴∠EAC=30°,∴∠DAE=∠CAD−∠EAC=10°,故答案为10°.14.答案:6解析:本题考查了全等三角形的性质与判定,解决本题的关键是证明△ABC≌△QAP.利用已知条件证明△ABC≌△QPA,得到CA=AQ,BC=PA,根据PC=AC−AP=AQ−BC,即可解答.解:如图,∵AQ⊥AC,PQ⊥AB,∴∠QEA=∠PAQ=90°,∵∠Q+∠QAE=90°,∠PAE+∠QAE=90°,∴∠Q=∠PAE,在△ABC和△APQ中,{∠Q=∠PAE ∠C=∠PAQ AB=PQ,∴△ABC≌△QPA,∴CA=AQ,BC=PA,∴PC =AC −AP =AQ −BC =10−4=6.故答案为6.15.答案:6解析:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.注意准确作出辅助线是解此题的关键.首先连接PB ,PC ,由∠BAC 的平分线与BC 的垂直平分线相交于点P ,PE ⊥AB ,PF ⊥AC ,易得PE =PF ,PB =PC ,继而证得△PBE≌△PCF ,AE =AF ,又由AB =8,AC =4,即可求得答案.解:连接PB ,PC ,∵点P 在BC 的垂直平分线上,∴PB =PC ,∵AC 平分∠BAC ,PE ⊥AB ,PF ⊥AC ,∴PE =PF ,∠PEB =∠PFC =90°,又∵AP =AP ,∴Rt △APE≌Rt △APF(HL),∴AE =AF ,在Rt △PBE 和Rt △PCF 中,{PB =PC PE =PF, ∴Rt △PBE≌Rt △PCF(HL),∴BE =CF ,∵AB =AE +BE ,AF =AC +CF ,∴AB =AC +CF +BE ,∵AB =8,AC =4,∴BE =CF =2,∴AE =AC +CF =6.故答案为6.16.答案:70°解析:解:如图,连接OA、OC,∵∠ABC=40°,BO为∠ABC的平分线,∴∠OBD=12∠ABC=20°.又∵BA=BC,∴∠BAC=∠BCA=12(180°−∠ABC)=12×(180°−40°)=70°.∵DO是BC的垂直平分线,∴OB=OC.∴∠OCB=∠OBC=20°.在△AOB和△COB中,{AB=BC∠ABO=∠CBO BO=BO,∴△AOB≌△COB,∴∠BAO=∠OCB=20°.由翻折的性质可知:OA⊥EF,∠AEF=∠OEF.∴∠AEF=90°−20°=70°.∴∠OEF=70°.故答案为:70°.连接OA、OC,根据角平分线的定义求出∠DBO=20°,根据等腰三角形两底角相等求出∠BAC=∠BCA=70°,再根据线段垂直平分线上的点到线段两端点的距离相等可得OB=OC,根据等边对等角可得∠DCO=∠DBO=20°,然后证明△ABO≌△CBO,于是得到∠EAO=∠BCO=20°,根据翻折的性质可知OA⊥EF,∠AEF=∠OEF,从而可求得∠OEF=70°.本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.17.答案:解:∵AD⊥BC,∴∠EAH+∠B=90°,∵CE⊥AB,∴∠EAH+∠AHE=90°,∴∠B=∠AHE,∵EH =EB ,在△AEH 和△CEB 中,{∠AHE =∠B EH =BE ∠AEH =∠BEC∴△AEH≌△CEB(ASA),∴CE =AE ,∵EH =EB =3,AE =4,∴CH =CE −EH =4−3=1.解析:根据AD ⊥BC ,CE ⊥AB ,可得出∠EAH +∠B =90°∠EAH +∠AHE =90°,则∠B =∠AHE ,则△AEH≌△CEB ,从而得出CE =AE ,再根据已知条件得出CH 的长.本题考查了全等三角形的判定和性质,根据同角的余角相等得出∠B =∠AHE ,是解此题的关键. 18.答案:解:∵在△ABC 中,∠A =62°,∴∠ABC +∠ACB =180°−62°=118°.∵∠1=20°,∠2=35°,∴∠DBC +∠DCB =∠ABC +∠ACB −∠1−∠2=118°−20°−35°=63°.∴∠BDC =180°−(∠DBC +∠DCB)=180°−63°=117°.解析:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.先根据三角形内角和定理求出∠ABC +∠ACB 的度数,再由∠1=20°,∠2=35°求出∠DBC +∠DCB 的度数,由三角形内角和定理即可得出结论.19.答案:证明:∵∠1+∠DBF =180°,∠2+∠ACE =180°.又∵∠1=∠2,∴∠DBF =∠ACE ,∵AB =CD ,∴AB +BC =CD +BC ,即AC =DB ,在△ACE 和△DBF 中,{EC =FB ∠ACE =∠DBF AC =DB∴△ACE≌△DBF(SAS),∴∠E =∠F .解析:本题考查了全等三角形的性质和判定,能求出△ACE≌△DBF是解此题的关键.根据边角关系求出∠DBF=∠ACE,AC=DB,再根据SAS推出△ACE≌△DBF,根据全等三角形的性质得出即可.20.答案:证明:过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AF是BC的垂直平分线,∴AB=AC.解析:此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.21.答案:解:∵∠A=40°,∠BDC=70°,∴∠ABD=∠BDC−∠A=30°,∵BD是角平分线,∴∠ABC=60°,∴∠ACB=180°−∠A−∠ABC=80°,∵CE⊥AB于E,∠ABD=30°,∴∠BFC=∠ABD+∠BEF=120°.解析:根据三角形外角的性质得到∠ABD=∠BDC−∠A.利用角平分线的定义得到∠ABC,利用三角形的内角和得出∠ACB;根据三角形外角的性质得到∠BFC=∠ABD+∠BEF.本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形外角的性质以及角平分线的性质.22.答案:(1)证明:∵AC=AB,∴∠B=∠C,又∵BM=CN,∴BM+MN=CN+MN∴BN=CM在△ABN和△ACM中,{AB=AC∠B=∠C BN=CM,∴△ABN≌△ACM(SAS).(2)∵△ABN≌△ACM,∴∠ANB=∠AMC,∴AM=AN,∴△AMN是等腰三角形,∵∠ANB=2∠B=2∠C=∠C+∠CAN,∴∠C=∠CAN,∴△ANC是等腰三角形,同法可证△ABM是等腰三角形.解析:(1)根据SAS证明△ABN≌△ACM即可;(2)利用全等三角形的性质,三角形的外角的性质可以证明△AMN,△ANC,△ABM是等腰三角形;本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.答案:证明:∵BD=DC,∴∠DBC=∠DCB,∵∠1=∠2,∴∠ABC=∠ACB,∴AB=AC,在△ABD与△ACD中{AB=AC ∠1=∠2 BD=DC,∴△ABD≌△ACD(SAS),∴∠BAD=∠CAD,∴AD是∠BAC的平分线.解析:此题考查全等三角形的判定和性质,关键是根据BD=DC得出∠DBC=∠DCB.根据BD=DC得出∠DBC=∠DCB,进而利用全等三角形的判定和性质证明即可.24.答案:(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,{∠CAE=∠BCG AC=BC∠ACE=∠CBG∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,{∠BEC=∠CMA ∠ACM=∠CBE BC=AC,∴△BCE≌△CAM(AAS),∴BE=CM.解析:(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG,(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.。
湖北省武汉市部分学校2018-2019学年度八年级数学(上)第12章《全等三角形》周测(一)(含答案)(测试范围:12.1全等三角形~12.2三角形全等的判定 参考时间:90分钟,满分:120分)一、选择题(每小题3分,共30分)1.如图,△ABC ≌△DEF ,图中和AF 相等的线段是( )A.线段BCB.线段ABC.线段CD D .线段DE第1题图A BCDEF 第2题图ABCEF第4题图ABCDO第5题图ABDE F2.如图,已知△ABC ≌△DEF ,AC =DF ,AB =DE ,BC =7,EC =3,则CF 的长是( ) A.4 B.3 C.4.5 D .73.已知△ABC ≌△EDF ,△ABC 的周长是20,AB =5,BC =8,则DF 的长是( ) A.5 B.7 C.8 D .5或84.如图,AD ,BC 相交于点O ,已知∠A =∠C ,要根据“ASA ”证明△AOB ≌△COD ,还要添加一个条件是( ) A.AB =CD B.BO =DO C.AO =CO D .∠ABO =∠CDO5.如图,在△ABC 中,∠B =∠C ,D 为BC 中点,由点D 分别向AB 、AC 作垂线段,则能够说明△BDE ≌△CDF 的理由是( )A.AASB.SASC.ASA D .SSS 6.如图是由4个相同的小正方形组成的网格图,则∠1+∠2的度数是( ) A.120° B.150° C.180° D .200°7.如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地,上取一个可以直接到达A 和B 的点C ,连结AC 并延长到D ,使CD =C A.连结BC 并延长到E ,使EC =CB ,连结DE ,量出DE 的长,就是A 、B 的距离.请判断这样做的依据是( )A.AASB.SASC.ASA D .SSS第6题图21第7题图BC A第8题图ABCDE第9题图mBCDE8.如图,已知AB =AC ,AD =AE ,∠BAC =∠DAE .下列结论错误的是( ) A.∠BAD =∠CAE B.△ABD ≌△ACE C.AB =BC D .BD =CE9.在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC ,AE =3,EC =4,则DE 的长是( )A.8B.7C.4 D .310.如图,在四边形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =6,过点B 作EB ⊥AB ,交CD 于点E .若DE =4,则ADA.6B.8C.9 D .10二、填空题(每小题3分,共18分)11.如图,点B ,A ,D ,E 在同一直线上,BA =DE ,BC ∥EF ,要使△ABC ≌△DEF ,则只需添加一个适当的条件是 .(只填一个即可)第10题图ABCDE第11题图AB CDE第12题图EDCA第13题图ADE12.如图,已知∠B =∠C ,BE =CD ,AB =7,AE =2,则CE = .13.如图,BE ,CD 是△ABC 的高,且∠ABC =∠ACB ,判定△BCD ≌△CBE 的依据是 .(填写字母即可)14.如图,E 点为△ABC 的边AC 中点,CN ∥AB ,过E 点作直线交AB 与M 点,交CN 于N 点,若MB =7cm ,CN =4cm ,则AB = cm.第14题图A BCMEN 第15题图NABC DEMxyABCD O15.如图,线段AB =8cm ,射线AN ⊥AB 于点A ,点C 是射线AC 上一动点,分别以AC ,BC 为直角边作等腰直角三角形,得△ACD 与△BCE ,连接DE 交射线AN 于点M ,则CM 的长为 cm. 16.如图,在△ABC 中,∠ACB =90°,AC =B C.点C 的坐标为(-1,0),点A 的坐标为(-4,2),则B 点的坐标是 . 三、解答题(共8题,共72分)17.(本题8分)如图,△EFG ≌△NMH ,在△EFG 中,FG 是最长的边,在△NMH 中,MH 是最长的边,∠F 和∠M 是对应角,且EF =2.4cm ,FH =1.9cm ,HM =3.5cm. (1)写出对应相等的边及对应相等的角; (2)求线段NM 及线段HG 的长度.FHGME18.(本题8分)如图,E 、F 是线段AB 上两点,AE =BF ,AD =BC ,∠A =∠B ,求证:∠D =∠C.A BCDE F19.(本题8分)如图,AC =DF ,AC ∥DF ,AE =D B. (1)求证:BC =EF ; (2)求证:BC ∥EF .A BDEF20.(本题8分)已知∠A =90°,AB =BD ,ED ⊥BC 于D ,求证:DE +CE =A C.ACD E21.(本题8分)如图,点C 、E 、B 、F 在同一直线上,AC ⊥CF 于点C ,DF ⊥CF 于点F ,AB 与DE 交于点O ,且EC =BF ,AB =DE ,求证:AC =DF .ACDEF O22.(本题10分)如图,BE =CD ,AE =AD ,∠1=∠2,∠2=110°,∠BAE =70°. (1)求证:△BAE ≌△CAD ; (2)求∠CAE 的度数.2AD E123.(本题10分)如图1,AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm.点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系; (2)如图2,将图1中的“AC ⊥AB ,BD ⊥AB ”为改“∠CAB =∠DBA =60°”,其他条件不变.设点Q 的运动速度为x cm/s ,是否存在实数x ,使得△ACP 与以B ,P ,Q 为顶点的三角形全等?若存在,求出相应的x ,t 的值;若不存在,请说明理由.图2图1AABCD Q24.(本题12分)如图1,在平面直角坐标系中,已知A (a ,0),C (0,b ),且a ,b 5a (4a -5b )2=0,点B 在y 轴正半轴上,且S △ABC =20. (1)求证:OB =OC ;(2)已知点P (m ,0),(其中-4<m <0),连接PB ,作PD ⊥PB 且PD =PB ,求点D 的坐标;(用含m 的式子表示); (3)如图2,在(2)的条件下,连接CD ,求证:∠PDC =45°+∠PBO .xy图2图1ABC D PO1-5CACCA 6-10CBCBB11.BC=EF12.513.AAS14.1115.416.(1,3)17.解:(1)略;(2)NM=EF=2.4cm;GH=HM-FH=3.5-1.9=1.6cm.18.证明:略.19.解:(1)略;(2)略.20.证:连BE,△ABE≌△DBE(HL),DE=AE.21.证:CE+BE=BF+BE,∴CB=FE,证Rt△ABC≌Rt△DEF(HL),∴AC=DF.22.解:证△BAE≌△CAD(SAS),∴∠CAD=∠BAE=70°,∠ADE=∠AED=70°,∴∠DAE=40°,∴∠CAE=∠CAD-∠DAE=70°-40°=30°.23.解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP=BQ,∠A=∠B,AC=BP,∴△ACP≌△BPQ(SAS),∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∴∠CPQ=90°,即线段PC与线段PQ垂直;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,3=4-t,t=xt,解得t=1,x=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,3=xt,t=4-t,解得t=2,x=1.5;综上所述,存在t=1,x=1或t=2,x=1.5,使得△ACP与△BPQ全等.24.解:(1)OB=OC=4;(2)作DE⊥x轴于E,证△POB≌△DPE,得D(4+m,m);(3)过D作DF⊥y轴于F,则∠PBO=∠PDF,证CF=OC-OF=4+m=DF,∴△CDF是等腰Rt△,∠CDF=45°,∴∠PDC=∠CDF+∠PDF=45°+∠PBO.。
2019-2020学年湖北省武汉市东湖高新区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列各式运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(ab2)3=ab6D.a10÷a2=a5 2.(3分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形3.(3分)△ABC中BC边上的高作法正确的是()A.B.C.D.4.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.(3分)计算(x+1)(x+2)的结果为()A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+26.(3分)如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D 到AB的距离为()cm.A.3B.4C.2D.17.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D8.(3分)如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定9.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,则这样的点P 有()A.1个B.2个C.3个D.4个10.(3分)如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF 交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③④B.①②③C.②④D.①③二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)x2•x5=,(103)3=,()0=.12.(3分)若三角形三边长分别为2、a、5,则a的取值范围为.13.(3分)如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC 于点E.若∠C=28°,求∠DAE的度数.14.(3分)请写出所有使(3x+2)(3x﹣4)>9(x﹣2)(x+3)成立的非负整数解..15.(3分)如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是.16.(3分)如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为度.三、解答题(共8题,共72分)17.(8分)计算:(1)a•a2•a3+(a3)2﹣(2a2)3(2)(3y+2x)(3y﹣2x)18.(8分)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.19.(8分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=0.5,y=﹣1.20.(8分)如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,若a+b=4,a2+b2=10,求剩下的钢板的面积.21.(8分)如图,C为线段AB上一点,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)问:CF与DE的位置关系?22.(10分)如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE 相交于点P(1)求∠CPD的度数;(2)若AE=3,CD=7,求线段AC的长.23.(10分)已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.24.(12分)如图1,平面直角坐标系xOy中,若A(0,4)、B(1,0)且以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.(1)如图1,求C点坐标;(2)如图2,在图1中过C点作CD⊥x轴于D,连接AD,求∠ADC的度数;(3)如图3,点A在y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交y轴于F,试问A点在运动过程中S△AOB:S△AEF的值是否会发生变化?如果没有变化,请说明理由.2019-2020学年湖北省武汉市东湖高新区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列各式运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(ab2)3=ab6D.a10÷a2=a5【分析】根据同底数幂的乘除法则及幂的乘方与积的乘方法则进行各选项的判断即可.【解答】解:A、a2与a3不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,计算正确,故本选项正确;C、(ab2)3=a3b6,原式计算错误,故本选项错误;D、a10÷a2=a8,原式计算错误,故本选项错误;故选:B.2.(3分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形【分析】稳定性是三角形的特性.【解答】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.3.(3分)△ABC中BC边上的高作法正确的是()A.B.C.D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.4.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.故这个多边形是六边形.故选:B.5.(3分)计算(x+1)(x+2)的结果为()A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选:B.6.(3分)如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D 到AB的距离为()cm.A.3B.4C.2D.1【分析】作DE⊥AB于E,如图,根据角平分线的性质得到DC=DE,然后计算CD即可.【解答】解:作DE⊥AB于E,如图,∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DC=DE,∵BC=5cm,BD=3cm,∴CD=2cm,∴DE=2cm,即点D到AB的距离为2cm.故选:C.7.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC ≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.8.(3分)如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定【分析】在AB上截取AE=AD,则易得△AEC≌△ADC,则AE=AD,CE=CD,则AB ﹣AD=BE,放在△BCE中,根据三边之间的关系解答即可.【解答】解:如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB﹣AD=AB﹣AE=BE,BC﹣CD=BC﹣CE,∵在△BCE中,BE>BC﹣CE,∴AB﹣AD>CB﹣CD.故选:A.9.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,则这样的点P 有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定定理找出各个点即可.【解答】解:如图所示,共3个点,故选:C.10.(3分)如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF 交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③④B.①②③C.②④D.①③【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠F AG =∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【解答】解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠F AG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)x2•x5=x7,(103)3=109,()0=1.【分析】根据同底数幂的乘法、积的乘方运算法则和零次幂的性质分别进行计算即可.【解答】解:x2•x5=x7,(103)3=109,()0=1,故答案为:x7;109;1.12.(3分)若三角形三边长分别为2、a、5,则a的取值范围为3<a<7.【分析】根据三角形的三边关系列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为2、a、5,∴5﹣2<a<5+2,即3<a<7.故答案为:3<a<7.13.(3分)如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC 于点E.若∠C=28°,求∠DAE的度数12°.【分析】先根据角平分线的定义求得∠EAC的度数,再由外角的性质得∠AED,最后由直角三角形的性质可得结论.【解答】解:∵AE平分∠BAC,∴∠EAC=∠BAC=×100°=50°,∵∠C=28°,∴∠AED=∠C+∠EAC=28°+50°=78°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣78°=12°.故答案为12°.14.(3分)请写出所有使(3x+2)(3x﹣4)>9(x﹣2)(x+3)成立的非负整数解.0,1,2,3.【分析】首先解不等式,再从不等式的解集中找出适合条件的整数即可.【解答】解:不等式(3x+2)(3x﹣4)>9(x﹣2)(x+3)的解集是:x<,因而他的非负整数解是0,1,2,3.15.(3分)如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是92°.【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:∠D=∠C=46°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+92°,则∠1﹣∠2=92°.故答案为:92°.16.(3分)如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为32度.【分析】过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得∠BDC的度数.【解答】解:过C点作∠ACE=∠CBD,∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,∴∠ECD=∠BDC,∵对角线BD平分∠ABC,∴∠ABD=∠CBD,∴∠ABD=∠ACE,∴∠BAC=∠CEB=64°,∴∠BDC=∠CEB=32°.故答案为:32.三、解答题(共8题,共72分)17.(8分)计算:(1)a•a2•a3+(a3)2﹣(2a2)3(2)(3y+2x)(3y﹣2x)【分析】(1)先利用同底数幂的乘法和积的乘方运算,然后合并同类项;(2)利用平方差公式计算.【解答】解:原式=a6+a6﹣8a6=﹣6a6;(2)原式=(3y)2﹣(2x)2=9y2﹣4x2.18.(8分)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.19.(8分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=0.5,y=﹣1.【分析】先根据乘法公式算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=0.5,y=﹣1时,原式=12×0.5×(﹣1)+10×(﹣1)2=﹣6+10=4.20.(8分)如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,若a+b=4,a2+b2=10,求剩下的钢板的面积.【分析】由大圆面积减去两个小圆面积求出阴影部分面积即可.【解答】解:根据题意得:S阴影=()2π﹣()2π﹣()2π=,∵a+b=4,a2+b2=10,∴ab==,∴S阴影=.21.(8分)如图,C为线段AB上一点,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)问:CF与DE的位置关系?【分析】(1)根据SAS即可证明;(2)利用等腰三角形的三线合一的性质即可证明;【解答】证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,,∴△ACD≌△BEC(SAS);(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.22.(10分)如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE 相交于点P(1)求∠CPD的度数;(2)若AE=3,CD=7,求线段AC的长.【分析】(1)由题中条件可得△APE≌△APF,进而得出∠APE=∠APF,再利用∠ABC =60°,AD、CE分别平分∠BAC,∠ACB,即可得出答案;(2)通过角之间的转化可得出△CPF≌△CPD,进而可得出线段之间的关系,即可得出结论.【解答】解:如图,在AC上截取AF=AE,连接PF.∵AD平分∠BAC,∴∠BAD=∠CAD,在△APE和△APF中,∴△APE≌△APF(SAS),∴∠APE=∠AOP,∵∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,∴∠APC=120°,∴∠CPD=60°.(2)∵∠APC=120°,∴∠APE=60°,∴∠APF=∠CPD=60°=∠CPF,在△CPF和△CPD中,,∴△CPF≌△CPD(ASA)∴CF=CD,∴AC=AF+CF=AE+CD=3+7=10.23.(10分)已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论BM﹣DN=MN;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.【分析】(1)延长CB到G使BG=DN,容易证明△AGB≌△AND,由此得到AG=AN 而根据∠MAN=45°,∠BAD=90°,可以得到∠GAM=∠NAM=45°,从而证明△AMN ≌△AMG,然后根据全等三角形的性质可以证明BM+DN=MN;(2)BM﹣DN=MN.在BC上截取BG=DN,连接AG,然后也可以证明△AMN≌△AMG,也根据全等三角形的性质就可以得到结论;(3)DN﹣BM=MN.在ND上截取DG=BM,连接AG,首先证明△AMB≌△AGD,再证△AMG为等腰直角三角形,即可.【解答】解:(1)延长CB到G使BG=DN,∵AB=AD,GB=DN,∠AGB=∠ADN=90°,∴△AGB≌△AND,∴AG=AN,∠GAB=∠DAN,∵∠MAN=45°,∠BAD=90°,∴∠GAM=∠GAB+∠BAM=∠DAN+∠BAM=45°,∴∠GAM=∠NAM,而AM是公共边,∴△AMN≌△AMG,∴MN=GM=BM+GB=MB+DN;(2)BM﹣DN=MN;(3)DN﹣BM=MN.证明:如图3,在ND上截取DG=BM,∵AD=AB,∠ABM=∠ADN=90°,∴△ADG≌△ABM,∴AG=AM,∠MAB=∠DAG,∵∠MAN=45°,∠BAD=90°,∴∠MAG=90°,△AMG为等腰直角三角形,∴AN垂直MG,∴AN为MG垂直平分线,所以NM=NG.∴DN﹣BM=MN.24.(12分)如图1,平面直角坐标系xOy中,若A(0,4)、B(1,0)且以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.(1)如图1,求C点坐标;(2)如图2,在图1中过C点作CD⊥x轴于D,连接AD,求∠ADC的度数;(3)如图3,点A在y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交y轴于F,试问A点在运动过程中S△AOB:S△AEF的值是否会发生变化?如果没有变化,请说明理由.【分析】(1)先判断出△AOB≌△CGA,进而求出CE=OA=4,AG=OB=1,即可得出结论;(2)由(1)知C(4,5),进而求出OD=4,进而判断出OA=OD,得出∠OAD=45°,最后用平行线的性质即可得出结论;(3)点判断出点E在y轴的左侧,再分点A在y轴正半轴和负半轴上,同(1)的方法求出点C坐标,再用待定系数法求出直线CE的解析式,进而求出点F的坐标,即可得出结论.【解答】解:(1)如图①,∵A(0,4)、B(1,0),∴OA=4,OB=1,过点C作CG⊥y轴于G,∴∠AGC=90°=∠BOA,∴∠OAB+∠OBA=90°∵∠CAB=90°,∴∠OAB+∠GAC=90°,∴∠OBA=∠GAC,∵AB=AC,∴△AOB≌△CGA(AAS),∴CG=OA=4,AG=OB=1,∴OG=OA+AG=5,∴C(4,5);(2)由(1)知,OA=4,点C(4,5),∵CD⊥x轴,∴点D(4,0),∴OD=4,∴OA=OD,∠OAD=45°,∵CD⊥x轴,∴CD∥y轴,∴∠ADC=∠OAD=45°;(3)A点在运动过程中S△AOB:S△AEF的值不会发生变化,理由:设点A的坐标为(0,a),①当点A在y轴正半轴上时,连接CE交y轴于F,∴点C,E在y轴的两侧,即点E在y轴左侧,同(1)的方法得,C(a,a+1),∵△OAE是等腰直角三角形,∴AE⊥OA,∴E(﹣a,a),∴直线CE的解析式为y=x+a+,∴F(0,a+),∴AF=a+﹣a=,∵OB=1,∴=2;②当点A在y轴负半轴上时,同①的方法得,C(﹣a,a﹣1),E(a,a),∴直线CE的解析式为y=x+a﹣,∴F(0,a﹣),∴AF=,∴=2.即A点在运动过程中S△AOB:S△AEF的值不会发生变化.。
2018-2019学年湖北省武汉市江汉区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A.1cm B.2cm C.7cm D.10cm2.如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≌△ABD.补充下列其中一个条件后,不一定能推出△ABC≌△ABD的是()A.BC=BD B.AC=AD C.∠ACB=∠ADB D.∠CAB=∠DAB3.下列运算中,正确的是()A.x+x=x2B.3x2﹣2x=x C.(x2)3=x6D.x2•x3=x64.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD =OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB 的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是()A.SAS B.ASA C.AAS D.SSS5.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab6.如图,BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,则∠CDE的度数是()A.50°B.60°C.70°D.120°7.如图,AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论:①DE=DF;②BD=CD;③AE=AF;④∠ADE=∠ADF,其中正确结论的个数有()A.1个B.2个C.3个D.4个8.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a﹣b)(a+2b)=a2﹣2b2+abB.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a﹣b)(a+b)=a2﹣b29.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.已知3m=a,81n=b,m、n为正整数,则33m+12n的值为()A.a3b3B.15ab C.3a+12b D.a3+b3二、填空题(共6小题,每小题3分,共18分)11.计算:(x﹣2)(2+x)=.12.八边形中过其中一个顶点有条对角线.13.如图,△ABC≌△DEF,则∠E的度数为.14.如果等腰三角形的两边长分别为3和7,那么它的周长为.15.若x2+kx﹣15=(x+3)(x+b),则k=.16.若一个多边形的每一个内角都等于156°,则这个多边形是边形.三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分)17.(1)计算:(﹣4x)(2x2+3x﹣1)(2)解方程:(2x﹣3)(3x﹣2)=6(x﹣2)(x+2)18.已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.19.已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C =28°,求∠DAE的度数.20.已知x2+y2=25,x+y=7,求xy和x﹣y的值.21.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为;(2)直接写出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(2x﹣1)2018=a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.四、填空题(共4小题,每小题4分,共16分)22.若x2+2(m﹣4)x+25是一个完全平方式,那么m的值应为.23.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是.24.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE 与AC交于点E,连接DE,则∠DEB=.25.如图,在△ABC中,BC=10,BC边上的高为3.将点A绕点B逆时针旋转90°得到点E,绕点C顺时针旋转90°得到点D.沿BC翻折得到点F,从而得到一个凸五边形BFCDE,则五边形BFCDE的面积为.五、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分)26.(1)计算:(x3)2+x3•x5÷x2﹣(2x2)3(2)化简:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x.27.如图,在等腰Rt△ABC中,∠ACB=90°,∠CBA=∠CAB,AC=BC.点D在CB的延长线上,BD =CB.DF⊥BC,点E在BC的延长线上,EC=FD.(1)如图1,若点E、A、F三点共线,求证:∠FAB=∠FBA;(2)如图2,若线段EF与BA的延长线交于点M,求证:EM=FM.28.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA 上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.2018-2019学年湖北省武汉市江汉区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A.1cm B.2cm C.7cm D.10cm【分析】根据三角形的三边关系可得6﹣4<第三根小棒的长度<6+4,再解不等式可得答案.【解答】解:设第三根小棒的长度为xcm,由题意得:6﹣4<x<6+4,解得:2<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三边关系定理:三角形两边之和大于第三边.角形的两边差小于第三边.2.如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≌△ABD.补充下列其中一个条件后,不一定能推出△ABC≌△ABD的是()A.BC=BD B.AC=AD C.∠ACB=∠ADB D.∠CAB=∠DAB【分析】根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出正确结果.【解答】解:A、补充BC=BD,根据SAS可以推出△ABC≌△ABD,故本选项错误;B、补充AC=AD,没有两边及其一边的对角相等的两三角形全等的判断方法,∴不能推出△ABC≌△ABD,故本选项正确;C、补充∠ACB=∠ADB,根据AAS可以推出△ABC≌△ABD,故本选项错误;D、补充∠CAB=∠DAB,根据ASA可以推出△ABC≌△ABD,故本选项错误.故选:B.【点评】本题考查了三角形全等判定,三角形全等的判定定理:有AAS,SSS,ASA,SAS.做题时要逐个验证,排除错误的选项.3.下列运算中,正确的是()A.x+x=x2B.3x2﹣2x=x C.(x2)3=x6D.x2•x3=x6【分析】直接利用合并同类项法则以及幂的乘方运算法则和同底数幂的乘法运算法则分别计算得出答案.【解答】解:A、x+x=2x,故此选项错误;B、3x2﹣2x,无法计算,故此选项错误;C、(x2)3=x6,正确;D、x2•x3=x5,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及幂的乘方运算和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.4.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB 的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是()A.SAS B.ASA C.AAS D.SSS【分析】由三边对应相等得△DOF≌△EOF,即由SSS判定两个三角形全等.做题时要根据已知条件结合判定方法逐个验证.【解答】解:依题意知,在△DOF与△EOF中,,∴△DOF≌△EOF(SSS),∴∠AOF=∠BOF,即OF即是∠AOB的平分线.故选:D.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.5.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(﹣4a2+12a3b)÷(﹣4a2)=1﹣3ab.故选:A.【点评】此题主要考查了整式的除法,正确掌握运算法则是解题关键.6.如图,BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,则∠CDE的度数是()A.50°B.60°C.70°D.120°【分析】根据角平分线定义求出∠FCB和∠EBC,根据三角形的外角性质求出即可.【解答】解:∵BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,∴∠EBC=∠ABC==25°,∠FCB===35°,∴∠CDE=∠EBC+∠FCB=25°+35°=60°,故选:B.【点评】本题考查了三角形的角平分线定义和三角形的外角性质,能根据三角形的外角性质得出∠CDE=∠EBC+∠FCB是解此题的关键.7.如图,AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论:①DE=DF;②BD=CD;③AE=AF;④∠ADE=∠ADF,其中正确结论的个数有()A.1个B.2个C.3个D.4个【分析】根据角平分线的性质可得①正确,即可证△ADE≌△ADF,可得③④正确.【解答】解:∵AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F∴DE=DF∵DE=DF,AD=AD∴Rt△ADE≌Rt△ADF(HL)∴AE=AF,∠ADE=∠ADF故①③④正确∵只有等腰三角形顶角的角平分线才是底边的中线∴②错误故选:C.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,熟练运用这些性质解决问题是本题的关键.8.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a﹣b)(a+2b)=a2﹣2b2+abB.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a﹣b)(a+b)=a2﹣b2【分析】左图中阴影部分的面积=a2﹣b2,右图中矩形面积=(a+b)(a﹣b),根据二者相等,即可解答.【解答】解:由题可得:(a﹣b)(a+b)=a2﹣b2.故选:D.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.10.已知3m=a,81n=b,m、n为正整数,则33m+12n的值为()A.a3b3B.15ab C.3a+12b D.a3+b3【分析】根据幂的乘方与积的乘方运算法则计算即可.【解答】解:33m+12n=(3m)3•(34n)3=(3m)3•(81n)3=a3b3,故选:A.【点评】本题考查的是幂的乘方与积的乘方运算,掌握幂的乘方与积的乘方的运算法则是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.计算:(x﹣2)(2+x)=x2﹣4.【分析】依据平方差公式进行计算即可.【解答】解:(x﹣2)(2+x)=(x+2)(x﹣2)=x2﹣22=x2﹣4.故答案为:x2﹣4.【点评】本题主要考查的是平方差公式的应用,熟练掌握平方差公式是解题的关键.12.八边形中过其中一个顶点有5条对角线.【分析】根据从n边形的一个顶点可以作对角线的条数为(n﹣3),即可得解.【解答】解:∵一个八边形过一个顶点有5条对角线,故答案为:5.【点评】本题考查了多边形的对角线的公式,牢记公式是解题的关键.13.如图,△ABC≌△DEF,则∠E的度数为38°.【分析】利用全等三角形的性质以及三角形的内角和定理即可解决问题;【解答】解:∵△ABC≌△DEF,∴∠E=∠ABC,∵∠ABC=180°﹣∠A﹣∠C=38°,∴∠E=38°,故答案为38°.【点评】本题考查全等三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.14.如果等腰三角形的两边长分别为3和7,那么它的周长为17.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.15.若x2+kx﹣15=(x+3)(x+b),则k=﹣2.【分析】已知等式右边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出k的值.【解答】解:x2+kx﹣15=(x+3)(x+b)=x2+(b+3)x+3b,∴k=b+3,3b=﹣15,解得:b=﹣5,k=﹣2.故答案为:﹣2.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.16.若一个多边形的每一个内角都等于156°,则这个多边形是十五边形.【分析】先求出多边形一个外角的度数,然后根据多边形的外角和为360°,求出边数即可.【解答】解:∵多边形的每一个内角都等于156°,∴多边形的每一个外角都等于180°﹣156°=24°,∴边数n=360°÷24°=15.故答案为:十五.【点评】题主要考查了多边形的内角与外角的关系,解题的关键根据外角和定理求出多边形的边数.三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分)17.(1)计算:(﹣4x)(2x2+3x﹣1)(2)解方程:(2x﹣3)(3x﹣2)=6(x﹣2)(x+2)【分析】(1)根据单项式乘多项式的运算法则计算可得;(2)依次去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)原式=﹣8x3﹣12x2+4x;(2)6x2﹣4x﹣9x+6=6x2﹣24,6x2﹣4x﹣9x﹣6x2=﹣24﹣6,﹣13x=﹣30,x=.【点评】此题考查了整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解本题的关键.18.已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.【分析】由AC、BD平行,可知∠ACB=∠DBC,再根据已知条件,即可得到△ABC≌△EDB,即得结论AB=DE.【解答】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE.【点评】本题主要考查全等三角形的判定,涉及到平行线的性质知识点,比较简单.19.已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C =28°,求∠DAE的度数.【分析】先根据角平分线的定义求得∠EAC的度数,再由外角的性质得∠AED,最后由直角三角形的性质可得结论.【解答】解:∵AE平分∠BAC,∴∠EAC===50°,∵∠C=28°,∴∠AED=∠C+∠EAC=28°+50°=78°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣78°=12°.【点评】此题主要考查了三角形内角和定理,角平分线的定义,关键是掌握三角形内角和为180°,直角三角形两锐角互余.20.已知x2+y2=25,x+y=7,求xy和x﹣y的值.【分析】先根据完全平方公式求出xy的值,再根据完全平方公式求出(x﹣y)2的值,再求出答案即可.【解答】解:∵x2+y2=(x+y)2﹣2xy,∴25=72﹣2xy,∴xy=12,∴(x﹣y)2=x2﹣2xy+y2=25﹣2×12=1,∴x﹣y=±1.【点评】本题考查了完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键,注意:a2+2ab+b2=(a+b)2,a2﹣2ab+b2=(a﹣b)2.21.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为6;(2)直接写出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(2x﹣1)2018=a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.【分析】(1)根据三角形的构造法则,确定出(a+b)4的展开式中各项系数最大的数;(2)原式变形后,计算即可得到结果;(3)当x=0时,得到a2019=1,当x=1时,得到a2019=1,于是得到结论.【解答】解:(1)根据题意得:(a+b)4的展开式中各项系数分别为1,4,6,4,1,即最大的数为6;故答案为:6;(2)原式=(2﹣3)5=﹣1;(3)当x=0时,a2019=1,当x=1时,a1+a2+a3+…+a2017+a2018+a2019=1,∴a1+a2+a3+…+a2017+a2018=0.【点评】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.四、填空题(共4小题,每小题4分,共16分)22.若x2+2(m﹣4)x+25是一个完全平方式,那么m的值应为﹣1或9.【分析】根据完全平方式得出2(m﹣4)x=±2•x•5,求出即可.【解答】解:∵x2+2(m﹣4)x+25是一个完全平方式,∴2(m﹣4)x=±2•x•5,解得:m=﹣1或9,故答案为:﹣1或9.【点评】本题考查了完全平方式,能熟记完全平方式的内容是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2﹣2ab+b2.23.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是92°.【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:∠D=∠C=46°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+92°,则∠1﹣∠2=92°.故答案为:92°.【点评】此题考查了翻折变换(折叠问题)以及三角形外角性质,熟练掌握折叠的性质是解本题的关键.24.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE 与AC交于点E,连接DE,则∠DEB=40°.【分析】作辅助线,构建角平分线的距离,根据角平分线的性质和逆定理可得:EF=EG=EH,设∠DEG =y,∠GEB=x,根据三角形的内角和定理可得:∠GEA=∠FEA=40°,∠FEB=∠HEB,列方程为2y+x=80﹣x,y+x=40,可得结论:∠DEB=40°.【解答】解:过E作EF⊥AB于F,EG⊥AD于G,EH⊥BC于H,∵BE平分∠ABD,∴EH=EF,∵∠BAC=130°,∴∠FAE=∠CAD=50°,∴EF=EG,∴EG=EH,∴EH平分∠CDG,∴∠HED=∠DEG,设∠DEG=y,∠GEB=x,∵∠EFA=∠EGA=90°,∴∠GEA=∠FEA=40°,∵∠EFB=∠EHB=90°,∠EBF=∠EBH,∴∠FEB=∠HEB,∴2y+x=80﹣x,2y+2x=80,y+x=40,即∠DEB=40°,故答案为:40°.【点评】本题考查了三角形内角和定理和角平分线的性质,正确作辅助线是本题的关键,有难度. 25.如图,在△ABC 中,BC =10,BC 边上的高为3.将点A 绕点B 逆时针旋转90°得到点E ,绕点C 顺时针旋转90°得到点D .沿BC 翻折得到点F ,从而得到一个凸五边形BFCDE ,则五边形BFCDE 的面积为 80 .【分析】将点C 绕点B 逆时针旋转90°得到点G ,绕点C 顺时针旋转90°得到点H ,连接EG 、DH 、GH ,则△EBG ≌△ABC ≌△HDC ,四边形BCHG 是正方形,六边形BCDHGE 是中心对称图形,根据轴对称和中心对称的性质得出S △BEG =S △CDH =S △ABC ,S 四边形BCDE =S 六边形BCDHGE ,然后由S 五边形BFDE =S 四边形BCDE+S △BFC 即可求得.【解答】解:将点C 绕点B 逆时针旋转90°得到点G ,绕点C 顺时针旋转90°得到点H ,连接EG 、DH 、GH ,则△EBG ≌△ABC ≌△HDC ,四边形BCHG 是正方形,六边形BCDHGE 是中心对称图形, ∴四边形BCDE ≌四边形HGED ,∵S △BEG =S △CDH =S △ABC =×10×3=15=S △BFC ,S 正方形BCHG =10×10=100, ∴S 六边形BCDHGE =S △BEG +S △CDH +S 正方形BCHG =2×15+100=130,∴S 四边形BCDE =S 六边形BCDHGE =65,∴S 五边形BFDE =S 四边形BCDE +S △BFC =65+15=80, 故答案为80.【点评】本题考查了图形的全等,熟练掌握轴对称和中心对称的性质是解题的关键. 五、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分) 26.(1)计算:(x 3)2+x 3•x 5÷x 2﹣(2x 2)3(2)化简:[(x +2y )2﹣(x +y )(3x ﹣y )﹣5y 2]÷2x .【分析】(1)根据幂的乘方、同底数幂的乘除法和积的乘方可以解答本题; (2)根据完全平方公式和多项式乘多项式以及整式的除法可以解答本题.【解答】解:(1)(x3)2+x3•x5÷x2﹣(2x2)3=x6+x6﹣8x6=﹣6x6;(2)[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x=[x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2]÷2x=(﹣2x2+2xy)÷2x=﹣x+y.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.27.如图,在等腰Rt△ABC中,∠ACB=90°,∠CBA=∠CAB,AC=BC.点D在CB的延长线上,BD =CB.DF⊥BC,点E在BC的延长线上,EC=FD.(1)如图1,若点E、A、F三点共线,求证:∠FAB=∠FBA;(2)如图2,若线段EF与BA的延长线交于点M,求证:EM=FM.【分析】(1)证明△ACE≌△BDF(SAS),得∠EAC=∠FBD,根据平角的定义可得∠FAB=∠FBA;(2)连接FB,EA,延长BM,分别过点E,F作BM的垂线,垂足分别为P,Q,同理得△EAC≌△FBD,所以AE=BF,再证明△EAP≌△FBQ和△EMP≌△FMQ,可得结论.【解答】证明:(1)连接BF,∵AC=BC,BC=BD,∴AC=BD,∵DF⊥BC,∴∠ACB=∠D=∠ACE=90°,在△ACE和△BDF中,∵,∴△ACE≌△BDF(SAS),∴∠EAC=∠FBD,∵∠FAB=180°﹣∠EAC﹣∠CAB,∠FBA=180°﹣∠FBD﹣∠CBA,∵∠CAB=∠ABC,∴∠FAB=∠FBA;(2)如图2,连接FB,EA,延长BM,分别过点E,F作BM的垂线,垂足分别为P,Q,同理得:△EAC≌△FBD,∴AE=BF,同理可知:∠EAP=∠FBQ,在△EAP和△FBQ中,,∴△EAP≌△FBQ(AAS),∴PE=FQ,在△EMP和△FMQ中,∴△EMP≌△FMQ(AAS),∴EM=FM.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用定理是解题的关键.28.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA 上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【分析】(1)根据非负性得出a=b=4,过点A分别作x轴,y轴的垂线,垂足分别为M、N,进而利用角平分线的性质解答即可;(2)过A作AH平分∠OAB,交BM于点H,根据全等三角形的判定和性质解答即可;(3)过H作HM⊥OF,HN⊥EF于M、N,根据全等三角形的判定和性质解答.【解答】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE与△AHC中∴△AOE≌△AHC(ASA)∴AH=OE在△ONE和△AMH中∴△ONE≌△AMH(SAS)∴∠AMH=∠ONE设BM与NE交于K∴∠MKN=180°﹣2∠ONE=90°﹣∠NEA∴2∠ONE﹣∠NEA=90°(3)过H作HM⊥OF,HN⊥EF于M、N可证:△FMH≌△FNH(SAS)∴FM=FN同理:NE=EK∴OE+OF﹣EF=2HK过A作AP⊥y轴于P,AQ⊥x轴于Q可证:△APF≌△AQE(SAS)∴PF=EQ∴OE+OF=2OP=8∴2HK+EF=OE+OF=8【点评】此题是三角形综合题,主要考查了角平分线的性质,全等三角形的性质和判定,解本题的关键是全等三角形性质和判定的运用.。