高一数学必修2第二章单元测试题
- 格式:doc
- 大小:732.50 KB
- 文档页数:2
第二章单元测试题、选择题1.若直线 a 和 b 没有公共点,则 a 与 b 的位置关系是 ( )A .相交B .平行C .异面D .平行或异面2 .平行六面体ABCD -A i B i C i D i 中,既与AB 共面也与CC i 共面的棱 的条数为 ( ) A .3 B .4 C .5 D . 64.长方体ABCD — A i B i C i D i 中,异面直线AB,A i D i 所成的角等于()A. 30° B . 45° C . 60° D . 90° 5.对两条不相交的空间直线a 与b ,必存在平面a,使得() A . a? a , b? a B . a? a, b 〃a C.a 丄 a, b 丄 a D . a? a, b 丄 a6. 下面四个命题:① 若直线 a b 异面 b c 异面 则 a c 异面;② 若直线 a b 相交 b c 相交 则 a c 相交;③ 若a // b ,则a , b 与c 所成的角相等;④ 若a 丄b , b 丄c ,则a / c.其中真命题的个数为()A . 4B . 3C . 2D . i 7. 在正方体 ABCD —A i B i C i D i 中EF 分别是线段 A i B i B i C i 上的 不与端点重合的动点,如果 A i E = B i F ,有下面四个结论:① EF 丄 AA i ;® EF // AC ;③ EF 与 AC 异面;④ EF //平面 ABCD. 其中一定正确的有 ( )A. ①② B .②③ C .②④ D .①④B .8设a , b 为两条不重合的直线,a, B 为两个不重合的平面,下列命 题中为真命题的是( )A .若a , b 与a 所成的角相等,贝S a //bB .若 a / a, b / 伏 a// B,则 a / bB. 若 a? a, b? B a / b ,贝U a// [33. 已知平面a 和直线I ,则 A .平行 B .相交 a 内至少有一条直线与1(C .垂直D .异面D .若a丄a, b丄3 a丄3贝y a丄b9.已知平面a丄平面厲aQ B= l,点A€ a, A?l,直线AB II l,直线AC 丄l,直线m// a n//伏则下列四种位置关系中,不一定成立的是( )A . AB//m B. AC 丄m C. AB// B D. AC 丄B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)14. 正方体ABCD —A i B i C i D i中,二面角G —AB-C的平面角等于15. ______________________________________________________ 设平面a//平面B, A, C€ a, B , D € B,直线AB与CD交于点S,且点S位于平面a B之间,AS= 8 , BS= 6 , CS= 12 ,则SD= _______________16. 将正方形ABCD沿对角线BD折成直二面角A—BD —C,有如下四个结论:①AC丄BD :②厶ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是_________ .三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17. (10分)如下图,在三棱柱ABC—A1B1C1中,△ ABC与厶A i B i C i 都求证:(1)平面AB i F i //平面C i BF;⑵平面AB i F i丄平面ACC i A i.18. (12分)如图所示,边长为2的等边△ PCD所在的平面垂直于矩形ABCD所在的平面,BC = 2 2 M为BC的中点.(1)证明:AM丄PM;⑵求二面角P-AM —D的大小.详解答案1[答案]D2[答案]C[解析]AB与CC i为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CG相交的有:CD、C1D1与CC i平行且与AB相交的有:BB i、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案]C[解析]1°直线I与平面a斜交时,在平面a内不存在与I平行的直线,二A错;2°l? a时,在a内不存在直线与I异面,二D错;3°l // a时,在a内不存在直线与I相交.无论哪种情形在平面a内都有无数条直线与I垂直.4[答案]D[解析]由于AD // A i D i,则/ BAD是异面直线AB, A i D i所成的角,很明显/ BAD = 90°5[答案]B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a, b不相交,则a与b平行或异面,都存在a,使a? a, b // a, B正确;对于选项C, a丄a, b± a, 一定有a/ b, C错误;对于选项D , a? a, b丄a 一定有a丄b , D错误.6[答案]D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a / c ,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案]D[解析]如图所示.由于AA i丄平面A i B i C i D i , EF?平面A i B i C i D i,则EF丄AA i,所以①正确;当E, F分别是线段A1B1, B1C1 的中点时,EF// A i C i, 又AC// A i C i,贝S EF II AC,所以③不正确;当E, F分别不是线段A i B i, B i C i的中点时,EF与AC异面,所以②不正确;由于平面A iB iC iD i I平面ABCD, EF?平面A i B i C i D i,所以EF //平面ABCD,所以④正确.8[答案]D[解析]选项A中,a, b还可能相交或异面,所以A是假命题;选项B中,a, b还可能相交或异面,所以B是假命题;选项C中,a, B还可能相交,所以C是假命题;选项D中,由于a丄a a丄则a // B或a? B,贝卩B内存在直线I I a,又b± B,则b±I,所以a丄b.9[答案]Ci3[答案]an片ABi4[答案]45°[解析]如图所示,正方体ABCD — A i B i C i D i 中,由于BC 丄AB , BC i 丄AB ,贝卩/C i BC 是二面角C i — AB — C 的平面角.又△ BCC i 是等 腰直角三角形,则/ C i BC = 45°i5[答案]9T all AC // BD ,则Ah SD ,A 6=SD ,解得 SD = 9i6[答案]①②④[解析]如图所示,①取BD 中点,E 连接AE , CE ,则BD 丄AE , BD 丄CE ,而 AE A CE = E ,「. BD 丄平面 AEC , AC?平面 AEC , 故 AC 丄BD ,故①正确.②设正方形的边长为a,则AE= CE=_2a.由①知/ AEC= 90°是直二面角A-BD —C的平面角,且/ AEC = 90° 二AC= a,•••△ ACD是等边三角形,故②正确.③由题意及①知,AE丄平面BCD,故/ ABE是AB与平面BCD 所成的角,而/ ABE=45°所以③不正确.④分别取BC, AC的中点为M, N,连接ME, NE, MN.1 1贝S MN // AB, 且MN = 2AB= qa,〃厂 1 1ME / CD,且ME = 2CDpa,•••/ EMN是异面直线AB, CD所成的角.在Rt A AEC 中,AE= CE=今a, AC= a,1 1••• NE = 2AC = 2a. MEN 是正三角形,二/ EMN = 60° 故④正确.17[证明](1)在正三棱柱ABC—A1B1C1中,T F、F1分别是AC、A1C1的中点,•B1F1 // BF, AF1 // GF.又••• B1F1 n AF1 = F1, C1F n BF=F,•平面AB1F1 //平面GBF.(2)在三棱柱ABC—A1B1C1 中,AA1 丄平面A1B1C1,「. BF 丄AA「又B1F1 丄A1C1, A1C1 n AA1 = A1,•B1F1X平面ACC1A1,而B1F1?平面ABF,「•平面AB i F i 丄平面ACC i A i .18[解析](1)证明:如图所示,取 CD 的中点E ,连接PE , EM , EA ,•••△ PCD 为正三角形,••• PE 丄CD , PE = PDsin /PDE = 2sin60=^3.•••平面PCD 丄平面ABCD ,• P E 丄平面 ABCD ,而 AM?平面 ABCD ,「. PE 丄AM. T 四边形ABCD 是矩形,• △ ADE , △ECM , △ABM 均为直角三角形,由勾股定理可求得 EM = 3, AM = 6, AE = 3,• EM 2 + AM 2 = AE 2. • AM 丄 EM.又 PEA EM = E ,「. AM 丄平面 PEM ,「. AM 丄PM.(2)解:由(1)可知EM 丄AM , PM 丄AM ,• / PME 是二面角P - AM — D 的平面角.•二面角P — AM — D 的大小为45°• tan/ PME PE = 3= EM = 3=• / PME = 45°。
2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C .l ⊄α,A ∈l ⇒A ∉α D .A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A .30°B .45°C .60°D .90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A .E ,F ,G ,H 一定是各边的中点 B .G ,H 一定是CD ,DA 的中点C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于( )A .8B .9C .10D .115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1DD .A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.此卷只装订不密封班级 姓名 准考证号 考场号 座位号现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1 C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥mB .AC ⊥mC .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3π C .4π D .6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( ) A .点H 是△A 1BD 的垂心 B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC ,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,B C AC'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.1sin 602ABC S =︒=11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=213OA ==,∴tan OP OAP OA ∠=,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则A B B EC E C D=,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA,且AD =OH .又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF中,1124OF OC AC ===,∴·tan 30EF OF =︒,∴2OP EF ==.∴2313P ABCD V a -=⨯. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC,所以AB == 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。
第二章单元测试1.下列命题正确的是………………………………………………( ) A .三点确定一个平面 B .经过一条直线和一个点确定一个平面 C .四边形确定一个平面 D .两条相交直线确定一个平面2.若直线a 不平行于平面α,且α⊄a ,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内不存在与a 平行的直线 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交 3.平行于同一平面的两条直线的位置关系………………………( ) A .平行 B .相交 C .异面 D .平行、相交或异面 4.平面α与平面β平行的条件可以是…………………………( ) A .α内有无穷多条直线都与β平行B .直线βα//,//a a 且直线a 不在α内,也不在β内C .直线α⊂a ,直线β⊂b 且β//a ,α//bD .α内的任何直线都与β平行5.下列命题中,错误的是…………………………………………( ) A .平行于同一条直线的两个平面平行 B .平行于同一个平面的两个平面平行 C .一个平面与两个平行平面相交,交线平行D .一条直线与两个平行平面中的一个相交,则必与另一个相交 6.已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内的已知直线必垂直于另一个平面的无数条直线 ③一个平面内的任一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确的个数是…………………………………………( ) A .3 B .2 C .1 D .07.下列命题中错误的是……………………………………( ) A .如果平面βα⊥,那么平面α内所有直线都垂直于平面βB .如果平面βα⊥,那么平面α一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面τα⊥,τβ⊥,l =⋂βα,那么τ⊥l 8.如图是正方体的平面展开图,则在这个正方体中 ①BM 与ED 平行 ②CN 与BE 异面 ③CN 与BM 成 60 ④DM 与BN 垂直 以上四个命题中,正确命题的序号是( ) A .①②③ B .②④ C .③④ D .②③④9.不共面的四点可以确定平面的个数为 ( ) A . 2个 B . 3个 C . 4个 D .无法确定 10.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ⊂α,b ⊂β,a ∥b D .a ⊂α,b ⊂α,a ∥β,b ∥β 11.下列四个说法 ①a //α,b ⊂α,则a // b ②a ∩α=P ,b ⊂α,则a 与b 不平行 ③a ⊄α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 12.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组13.(12分)已知正方方体111'D C B A ABCD -,求:(1)异面直线11CC BA 和的夹角是多少? (2)B A 1和平面11B CDA 所成的角?(3)平面11B CDA 和平面ABCD 所成二面角的大小?AB CDEFMN C A 1B 11P A BCDCABPMN14.(12分)如图,在三棱锥P —ABC 中,PA 垂直于平面ABC ,AC ⊥BC . 求证:BC ⊥平面PAC .15.(10分)如图:AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于B A ,的任意一点,求证: PAC BC 平面⊥16.(12分)如图,在四棱锥P —ABCD 中,M ,N 分别是AB ,PC 的中点,若ABCD 是平行四边形.求证:MN ∥平面PAD .,M N 分别是17. 如图:S 是平行四边形ABCD 平面外一点,,SA BD 上的点,且SM AM =NDBN, 求证://MN 平面SCDA BCP O17.(14分)如图正方形ABCD 中,O 为中心,P O ⊥面ABCD ,E 是PC 中点, 求证:(1)PA ||平面BDE ; (2)面PAC ⊥面BDE.18.(14分)如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面 C 1DF ?并证明你的结论.19.在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.必修2第三章《直线与方程》单元测试题一、选择题(本大题共10小题,每小题5分,共50分)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( ) A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A 、 -3B 、-6C 、23- D 、323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )274. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( ) A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 7. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)8. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 9. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有 A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0二、填空题(本大题共4小题,每小题5分,共20分)11.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 14.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 . 三、解答题(本大题共3小题,每小题10分,共30分)15. ①求平行于直线3x+4y-12=0,且与它的 16.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m 的值. ②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.*17.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点(1,0),求直线l 的方程.参考答案:1.A ;2.B ;3.B ;4.D ;5.B ;6.D ;7.A ;8.C ;9.A ;10.A. 11.x+4y-7=0或x=-1;12.x+y-3=0或2x-y=0;13.261;14.2x-y+5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0. 16.m=0或m=-1;17.x=1或3x-4y-3=0.必修2第四章《圆与方程》单元测试题一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)23.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)1±=a4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )(A)5 (B) 3 (C)10 (D) 55.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为A 、1,-1B 、2,-2C 、1D 、-17.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是A 、x y 3=B 、x y 3-=C 、x y 33=D 、x y 33-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=4 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是A 、6π B 、4π C 、3π D 、2π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交二、填空题(本大题共4小题,每小题5分,共20分)11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________. 14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为 . 2+y 2-8x=0的弦OA 。
FB EAND CM必修二第二单元单元测试一、选择题:(本题共12小题,每小题5分,共60分) 1.下列四个条件中,能确定一个平面的是( )A. 一条直线和一个点B.空间两条直线C. 空间任意三点D.两条平行直线2.已知直线l ∥平面α,直线α⊂a ,则l 与a 的位置关系必定是( )A. l 与a 无公共点B. l 与a 异面C.l 与a 相交,D.l ∥a 3.两两相交的四条直线确定平面的个数最多的是( ) A .4个 B .5个 C .6个 D .8个 4.下列命题中正确的个数是( )个①若直线l 上有无数个公共点不在平面α内,则//l α.②若直线l 与平面α平行,则直线l 与平面α内的任意一条直线都平行. ③如果两平行线中的一条与一个平面平行,那么另一条也与这个平面平行. ④垂直于同一条直线的两条直线互相平行. A.0 B.1 C.2 D.35.123,,l l l 是空间三条不同的直线,则下列命题正确的是( ) A.313221//,l l l l l l ⇒⊥⊥ B.313221//,l l l l l l ⊥⇒⊥ C.321321,,////l l l l l l ⇒共面 D.321,,l l l 共点321,,l l l ⇒共面6.如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行.②CN 与BE 是异面直线. ③CN 与AF 垂直.④DM 与BN 是异面直线. 以上四个命题中正确的个数是( ) A.1 B.2 C.3 D.47. 已知不同的直线,l m ,不同的平面,αβ,下命题中:①若α∥β,,l α⊂则l ∥β ②若α∥β,,;l l αβ⊥⊥则 ③若l ∥α,m α⊂,则l ∥m ④,,l m αβαββ⊥⋂=⊥若则 真命题的个数有( )A .0个B .1个C .2个D .3个 8. 下列命题中,错误..的命题是( ) A 、平行于同一直线的两个平面平行。
(数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示;这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )AB. C. D. 3.长方体的一个顶点上三条棱长分别是3,4,5;且它的8个顶点都在 同一球面上;则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.2:D35.在△ABC 中;02, 1.5,120AB BC ABC ==∠=;若使绕直线BC 旋转一周;则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面;且侧棱长为5;它的对角线的长 分别是9和15;则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面;面数最少的一个棱锥有 ________个顶点; 顶点最少的一个棱台有 ________条侧棱。
主视图 左视图 俯视图2.若三个球的表面积之比是1:2:3;则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中;O 是上底面ABCD 中心;若正方体的棱长为a ; 则三棱锥11O AB D -的体积为_____________。
4.如图;,E F 分别为正方体的面11A ADD 、面11B BCC 的中心;则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6;这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15;则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用);已建的仓库的底面直径为12M ;高4M ;养路处拟建一个更大的圆锥形仓库;以存放更多食盐;现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
人教版 必修2第二章单元测试命题人:姚伟一、选择题(本大题共12小题,每小题5分,共60分)1.下列命题正确的是………………………………………………( ) A .三点确定一个平面 B .经过一条直线和一个点确定一个平面 C .四边形确定一个平面 D .两条相交直线确定一个平面 2.若直线a 不平行于平面α,且α⊄a ,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内不存在与a 平行的直线 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交 3.平行于同一平面的两条直线的位置关系………………………( ) A .平行 B .相交 C .异面 D .平行、相交或异面 4.平面α与平面β平行的条件可以是…………………………( ) A .α内有无穷多条直线都与β平行B .直线βα//,//a a 且直线a 不在α内,也不在β内C .直线α⊂a ,直线β⊂b 且β//a ,α//bD .α内的任何直线都与β平行5.下列命题中,错误的是…………………………………………( ) A .平行于同一条直线的两个平面平行 B .平行于同一个平面的两个平面平行 C .一个平面与两个平行平面相交,交线平行D .一条直线与两个平行平面中的一个相交,则必与另一个相交 6.已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内的已知直线必垂直于另一个平面的无数条直线③一个平面内的任一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确的个数是…………………………………………( ) A .3 B .2 C .1 D .07.下列命题中错误的是……………………………………( ) A .如果平面βα⊥,那么平面α内所有直线都垂直于平面β B .如果平面βα⊥,那么平面α一定存在直线平行于平面β C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面τα⊥,τβ⊥,l =⋂βα,那么τ⊥l 8.如图是正方体的平面展开图,则在这个正方体中 ①BM 与ED 平行 ②CN 与BE 异面 ③CN 与BM 成60 ④DM 与BN 垂直 以上四个命题中,正确命题的序号是(A .①②③B .②④C .③④D .②③④9.不共面的四点可以确定平面的个数为 ( )A . 2个B . 3个C . 4个D .无法确定10.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( )A .a ⊥α且a ⊥βB .α⊥γ且β⊥γC .a ⊂α,b ⊂β,a ∥bD .a ⊂α,b ⊂α,a ∥β,b ∥β11.下列四个说法 ①a //α,b ⊂α,则a // b ②a ∩α=P,b ⊂α,则a 与b 不平行 ③a ⊄α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( )A .1个B .2个C .3个D .4个12.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组二.填空题(本大题共4小题,每小题4分,共16分13、过平面外一点作一平面的平行线有 条.14、.若直线a ,b 都平行于平面α,那么a 与b 的位置关系是 .15.在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面各边都相等,M 是PC 上的一动点,当点M 满足__________时,平面MBD ⊥平面PCD 。
高一数学必修2第三章测试题时间:90分钟;满分:100分;得分:一、选择题(36分,每小题3分)1、已知A (-1,0),B (5,6)C (3,4),则||||CB AC =(D ) (A )、31;(B )、21;(C )、3;(D )、2。
2、直线0133=++y x 的倾斜角是(C )(A )、300;(B )、600;(C )、1200;(D )、1350。
3、若三直线2x+3y+8=0,x -y -1=0和x+ky=0相交于一点,则k =(B )(A )、-2;(B )、21-;(C )、2;(D )、21 。
4、如果AB >0,BC >0,那么直线Ax —By —C=0不经过的象限是(B )(A )、第一象限;(B )、第二象限;(C )、第三象限;(D )、第四象限;5、已知直线L 1 和L 2夹角的平分线所在直线的方程为y=x,如果L 1的方程是)0(0>=++ab C by ax ,那么L 2的方程是(A )(A )0=++c ay bx (B )0=+-c by ax (C )0=-+c ay bx (D )0=+-c ay bx 6、以A (1,3),B (-5,1)为端点的线段的垂直平分线的方程是(B )A 、083=+-y xB 、043=++y xC 、083=++y xD 、062=--y x7、直线L 过点A (3,4)且与点B (-3,2)的距离最远,那么L 的方程为(C)A 、0133=--y xB 、0133=+-y xC 、0133=-+y xD 、0133=++y x8、光线由点P (2,3)射到直线1-=+y x 上,反射后过点Q (1,1),则反射光线所在的直线方程为(C)A 、0=+-y xB 、03154=+-y xC 、0154=+-y xD 、01654=+-y x9、已知点A (x,5)关于点(1,y )的对称点(-2,-3),则点P (x ,y )到原点的距离是( D)A 、4B 、13C 、15D 、1710、已知直线024=-+y ax 与052=+-b y x 互相垂直,垂足为(1,c ),则c b a ++的值为( A)A 、-4B 、20C 、0D 、2411、直线06:1=++ay x l 与023)2(:2=++-a y x a l 平行,则a 的值等于( D )A 、-1或3B 、1或3C 、-3D 、-112、直线)12(++=m mx y 恒过一定点,则此点是( D)A 、(1,2)B 、(2,1)C 、(1,-2)D 、(-2,1)13、如果两条直线的倾斜角相等,则这两条直线的斜率1k 与2k 的关系是(D)A 、1k =2kB 、1k >2kC 、1k <2kD 、1k 与2k 的大小关系不确定14、直线是y=2x 关于x 轴对称的直线方程为(C )(A )、x y 21-=;(B )、21=y x ;(C )、y = -2x ;(D )、y=2x 。
高一必修2第二章单元测试题
一、选择题(每小题3分,共30分)
1、下列四个结论:
⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为( )
A .0
B .1
C .2
D .3
2、垂直于同一条直线的两条直线一定( )
A .平行
B .相交
C .异面
D .以上都有可能
3、互不重合的三个平面最多可以把空间分成( )个部分
A .4
B .5
C .7
D .8
4、把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )
A .90
B .60
C .45
D .30
5、已知在四面体ABCD 中,,E F 分别是,AC BD 的中点,若2,4,AB CD EF AB ==⊥,则EF 与CD 所成的角的度数为( )
A.90 B.45 C.60 D.30
6、在长方体1111ABCD A B C D -,底面是边长为2的正方形,高为4,则点1A 到截面11AB D 的距离为( )
A . 83
B . 38
C .43
D . 34
7、下列说法不正确的....
是( ) A .空间中,一组对边平行且相等的四边形是一定是平行四边形;
B .同一平面的两条垂线一定共面;
C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;
D .过一条直线有且只有一个平面与已知平面垂直.
8、设,m n 是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则n m ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( )
A .①和②
B .②和③
C .③和④
D .①和④
9、若长方体的三个面的对角线长分别是,,a b c ,则长方体体对角线长为( )
A B C D 10、在三棱锥A BCD -中,AC ⊥底面0,,,,30BCD BD DC BD DC AC a ABC ⊥==∠=,
则点C 到平面ABD 的距离是( )
A .5a
B . 5a
C .5a
D .3a
H G F E D B A C 二、填空题(每小题4分,共20分)
11、已知,a b 是两条异面直线,//c a ,那么c 与b 的位置关系____________________。
12、直二面角α-l -β的棱l 上有一点A ,在平面,αβ内各有一条射线AB ,AC 与l 成045,,AB AC αβ⊂⊂,则BAC ∠= 。
13、空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点,则BC 与AD 的位置关系是_____________;四边形EFGH 是__________形;当___________时,四边形EFGH 是菱形;当___________时,四边形EFGH 是矩形;当___________时,四边形EFGH 是正方形。
14、四棱锥V ABCD -中,底面ABCD 是边长为2的正方形,其他四个侧面都是侧棱长为5的等腰三角形,则二面角V AB C --的平面角为_____________。
15、三棱锥,73,10,8,6,P ABC PA PB PC AB BC CA -======则二面角P AC B --的大小为_________
三、解答题(共50分)
16、(10分)已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点,且
//EH FG .求证://EH BD .
17、(12分)正方体1111ABCD A B C D -中,M 是1AA 的中点.
求证:平面MBD ⊥平面BDC
18、(13分)如图:S 是平行四边形ABCD 平面外一点,,M N 分别是,SA BD 上的点,且SM AM =ND
BN ,求证://MN 平面SBC
19、(15分)在三棱锥S ABC -中,△ABC 是边长为4的正三角形,平面SAC ⊥平面,3ABC SA SC ==M 、N 分别为,AB SB 的中点。
(Ⅰ)证明:AC ⊥SB ;
(Ⅱ)求二面角N -CM -B 的大小;
(Ⅲ)求点B 到平面CMN 的距离。