2020届高考数学(理)一轮复习讲义 6.4 数列求和 - 副本
- 格式:docx
- 大小:322.38 KB
- 文档页数:16
6.4 数列求和、数列的综合应用挖命题【考情探究】.3.数列递推关系、非等差、等比数列的求和是高能综合利用等差、等比数列的基本知识解决相关综合问题.分值约为12分,难度中等.考热点特别是错位相减法和裂项相消法求和破考点【考点集训】考点一数列求和1. (2017湖南郴州第一次教学质量监测,6)在等差数列{a n}中,a4=5,a7=11.设0=(-1) n a n,则数列{b n}的前100项之和S100=( )分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.A.-200B.-100C.200D.100答案D2. (2018 湖北东南省级示范高中联考,15)已知S为{a n}的前n项和,若a n(4+cosn n )=n(2-cos n n ),贝U S?8等于__________ .答案 2 3323. (2018 江西吉安一中、九江一中等八所重点中学4月联考,13)若{a n},{b n}满足2a nb n=1,a n=n +3n+2,则{b n}的前2 018 项和为________ .答案——考点二数列的综合应用1. (2018福建漳州期末调研测试,5)等差数列{a n}和等比数列{b n}的首项均为1,公差与公比均为3,则+ + =( )A.64B.32C.38D.33答案D2. (2017 陕西西安铁一中第五次模拟,9)已知数列{a n}满足a n=log(n+1)(n+2)(n € N*),我们把使乘积a1 a2 a s • - - a n为整数的数n叫做优数”则在区间(1,2 004)内的所有优数"的和为( )A.1 024B.2 003C.2 026D.2 048答案C3. 已知a n=3n(n € N*),记数列{a n}的前n项和为T n,若对任意的n € N*, - k绍n-6恒成立,则实数k的取值范围是__________ .答案k A炼技法【方法集训】方法1 错位相减法求和1. (2018 福建闽侯第八中学期末,16)已知数列{na n}的前n项和为S-na田+50<0的最小正整数n的值为 __________ .答案52. (2018河南安阳第二次模拟,17)设等差数列{a n}的前n项和为f(x)=x 2+B X+C-1(B,C€ R)的图象上,且a1=C.(1) 求数列{a n}的通项公式;⑵记b n=a n( . +1),求数列{b n}的前n项和T n.解析(1)设数列{a n}的公差为d,贝H S=na1+_ d=_n2+ __ n,又S=n2+Bn+C-1,两式对照得一解得所以a1=1,所以数列{a n}的通项公式为a n=2n-1(n € N ).(2) 由(1)知b n=(2n-1)(2 2n-1-1+1)=(2n-1)2 n,则T n=1X 2+3X2 2+・・+(2n-1) 2n,2T n=1 X 2 2+3X 2 3+- +(2 n-3) 2n+(2 n-1) 2n+1,两式相减得T n=(2n-1) 2n+1-2(2 2+・・+2n)-2=(2n-1) 2n+1-2X —-——2 S,且a n=2n,则使得S n,点(n,S n)在函数n+1=(2 n-3) 2 +6.方法2 裂项相消法求和1. (2018湖南株洲醴陵第二中学、第四中学联考,3)数列—_的前2017项的和为()A. +1B. -1C. +1D. -1答案 B2. (2018湖南邵阳期末,15)设数列{(n 2+n)a n}是等比数列,且a1=,a2=—,则数列{3 n a n}的前15项和为________ .答案一3. (2017广东潮州二模,16)已知S为数列{a n}的前n项和,a n=2 3n-1(n € N*),若b n=——,则b1+b2+・• +b n= _____ .答案--——过专题【五年高考】A组统一命题课标卷题组考点一数列求和1. (2017课标n ,15,5分)等差数列{a n}的前n项和为S,a 3=3,S4=10,则一= ________ .答案一2. (2015 课标I ,17,12 分)S n为数列{a n}的前n 项和.已知a n>0, +2a n=4S+3. (1)求{a n}的通项公式;⑵设b n= ------- ,求数列{b n}的前n项和•解析(1)由 +2a n =4S n +3,可知 +2a n+1=4S n+l +3. 可彳得 -+2(a n+仁an)=4a n+i ,即2(a n+i +a n )=-=(a n+i +a n )(an+仁a n ).由 ^于a n >0, ^所 以a n+i -a n =2.又由 +2a i =4a 计3,解得a i =-i (舍去)或a i =3.所以{a n }是首项为3,公差为2的等差 数列,通项公式为a n =2n+i.(6分)思路分析 ⑴ 由 +2a n =4S n +3,得 +2a n+i =4S n+i +3,两式相减得出递推关系,再求出a i ,利用等差数列的通项公式可得通项.(2)利用裂项相消法求T n考点二数列的综合应用1. (20i7课标I ,i2,5 分)几位大学生响应国家的创业号召 ,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了 解数学题获取软件激活码 ”的活动.这款软件的激活码为下面数学问题的答案:已知数列i,i,2,i,2,4,i,2,4,8,i,2,4,8,i6, …,其中第一项是 2°,接下来的两项是 2°,2 i ,再接下来的三项是2°,2i ,2 2,依此类推.求满足如下条件的最小整数N:N>i°°且该数列的前N 项和为2的整数幕.那么该款软件的激活码是 ( )A.440B.330C.220D.110答案 A2. (2016课标n ,17,12 分)S n 为等差数列{a n }的前n 项和,且a i =1,S y =28.记b n =[lg a n ],其中[x] 表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求 b i ,b ii ,b i°i ;⑵求数列{b n }的前1 000项和.解析 (1)设{a n }的公差为d,据已知有7+21d=28,(2)由 a n =2n+i 可知 b n = ---- = --------------= --------------- .设数列{b n }的前n 项和为T n ,则T n = b i +b 2+"+b n =-+••+.(i2 分)解得d=1.所以{a n}的通项公式为a n=n.b i=[lg 1]=0,b ii=[lg 11]=1,b i°i=[lg 101]=2.(6 分)所以数列{b n}的前 1 000 项和为1X 90+2X 900+3X 1=1 893.(12 分)思路分析(1)先求公差,从而得通项a n,再根据已知条件求b1,bn,b 101.(2)分析出{b n}中项的规律,进而求出数列{b n}的前1 000项和•B组自主命题省(区、市)卷题组考点一数列求和1. (2018天津,18,13分)设{a n}是等比数列,公比大于0,其前n项和为S(n € N*),{b n}是等差数列.已知a1=1,a 3=a2+2,a 4=b3+b5,a 5=b4+2b6.(1)求{a n}和{b n}的通项公式;⑵设数列{S n}的前n项和为T n(n € N*).(1) 求T n;(ii)证明------------- = ---- 2(n € N ).2解析(1)设等比数列{a n}的公比为q.由a1=1,a3=a2+2,可得q -q-2=0.因为q>0,可得q=2,故a n=2n-1.设等差数列{b n}的公差为d.由a4=b3+b5,可得b1+3d=4.由a5=tk+2b6,可得3b1+13d=16, 从而b1=1,d=1,故b n=n.所以,数列{a n}的通项公式为a n=2n-1,数列{b n}的通项公式为b n= n.(2) (i)由(1),有S=——=2n-1,故T n= - - = ----- -- - -n=2 n+1-n-2.(ii)证明:因为 --------- =—二-------(2)因为b n== ---------- =—-—,所以, ------- =—-—+ —+••+ —------------------- =—-2.2. (2016山东,18,12分)已知数列{a n}的前n项和S=3n2+8n,{b n}是等差数列,且a n=b n+b n+i.(1)求数列{b n}的通项公式⑵令C n= ---------- ,求数列{C n}的前n项和T n.解析⑴由题意知,当n呈时,a n=9-S n-1=6n+5.当n=1时,a 1=S1=11,所以a n=6n+5.设数列{b n}的公差为d.由即可解得b1=4,d=3.所以b n=3n+1.(2) 由(1) 知C n= ---------- =3(n+1) 2n+1. 又T n=C1+C2+・・+C n, 得T n=3X [2 X 2 2+3X 2 3+・・+(n+1) X2 n+1],2T n=3X [2 X2 3+3X2 "+••+(n+1) X2 n+j,两式作差,得-T n=3X [2 X 2 2+23+24+・・+2n+1-(n+1) X2n+j=3 X —- =-3n 2n+2. 所以n+2T n=3n 2 .考点二数列的综合应用1.(2015 福建,8,5 分)若a,b是函数f(x)=x -px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于() A.6 B.7 C.8 D.9答案D2.(2018 浙江,20,15 分)已知等比数列{a n}的公比q>1,且a s+a4+a5=28,a 4+2是a s,a5的等差中2项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n +n.(1)求q的值;⑵求数列{b n}的通项公式.解析(1)由a4+2是a3,a 5的等差中项得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20 得8 - =20,解得q=2 或因为q>1,所以q=2.(2)设C n=(b n+1-b n)a n,数列{C n}的前n 项和为S.解得C n=4n-1.由C n =由(1)可知a n=2 ,所以b n+i-b n=(4n-1) •,故b n-b n-i =(4n-5) •- ,n 疑,b n-b 1 =(b n-b n-1 )+(b n-1 -b n-2)+ - +(b 3-b 2) + (b 2-b 1)=(4 n-5) •- +(4 n-9) •- +・・+7"3.设T n=3+7」+11 •- +・・+(4n-5) •- ,n 支,- T n=3 •- +7 •■+・・+(4n-9) •- +(4n-5) •- , 所以_耳=3+4丄+4 •- +・・+4 •- -(4n-5) •- ,因此T n=14-(4n+3) •- ,n 丝,又b1=1,所以b n=15-(4n+3) •- .C组教师专用题组考点一数列求和1. (2017天津,18,13分)已知{a n}为等差数列,前n项和为S n(n € N*),{b n}是首项为2的等比数列,且公比大于0,b 2+b3=12,b 3=a4-2a 1,Sn=11b4.(1)求{a n}和{b n}的通项公式;⑵求数列{a 2n b2n-1}的前n项和(n € N ).解析(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而6=2,所以q2+q-6=0,解得q=2 或q=-3,又因为q>0,所以q=2.所以,b n=2n.由b3=a4-2a 1,可得3d-a1=8①.由Su=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以,数列{a n}的通项公式为a n=3n-2,数列{b n}的通项公式为b n=2n.⑵设数列{a2n b2n-1}的前n 项和为T n,由a2n=6n-2,b 2n-1 =2x4 n-1,有a2n b2n-1=(3n- 1) X4n,故T n=2x 4+5x4 2+8X4 3+-+(3n- 1) X4n,4T n=2X4 2+5X4 3+8X4 4+・・+(3n- 4) X4 n+(3n- 1) X4n+1,上述两式相减,得-3T n=2X 4+3X4 2+3X4 3+-+3X4n-(3n- 1) X4 n+1=——-—4-(3n- 1) X4 n+1=-(3n- 2) X4 n+1-8.得 T n=—X4n+1 + _.所以,数列{a2n b2n-1}的前n项和为——X4 n+1+-.方法总结(1)等差数列与等比数列中有五个量a1,n,d(或q),a n,S n, —般可以知三求二”通过列方程(组)求关键量a1和d(或q),问题可迎刃而解.⑵数列{a n}是公差为d的等差数列,{b n}是公比q为的等比数列,求数列{a n b n}的前n项和适用错位相减法.2. (2015湖北,18,12分)设等差数列{a n}的公差为d,前n项和为S,等比数列{b n}的公比为q. 已知b1=a1,b 2=2,q=d,S 10=100.(1)求数列{a n},{b n}的通项公式;⑵当d>1时,记C n=-,求数列{c n}的前n项和T n.解析(1)由题意有解得或 _故_或n 1(2)由d>1,知a n=2n-1,b n=2 -,故C n=于是耳=1+-+—+—+—+・・+—,①①-②可得-齐=2+-+—+•• +=3 ----- ,故T n=6--T n=-+—+—+ — +—+••+― .②3. (2015 天津,18,13 分)已知数列{a n}满足a n+2=qa n(q 为实数,且q 书,n € N*,a i=1,a2=2,且a2+a3 ,a 3+a4,a 4+a5 成等差数列.(1)求q的值和{a n}的通项公式;⑵设b n= -------- ,n € N*,求数列{b n}的前n项和.解析(1) 由已知,有(a 3+a4)-(a 2+a3)=(a 4+a5)-(a 3+a4),即a4-a 2=a5-a3,所以a2(q-1)=a 3(q-1). 又因为q 为,故a3=a2=2,由a3=a1 q,得q=2.当n=2k-1(k € N )时,a n=a2k-1 =21 =—;当n=2k(k € N )时,a n=a2k=2k=".所以,{a n}的通项公式为a n= 为奇数"为偶数(2) 由(1) 得b n=——=—.设{b n}的前n 项和为S n, 则s=1x —+2X —+3X _+••+(n- 1) X—+n x —,$=1X _+2x _+3x _ +••+(n- 1) x —+ n x _,上述两式相减,得-S n=1+-+—+ ••+-------- =-------- =2 ------- ,整理得,S n=4 ------ .所以,数列{b n}的前n项和为4-一,n € N*.4. (2014 江西,17,12 分)已知首项都是1的两个数列{a n},{b n}(b n电n € N*)满足a n b n+仁an+1b n+2b n+1b n=0.(1)令C n=—,求数列{C n}的通项公式;⑵若b n=3n-1,求数列{a n}的前n项和S n.*解析(1)因为a n b n+1-a n+l b n+2b n+1b n = 0,b n^0(n € N ),所以——-—=2,即C n+1-c n=2.所以数列{c n}是以1为首项,2为公差的等差数列,故6=2n-1.(2)由(1)及b n=3”1知a n=c n b n=(2n-1)3 n1,于是数列{a n}的前n 项和S=1 30+3 31+5 32+・・+(2 n-1) 3n-1,3S n =1 31+3 32+・・+(2 n-3) 3 n-1+(2 n-1) 3 n , 相 减 得-2S n =1+2 (31+32+-+3n-1 )-(2n-1) 3n =-2-(2n-2)3 n ,所以 S=(n-1)3 n +1. 5. (2014山东,19,12分)已知等差数列{a n }的公差为2,前n 项和为S,且S,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;n 1⑵令b n =(-1) ------------ ,求数列{b n }的前n 项和T n .解析 (1)因为 S 1=a 1,S 2=2a 1— x 2=2a i +2,S=4a 1+—x 2=4a 计12,所以由题意得(2a 1+2) 2=a 1(4a 1+12), 解得 a 1=1,所以 a n =2n-1.n-1n-1(2)b n =(-1)——=(-1) -------------当n 为偶数时,T n = 一 - 一 一 + • • +=1-当n 为奇数时,为奇数一- 所以T n = 或 ------------为偶数 考点二数列的综合应用1.(2018 江苏,14,5 分)已知集合 A={x|x=2n-1,n€ N *},B={x|x=2 n ,n € N *}.将 A U B 的所有元 素从小到大依次排列构成一个数列{a n }.记S 为数列{a n }的前n 项和,则使得S>12a n+1成立的n 的最小值为 ________ .=(-1) n-1 ■+—=1 +答案272. (2018江苏,20,16分)设{a n}是首项为a i,公差为d的等差数列,{b n}是首项为b i,公比为q 的等比数列.(1) 设a i=0,b i=1,q=2,若|a n-b n|住i对n=1,2,3,4 均成立,求d的取值范围;(2) 若a i=b i>0,m € N ,q € (i, _],证明:存在d € R,使得|a n-b n| 的对n=2,3,…,m+i 均成立,并求d的取值范围(用b i,m,q表示).n i解析(i)由条件知a n=(n-i)d,b n=2 -.因为|a n-b n| 4)i 对n=i,2,3,4 均成立,即i<l,i 詣W,3 <2d^5,7 Wd电,得-它务因此,d的取值范围为- -.n i(2)由条件知:a n=b i+(n-i)d,b n=b i q -.若存在d € R,使得|a n-b n|住i(n=2,3,…,m+i)均成立,即|b i+(n-i)d-b i q n-i | <b i(n=2,3,…,m+i).即当n=2,3,…,m+i时,d满足—b i«冬一b i.因为q€ (i, _],所以i<q n-i吋电,从而--- b i切,一b i >0,对n=2,3,…,m+i均成立.因此,取d=0时,|a n-b n|电i对n=2,3,…,m+i均成立.下面讨论数列---- 的最大值和数列—的最小值(n=2,3,…,m+i).①当2窃舸时,——一=-=—「一,当i<qw_时,有q n<q m€,从而n(q n-q n-i )-q n+2>0.因此,当2<n<m+i时,数列单调递增故数列—的最大值为—.②设f(x)=2 x(1-x),当x>0 时,f '(x)=(In 2-1-xln 2)2 x<0.所以f(x)单调递减,从而f(x)<f(0)=1.当 2窃奇时,——=——< _-一 =f - <1.因此,当2窃奇+1时,数列—单调递减,故数列—的最小值为一.因此,d的取值范围为----- - ---- .3. (2015安徽,18,12分)设n € N*,X n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{X n}的通项公式;⑵记T n= …_,证明:T n A.解析(1)y'=(x 2n+2+1)'=(2n+2)x 2n+1,曲线y=x2n+2+1 在点(1,2)处的切线斜率为2n+2.从而切线方程为y-2=(2 n+2)(x-1).令y=0,解得切线与x轴交点的横坐标x n=1-—=一.⑵证明:由题设和(1)中的计算结果知T n= …_ = - -…当n=1 时,「=-.当n支时,因为_ = — = -------------- > --------- =—=-.所以T n> - x - x - X …x —^.综上可得对任意的n€ N*,均有T n A.4. (2015陕西,21,12分)设f n(x)是等比数列1,x,x 2,…,x n的各项和,其中x>0,n € N ,n A(1)证明:函数F n(X)=f n(X)-2在一内有且仅有一个零点(记为X n),且X n=+ ;⑵设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(X),比较f n(X)和g n(X)的大小,并加以证明•解析⑴证明:F n(X)=f n(x)-2=1+x+x 2+-+X-2,则F n(1)=n-1>0,F n - =1+-+ - +— - -2= --------- 2= --- <0,所以F n(x)在- 内至少存在一个零点•n 1又F' n(x)=1+2x+ ・・+nx - >0,故F n(x)在- 内单调递增,所以F n(x)在- 内有且仅有一个零点X n.因为X n是F n(x)的零点,所以F n(X n)=0,即---------- 2=0,故X n二+-⑵由题设知,g n(x) =设h(x)=f n(x)-g n(x)=1+x+x 2+—+x n-当X=1 时,f n(x)=g n(x).n 1 -当x力时,h'(x)=1+2x+ ・・+nx- ------n-1 n-1 n-1 n-1右0<x<1,贝U h'(x)>x +2x +—+ nx----------- xn-1 n-1 n-1 n-1右x>1,贝y h'(x)<x +2x +••+ nx------------ x所以h(x)在(0,1)上递增,在(1,+ a)上递减,所以h(x)<h(1)=0,即f n(x)<g n(x).综上所述,当X=1 时,fn(x)=g n(x);当X 詢时,f n(X)<g n(x).,x>0.n-1X - n-1X=0.n-1 n-1x =0.5. (2015 重庆,22,12 分)在数列{a n}中,a 1=3,a n+1a n+ 入a n+什卩=0(n € N+).(1)若入=0,卩=-2,求数列{a n}的通项公式;⑵若入=_(k o€ N+,k o支),卩=-1,证明:2+——< <2+——.解析⑴由入=0,卩=-2,得a n+i a n=2 (n € N +).若存在某个n o€ N +,使得=0,则由上述递推公式易得_ =0.重复上述过程可得a i=0,此与a i=3矛盾,所以对任意n€ N+,a n和.从而a n+i=2a n(n € N +),即{a n}是一个公比q=2的等比数列. 故a n=a i q n-1 =3 2n-1.⑵证明:若入=_,卩=-i,则数列{a n}的递推关系式变为a n+i a n+—a n+i・=0,变形为a n+i — = (n € N +).由上式及a i=3>0,归纳可得3=a i>a2>・・>a n>a n+i>・・> 0.因^为a n+i= = =a n- I •,所以对n=i,2,…,k o求和得=a i+(a2-a i)+••+(- )=a i -k 0 • +—---- ----- …-------->2+—•--- ----- .…------- =2 --------- .个另一方面,由上已证的不等式知a i>a2>…〉> >2,得=a i-k 0 • +—•-------- --------- ----- -----------<2 • ---------- -------- … ------------- =2+ ------- .个综上,2+。
2020-2021学年高考数学一轮复习专题6.4 数列求和【考情分析】1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法。
【重点知识梳理】知识点一 求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式S n =n (a 1+a n ) 2 =na 1+n (n -1)2d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n = (-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 知识点二 常见的裂项公式 (1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.(3)1n +n +1=n +1-n .【典型题分析】高频考点一 分组转化求和【例1】(2020·天津卷)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.【答案】(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由11a =,()5435a a a =-,可得d =1. 从而{}n a 的通项公式为n a n =. 由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2, 从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)当n奇数时,()111232(32)222(2)2n n n n n nn n a b n c a a n n n n-+-+--===-++,当n 为偶数时,1112n n n n a n c b -+-==, 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444nnk kn n k k k n n c -==---==+++++∑∑① 由①得22314111352321444444n k nn k n n c +=--=+++++∑ ② 由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑, 由于11211121221121156544144334444123414nn n n n n n n ++⎛⎫-⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n nn n +--+⨯. 【方法技巧】分组法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组法求和.【变式探究】(2019·天津高考)设{}n a 是等差数列,{}n b 是等比数列。
§6.4 数列求和考纲展示►1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.考点1 公式法求和1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.倒序相加法与并项求和法 (1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.非等差、等比数列求和的常用方法:倒序相加法;并项求和法.(1)[教材习题改编]一个球从100 m 高处自由落下,着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200×(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)答案:A(2)[教材习题改编]已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案:-100解析:因为f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2,n 为奇数,n 2,n 为偶数,所以f (n )=(-1)n ·n 2,由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n [n 2-(n +1)2]=(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.数列求和的两个易错点:公比为参数;项数的奇偶数.(1)设数列{a n }的通项公式是a n =x n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧n ,x =1,x -xn1-x,x ≠1解析:当x =1时,S n =n ;当x ≠1时,S n =x-xn1-x.(2)设数列{a n }的通项公式是a n =(-1)n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧0,n 为偶数,-1,n 为奇数解析:若n 为偶数,则S n =0;若n 为奇数,则S n =-1.[典题1] (1)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+-2×12=9+18=27.(2)若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. [答案]109(2n-1) [解析] 由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =109-2n1-2=109(2n-1). [点石成金] 数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.考点2 分组转化法求和分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(1)数列112,314,518,…,⎣⎢⎡⎦⎥⎤n -+12n 的前n 项和S n =________________. 答案:n 2+1-12n(2)已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1,n 为正奇数,2n -1,n 为正偶数, 设数列{a n }的前n 项和为S n ,则S 9=________.答案:377[典题2] 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .[解] 由通项公式知,S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上知,S n=⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.[点石成金] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组转化法求和.[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.在等差数列{a n }中,已知公差d =2,a 2是a 1 与a 4 的等比中项. (1)求数列{a n }的通项公式; (2)设b n =a nn +2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2.所以数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a nn +2=n (n +1).所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 因为b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n2+2n 2=n n +2;当n 为奇数时,T n =T n -1+(-b n )=n -n +2-n (n +1)=-n +22.所以T n=⎩⎪⎨⎪⎧-n +22,n 为奇数,nn +2,n 为偶数.考点3 错位相减法求和错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(1)[教材习题改编]数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为________. 答案:2n n +1解析:因为11+2+…+n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以数列的前n 项和为2×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=2×⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. (2)[教材习题改编]数列22,422,623, (2)2n ,…的前n 项的和为________.答案:4-n +22n -1解析:设该数列的前n 项和为S n , 由题可知,S n =22+422+623+ (2)2n ,①12S n =222+423+624+ (2)2n +1,② ①-②,得⎝ ⎛⎭⎪⎫1-12S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1, ∴S n =4-n +22n -1.[典题3] [2018·山东模拟]设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+[1×3-1+2×3-2+…+(n -1)×31-n], 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上知,T n =1312-6n +34×3n .[点石成金] 用错位相减法求和的三个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[2018·天津模拟]已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,解得q 2=4. 又因为q >0,所以q =2,所以d =2. 所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *. (2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1,2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)·2n =-(2n -3)·2n-3,所以S n =(2n -3)·2n+3,n ∈N *.考点4 裂项相消法求和裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧: ①1n n +=1n -1n +1. ②1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ③1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1.④1n +n +1=n +1-n .[考情聚焦] 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.主要有以下几个命题角度: 角度一 形如a n =1nn +k型 [典题4] [2019·重庆模拟]设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,数列{b n }的前n 项和为T n ,求证:T n >34-1n +1(n ∈N *).(1)[解] 设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -a 1+2d =3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)[证明] 由(1),得S n =na 1+n n -2d =n (n +2),∴b n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2,∴T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2>12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=34-1n +1. 故T n >34-1n +1.角度二 形如a n =1n +k +n型[典题5] [2019·江南十校联考]已知函数f (x )=x a的图象过点(4,2),令a n =1f n ++f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 014=( )A. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 014=a 1+a 2+a 3+…+a 2 014=(2-1)+(3-2)+(4-3)+…+( 2 014- 2 013)+( 2 015- 2 014) = 2 015-1. 角度三形如a n =n +1n 2n +2型[典题6] 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. (1)[解] 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得 [S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)[证明] 由于a n =2n , 故b n =n +1n +2a 2n =n +14n 2n +2=116⎣⎢⎡⎦⎥⎤1n 2-1n +2.T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1n -2-1n +2+1n2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116×⎝ ⎛⎭⎪⎫1+122=564. [点石成金] 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.[方法技巧] 非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成.(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[易错防范] 1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,an +1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项,特别是隔项相消.真题演练集训1.[2018·北京模拟]已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案:6解析:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧ a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧ a 1=6,d =-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6.2.[2018·四川模拟]设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案:-1n解析:∵ a n +1=S n +1-S n ,a n +1=S n S n +1,∴ S n +1-S n =S n S n +1.∵ S n ≠0,∴ 1S n -1S n +1=1,即1S n +1-1S n =-1. 又1S 1=-1,∴ ⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴ 1S n=-1+(n -1)×(-1)=-n , ∴ S n =-1n. 3.[2018·山东模拟]已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式; (2)令c n =a n +n +1b n +n ,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =n +n +1n +n =3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2], 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+-2n 1-2-n +n +2=-3n ·2n +2, 所以T n =3n ·2n +2. 4.[2018·重庆模拟]S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知, b n =1a n a n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n n +.课外拓展阅读数列求和[典例] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .[审题视角][解析] (1)当n =k ,k ∈N *时,S n =-12n 2+kn 取得最大值, 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72, 当n ≥2时,a n =S n -S n -1=92-n . 当n =1时,上式也成立,故a n =92-n . (2)因为9-2a n 2n =n 2n -1, 所以T n =1+22+322+…+n -12n -2+n 2n -1,① 所以2T n =2+2+32+…+n -12n -3+n 2n -2,② ②-①,得2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1. 故T n =4-n +22n -1. 方法点睛1.根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据⎩⎨⎧⎭⎬⎫9-2a n 2n 的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案.2.利用S n 求a n 时不要忽视当n =1的情况;错位相减时不要漏项或算错项数.3.可以通过当n =1,2时的特殊情况对结果进行验证.。
年高三理科数学一轮复习讲义【数列求和】最新考纲1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法.知识梳理1.特殊数列的求和公式(1) 等差数列的前 n 项和公式:S n =n ( a 1+ a n )=na 1+n ( n - 1)d.22(2) 等比数列的前 n 项和公式:na 1, q = 1, S n =a 1- a n q = a 1( 1-q n ),q ≠1W.1- q1-q2.数列求和的几种常用方法 (1) 分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2) 裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (3) 错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前 n 项和可用错位相减法求解 . (4) 倒序相加法如果一个数列 { a n } 的前 n 项中与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前 n 项和即可用倒序相加法求解 . [ 微点提醒 ]1.1+ 2+ 3+ 4+ + n = n ( n +1).22.12+22+ +n 2=n (n +1)(2n +1).613.裂项求和常用的三种变形1 1 1(1)n ( n +1) = n -n + 1.11 1-1(2)( 2n -1)( 2n + 1) = 22n + 1.2n - 1 1= n + 1- n.(3)n + n + 1基础自测1.判断下列结论正误 (在括号内打“√”或“×” )(1) 若数列 { a n } 为等比数列,且公比不等于1,则其前 n 项和 S n =a 1-a n +1.()1- q(2) 当 n ≥2 时, 2 11 1 -1).( )= (n -1 2 n - 1 n + 1(3) 求 S n = a + 2a 2+ 3a 3+ + na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得 .()n- 1(4) 若数列 a 1,a 2-a 1 , ,a n - a n - 1 是首项为 1,公比为 3 的等比数列,则数列 { a n } 的通项公式是 a n = 3.()2解析 (3)要分 a =0 或 a =1 或 a ≠ 0 且 a ≠ 1 讨论求解 .答案 (1)√ (2) √ (3)×(4) √2.(必修 5P47B4 改编 ) 数列 { a n } 中, a n = 1,若 { a n } 的前 n 项和为2 019,则项数 n 为 ()n (n + 1) 2 020 A.2 018B.2 019C.2 020D.2 021解析 a =1=1-1,nnn (n + 1) n + 1n = 1-1+ 1-1++ 1-1=1-1=n=2 019,所以 n = 2019.S2 2 3nn + 1n + 1n + 1 2 020答案 B3.(必修 5P56 例 1 改编 ) 等比数列 { a n } 中,若 a 1= 27, a 9 =1, q>0, S n 是其前 n 项和,则 S 6= ________.243解析 由 a 1=27, a 9=1知, 1= 27·q 8,243 2432又由 q>0,解得 q=1,327 1-163=364所以 S6=.1 91-3答案364 94.(2018 东·北三省四校二模)已知数列 { a n} 满足 a n+1- a n= 2,a1=- 5,则 |a1|+ |a2 |++ |a6|= ()A.9B.15C.18D.30解析由题意知 { a n}是以 2 为公差的等差数列,又1=-5,所以|a12 6a |+ |a|++ |a |= |-5|+ |- 3|+ |- 1|+ 1+3+ 5= 5+ 3+ 1+ 1+ 3+ 5=18.答案C5.(2019 昆·明诊断 )已知数列 { a n} , { b n } 的前 n 项和分别为n n+1 2 -2,S n, T n, b n- a n= 2 +1,且 S n+ T n= 2 + n则 2T n= ________________.解析由题意知T n- S n= b1- a1+ b2- a2++b n-a n=n+2n+1-2,又 S n+ T n= 2n+1+ n2-2,所以 2T n= T n-S n+S n+ T n= 2n+2+ n(n+1) -4.答案n+2+n(n+ 1)- 4 26.(2019 河·北“五个一”名校质检 )若 f(x)+f(1- x)=4,a n= f(0) +f1++ fn-1+ f(1)(n∈* n n n),则数列{ a }的通项公式为 ________.解析由 f(x)+ f(1-x)=4,可得 f(0) + f(1) =4,,f 1 + fn-1= 4,所以 2a n= [f(0) + f(1)] +f 1+f n-1n n n n++ [f(1)+ f(0)] =4(n+ 1),即 a n= 2(n+1).答案a n= 2(n+ 1)3【例 1】 (2019 ·郴州质检 )已知在等比数列 { a n } 中, a 1= 1,且 a 1, a 2, a 3- 1 成等差数列 . (1) 求数列 { a n } 的通项公式;(2) 若数列 { b n } 满足 b n = 2n - 1+ a n (n ∈* ) ,数列 { b n } 的前 n 项和为 S n ,试比较 S n 与 n 2+ 2n 的大小 . 解 (1) 设等比数列 { a n } 的公比为 q ,∵a 1,a 2, a 3- 1 成等差数列, ∴ 2a 2= a 1+ (a 3- 1)= a 3,∴ q =a 3=2, a 2∴ a n =a 1q n -1= 2n -1(n ∈* ).(2) 由 (1)知 b n = 2n - 1+ a n = 2n -1+ 2n -1, ∴S n =(1+ 1)+ (3+ 2)+ (5+ 22)+ + (2n - 1+ 2n -1) = [1 +3+ 5+ + (2n - 1)]+ (1+ 2+ 22+ + 2n -1)1+( 2n -1)1-2n2 n= 2 ·n + 1- 2 = n + 2 - 1. ∵S n -(n 2+2n )=- 1<0 ,∴ S n <n 2+ 2n . 规律方法1.若数列 { c n } 的通项公式为 c n = a n ±b n ,且 { a n } , { b n } 为等差或等比数列,可采用分组求和法求数 列{ c n } 的前 n 项和 .a n , n 为奇数,2.若数列 { c n } 的通项公式为 c n = 其中数列 { a n } , { b n } 是等比数列或等差数列,可采用分组求 b n ,n 为偶数,和法求 { a n } 的前 n 项和 .【训练 1】 (2019 ·南昌一模 )已知等差数列 { a n } 的前 n 项和为 S n ,且 a 1=1, S 3+ S 4= S 5. (1) 求数列 { a n } 的通项公式;(2) 令 b n = (- 1)n -1a n ,求数列 { b n } 的前 2n 项和 T 2n .解 (1) 设等差数列 { a n } 的公差为 d ,由 S 3+ S 4= S 5可得 a 1+ a 2+ a 3= a 5,即 3a 2=a 5, ∴3(1+ d)= 1+ 4d ,解得 d = 2. ∴ a n =1+ (n - 1)× 2= 2n - 1.(2) 由 (1)可得 b n = (-1) n -1·(2n -1).∴T 2n =1- 3+ 5-7+ + (2n - 3)- (2n - 1)= (- 2)× n =- 2n.4a n+1【例 2】 (2019 ·郑州模拟 )已知数列 { a n } 的前 n 项和为 S n ,且 a 2= 8, S n =2 -n -1.(1) 求数列 { a n } 的通项公式;2× 3n (2) 求数列a n a n +1的前n 项和Tn .解 (1) ∵a 2= 8, S n =a n+1- n -1, 2∴ a 1=S 1=a 2- 2=2, 2当 n ≥ 2 时, a n = S n - S n -1=a n+1- n -1-a n- n ,22 即 a n +1= 3a n + 2,又 a 2= 8= 3a 1+ 2,∴a n +1= 3a n + 2, n ∈*, ∴ a n +1+ 1=3(a n +1) ,∴数列 { a n +1} 是等比数列,且首项为 a 1+ 1= 3,公比为 3,∴ a n +1= 3× 3n -1= 3n ,∴ a n =3n - 1.2× 3n= 2×3n1 1(2) ∵n n+1= n- n +1.a n a n +1 ( 3 -1)( 3- 1)3 -13 - 1∴数列2× 3n的前n 项和a n a n +1 1 -2 1 +1- 1+ +111 - 1T n =- 1 23n- n + 1= n +1.3-1 33 - 1 3 - 13 - 13 - 12 3- 1规律方法 1.利用裂项相消法求和时, 应注意抵消后并不一定只剩下第一项和最后一项, 也有可能前面剩两项,后面也剩两项 .2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等. 【训练 2】 设 S n 为等差数列 { a n } 的前 n 项和,已知 S 3= a 7, a 8- 2a 3=3. (1) 求 a n ;1 (2) 设 b n =S n ,求数列 { b n } 的前 n 项和 T n . 解 (1) 设数列 { a n } 的公差为 d ,3a 1+ 3d = a 1+6d ,由题意得 ( a 1+ 7d )- 2( a 1+ 2d )= 3,5解得 a 1= 3, d = 2,∴ a n =a 1+ (n - 1)d = 2n +1.(2) 由 (1)得 S n = na 1+n (n -1)d = n(n +2), 211 11 ∴b n=n (n +2)=2 n -n +2. ∴ T n = b 1+ b 2+ + b n -1+ b n 1 11- 11 - 11- 1=2 1-3 + 24 + + n - 1 n + 1 + n n + 2=11+ 1- 1 - 1 2 2 n +1 n + 2 3 1 1 +1= 4- 2 n+1 n + 2.考点三 错位相减法求和【例 3】 已知 { a n } 是各项均为正数的等比数列,且 a 1 + a 2= 6, a 1a 2= a 3.(1) 求数列 { a n } 的通项公式;(2){ b n } 为各项非零的等差数列,其前n 项和为 S n ,已知 S 2n +1= b n b n + 1,求数列b n的前 n 项和 T n .a n解 (1) 设{ a n } 的公比为 q ,a 1( 1+ q )= 6,由题意知22a 1q = a 1q ,又 a n >0,解得a 1= 2,所以 a n = 2n.q =2,( 2n + 1)( b 1+ b 2n+1)(2) 由题意知: S 2n +1 == (2n + 1)b n + 1,2又 S 2n +1= b n b n +1,b n +1≠ 0,所以 b n = 2n + 1.令 c n =b n ,则c n = 2n +1 a n 2n ,因此 T n = c 1+ c 2+ + c n3 5 72n - 1 + 2n + 1= + 23 2- n ,2 2 +2 ++ n 121 T n = 3 5 72n - 1+ 2n + 1,又 2+3+ 4+ + n 2 n + 1 2 2 2 2 26两式相减得1 =3+ 1 11 2n + 1+ 2+ + - 1 - +,2Tn22 22n 2n12n + 5所以 T n = 5-2n .规律方法1.一般地,如果数列 { a n } 是等差数列, { b n } 是等比数列,求数列 { a n ·b n } 的前 n 项和时,可采用错 位相减法 .2.用错位相减法求和时,应注意:(1) 要善于识别题目类型,特别是等比数列公比为负数的情形.n nn -qS n ” 的 (2) 在写出 “S ”与“qS ”的表达式时应特别注意将两式 “ 错项对齐 ” ,以便于下一步准确地写出 “S 表达式 .【训练 3】 已知等差数列 { a n } 满足: a n +1>a n ( n ∈ * ),a 1= 1,该数列的前三项分别加上 1,1,3 后成等比数 列, a n + 2log 2b n =- 1.(1) 分别求数列 { a n } , { b n } 的通项公式; (2) 求数列 { a n ·b n } 的前 n 项和 T n .解 (1) 设等差数列 { a n } 的公差为 d ,则 d>0,由 a 1= 1, a 2= 1+d , a 3= 1+2d 分别加上 1, 1,3 后成等比数列,得(2 +d)2=2(4+ 2d),解得 d = 2(舍负 ),所以 a n = 1+ (n - 1)× 2= 2n -1.1又因为 a n + 2log 2b n =- 1,所以 log 2b n =- n ,则 b n =2n .1 (2) 由 (1)知 a n ·b n = (2n - 1) ·2n ,则 T n = 1 3 5 2n - 121+ 22+ 23++ 2n ,①11352n - 1 ,②T n = 2+ 3+ 4+ + n + 12 2 2 2 2 由①-②,得1 1 + 2× 1 1 11 2n - 1 T n =2 2+3 + 4+ + n - n +1 .2 2 2 22 2 711-1∴1T n=1+2×4 2n- 1 2n- 11-n+ 1 ,2 21-22∴T n= 1+ 2-2 2n-1 4+2n- 1=3-3+ 2n n- 1-2n = 3-n2n .2 2[ 思维升华 ]非等差、等比数列的一般数列求和,主要有两种思想1.转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;2.不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[ 易错防范 ]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母 )时,应对其公比是否为1进行讨论 .2.在应用错位相减法时,要注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.基础巩固题组(建议用时: 40 分钟 )一、选择题1.(2017 全·国Ⅲ卷 )等差数列 { a n} 的首项为 1,公差不为0.若 a2,a3,a6成等比数列,则 { a n} 前 6 项的和为 ()A.- 24B.-3C.3D.8解析设 { a n} 的公差为d,根据题意得a23= a2·a6,8即( a1+ 2d) 2= (a1+ d)(a1+ 5d),解得 d=- 2,所以数列 { a n} 的前 6 项和为 S6= 6a1+6× 56×5× (-2)=- 24. 2d= 1× 6+ 2答案 A2.数列 { a n} 的通项公式为a n=(- 1)n-1·(4n-3),则它的前100 项之和 S100等于 ()A.200B. -200C.400D. - 400解析S100= (4×1- 3)- (4× 2- 3)+ (4× 3- 3)--(4× 100-3)=4×[(1-2)+(3-4)++(99-100)]=4× ( -50)=- 200.答案 B3.数列 { a n} 的通项公式是a n= 1 ,前 n 项和为 9,则 n 等于 ()n+n+ 1A.9B.99C.10D.1001= n+1- n,解析因为 a n=n+n+1所以 S n= a1+ a2++ a n= ( n+ 1-n)+ ( n-n-1)++(3- 2)+ ( 2-1)=n+ 1- 1,令 n+ 1-1= 9,得 n= 99.答案 B4.(2019 合·肥调研 )已知n 为数列2n+1的前 n 项和,若 m>T10+1 013恒成立,则整数m 的最小值为 () nT2A.1 026B.1 025C.1 024D.1 023n1 n12 + 1解析∵2n= 1+2 ,∴T n= n+ 1-2n,∴T10 +1 013= 11-1 1 10+1 013=1 024- 10,2 2又 m>T10+ 1 013 恒成立,∴整数 m 的最小值为 1 024.答案C95.(2019 厦·门质检 )已知数列 { a n} 满足 a n+1+ (- 1)n+1a n= 2,则其前100 项和为 ()A.250B.200C.150D.100解析当 n= 2k(k∈a2k+2+ a2k+1= 2,∴ a2k+1+ a2k-1= 4,a2k+2+ a2 k= 0,∴ { a n} 的前 100 项和= (a1+ a3)++ (a97+a99)+ (a2+a4)++(a98+a100)=25× 4+25× 0=100.答案D二、填空题6.已知正项数列{ a n } 满足 a2n+1- 6a2n= a n+1a n.若 a1= 2,则数列 { a n } 的前 n 项和 S n= ________.解析由 a2n+1- 6a2n= a n+1a n,得( a n+1- 3a n)(a n+1+2a n) =0,又 a n>0,所以 a n+1= 3a n,又 a1= 2,所以 { a n} 是首项为2,公比为3 的等比数列,n故S n=2(1-3)=3n-1.1- 3答案 3n- 17.(2019 武·汉质检 )设数列 {( n2+ n)a n} 是等比数列,且a1=1, a2=1,则数列 {3 n a n} 的前 15 项和为 ________.6 541 1 1 1 n- 1解析等比数列 2 ,故公比为 2 1 1{( n + n)a n} 的首项为2a1=,第二项为 6a2 =3 ,所以 ( n + n) a n=·=n,3 9 3 3 3 1 n 1 1 1 1 1 15所以 a n=n 2 ,则 3 a n= 2=n-,其前 n 项和为1-n+1, n= 15 时,为 1-16=16.3 ( n +n)n + n n+ 1答案15168.(2019 福·州调研 )已知数列 { na n} 的前 n 项和为 S n,且 a n= 2n,且使得 S n-na n+1+ 50<0 的最小正整数n 的值为________.10解析S n = 1×21+2× 22+ + n × 2n , 则 2S n = 1× 22+ 2×23++n × 2n +1,两式相减得-S n =2+ 22+ +2n - n ·2n+ 1= 2( 1-2n) 1, - n ·2n + 1- 2n + 1故 S n = 2+ (n - 1) ·2.又 a n = 2n ,∴S n -na n +1+ 50=2+ (n - 1) ·2n +1- n ·2n +1+50=52- 2n +1, 依题意 52- 2n +1<0 ,故最小正整数 n 的值为 5.答案5三、解答题2n + n *9.已知数列 { a n } 的前 n 项和 S n =, n ∈.2(1) 求数列 { a n } 的通项公式;(2) 设 b n = 2a n +(-1)n a n ,求数列 { b n } 的前 2n 项和 . 解 (1)当 n = 1 时, a 1= S 1= 1;当 n ≥ 2 时, a = S - S - =n 2+n - ( n -1) 2+( n - 1) =n.nnn 12 2a 1 也满足 a n =n ,故数列 { a n } 的通项公式为 a n = n. (2) 由 (1)知 a n = n ,故b n = 2n + (- 1)n n.记数列 { b n } 的前 2n 项和为 T 2n ,则 T 2n =(2 1+22+ + 22n )+ (- 1+ 2-3+ 4- + 2n).记 A = 21+ 22+ + 22n , B =- 1+ 2-3+ 4- + 2n ,2n则A = 2( 1- 2 )=22n +1-2,1- 2B = (- 1+ 2)+ (- 3+ 4)+ + [ - (2n -1)+ 2n]= n.2 n + 1故数列 { b n } 的前 2n 项和 T 2 n = A + B =2+ n - 2.1110.设数列 { a n } 的前 n 项和为 S n , a 1= 2, a n +1= 2+ S n (n ∈* ). (1) 求数列 { a n } 的通项公式; (2) 设 b n = 1+ log 2 (a n ) 1的前 n 项和 T n < 1 . 2,求证:数列b n b n +1 6(1) 解 因为 a n +1= 2+ S n (n ∈* ), 所以 a n = 2+ S n -1(n ≥ 2),所以 a n +1-a n =S n - S n -1= a n , 所以 a n +1=2a n (n ≥ 2).又因为 a 2= 2+a 1=4, a 1= 2,所以 a 2= 2a 1, 所以数列 { a n } 是以 2 为首项, 2 为公比的等比数列,则 a n = 2·2n -1= 2n (n ∈* ).(2) 证明因 b n = 1+ log 2(a n )2,则 b n = 2n + 1.则 1 = 1 1 - 1,b n b n +1 2 2n + 1 2n + 3 所以 T n = 1 1 1 1 1 + + 1 - 1 2 - + -2n +3 3 5 5 7 2n +1 = 1 1111 12 -2n + 3 = -2( 2n + 3)<6.36能力提升题组(建议用时: 20 分钟 ) n1= 1, a n + 1- a n ≥2(n ∈*n 为{ a n} 的前 n 项和,则 ()11.(2019 广·州模拟 )已知数列 { a } 满足 a),且 SA. a n ≥ 2n +1B.S n ≥n 2C.a n ≥ 2n -1D.S n ≥2n -1解析由题意得a 2- a 1≥ 2, a 3- a 2≥ 2, a 4- a 3≥2,, a n -a n -1≥ 2,∴ a 2-a 1+ a 3- a 2+ a 4- a 3+ +a n - a n -1≥ 2(n - 1), ∴ a n -a 1≥ 2(n - 1),∴ a n ≥2n - 1,∴ a 1≥1, a 2≥ 3,a 3≥ 5, , a n ≥2n - 1, ∴ a 1+a 2+ a 3+ + a n ≥1+ 3+ 5+ + 2n -1,12∴S n ≥n ( 1+ 2n - 1) =n 2.2答案 B12.已知数列 { a n } 中, a n =- 4n + 5,等比数列 { b n } 的公比 q 满足 q = a n - a n -1(n ≥2) 且 b 1= a 2,则 |b 1|+ |b 2|+|b 3|+ + |b n |= ________.解析由已知得b 1= a 2=- 3, q =- 4,∴b n =(-3)× n 1 n 1(- 4) -, ∴ |b n |= 3×4- ,即{| b n为首项, 4 为公比的等比数列, |}是以 33( 1- 4n )∴|b 1 |+ |b 2|+ + |b n |= =4n - 1.1-4答案 4n - 1n1=________. 13.(2017 全·国 Ⅱ 卷)等差数列 { a n } 的前 n 项和为 S n , a 3= 3, S 4= 10,则∑k =1S k解析设等差数列 { a n } 的公差为 d ,则a 3= a 1+ 2d = 3,a 1= 1, n ( n - 1)n (n + 1)由4= 4a 1+ 4× 3得∴S n =n × 1+ × 1=2,d = 1.2S2 d = 10,1211= = 2 n-n + 1 .Snn ( n + 1)n1+1- 1+ 1- 1+ +1-11-1∴∑11111 = 21- 2nk = 1S k = S 1+ S 2+ S 3++S n 2233 4n n + 1 =2n + 1=.n + 1答案2nn + 114.(2019 河·南、河北两省联考 )已知数列 { a n } 的前 n 项和为 S n , a 1= 5,nS n +1- (n + 1)S n = n 2+ n.S n (1) 求证:数列n为等差数列;(2) 令 b n = 2n a n ,求数列 { b n } 的前 n 项和 T n .13(1) 证明 由 nS n + 1- (n + 1)S n = n 2+ n 得S n+1-S n=1,n + 1 n又S 1=5,所以数列S n 是首项为 5,公差为 1 的等差数列 . 1n(2) 解由(1) 可知Sn n = 5+ (n -1) =n + 4,所以 S n = n 2+ 4n.当 n ≥ 2 时, a n = S n - S n -1=n 2+4n - (n - 1)2- 4(n - 1)=2n + 3. 又 a 1= 5 也符合上式,所以 a n = 2n +3(n ∈*),所以b n =(2n +3)2n , 所以 T n = 5×2+ 7× 22+ 9× 23+ + (2n +3)2n ,①2T n = 5× 22+ 7×23+ 9× 24+ + (2n + 1)2n + (2n + 3)2n +1,② 所以②-①得T n =(2n +3)2n+1-10-(23+24+ +2n +1)=(2n +3)2n+1-10-23(1-2n -1)1-2= (2 n + 3)2n +1- 10- (2n +2- 8)= (2n +1)2n +1- 2.14。
§6.4 数学归纳法数学归纳法一般地,证明一个与自然数相关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N +)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N +)时命题成立的前提下,推出当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对n 取第一个值后面的有正整数成立. 概念方法微思考1.用数学归纳法证题时,证明当n 取第一个值n 0(n 0∈N +)时命题成立.因为n 0∈N +,所以n 0=1.这种说法对吗?提示 不对,n 0也可能是2,3,4,….如用数学归纳法证明多边形内角和定理(n -2)π时,初始值n 0=3.2.数学归纳法的第一个步骤可以省略吗?提示 不可以,数学归纳法的两个步骤相辅相成,缺一不可.3.有人说,数学归纳法是合情推理,这种说法对吗?提示 不对,数学归纳法是一种证明与自然数有关的命题的方法,它是演绎推理.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有与正整数有关的数学命题都必须用数学归纳法证明.( × )(2)用数学归纳法证明问题时,归纳假设可以不用.( × )(3)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( × )(4)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( √ )(5)用数学归纳法证明凸n 边形的内角和公式时,n 0=3.( √ )题组二 教材改编2.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( ) A.1 B.2 C.3 D.4答案 C解析 凸n 边形边数最小时是三角形,故第一步检验n =3.3.已知{a n }满足a n +1=a 2n -na n +1,n ∈N +,且a 1=2,则a 2=________,a 3=________,a 4=________,猜想a n =________.答案 3 4 5 n +1题组三 易错自纠4.用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a (a ≠1,n ∈N +),在验证n =1时,等式左边的项是( )A.1B.1+aC.1+a +a 2D.1+a +a 2+a 3 答案 C解析 当n =1时,n +1=2,∴左边=1+a 1+a 2=1+a +a 2.5.对于不等式n 2+n <n +1(n ∈N +),某同学用数学归纳法证明的过程如下:(1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ≥1,k ∈N +)时,不等式成立,即k 2+k <k +1,则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1.∴当n =k +1时,不等式成立.则上述证法( )A.过程全部正确B.n =1验证的不正确C.归纳假设不正确D.从n =k 到n =k +1的推理不正确答案 D解析 在n =k +1时,没有应用n =k 时的假设,不是数学归纳法.6.用数学归纳法证明1+2+3+…+2n =2n -1+22n -1(n ∈N +)时,假设当n =k 时命题成立,则当n =k +1时,左端增加的项数是__________.答案 2k解析 运用数学归纳法证明1+2+3+…+2n =2n -1+22n -1(n ∈N +).当n =k 时,则有1+2+3+…+2k =2k -1+22k -1(k ∈N +),左边表示的为2k 项的和. 当n =k +1时,则左边=1+2+3+…+2k +(2k +1)+…+2k +1,表示的为2k +1项的和,增加了2k +1-2k =2k 项.题型一 用数学归纳法证明等式用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1)(n ∈N +). 证明 ①当n =1时,左边=12×1×(2×1+2)=18. 右边=14×(1+1)=18. 左边=右边,所以等式成立.②假设当n =k (k ≥1,k ∈N +)时等式成立,即有12×4+14×6+16×8+…+12k (2k +2)=k 4(k +1), 则当n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2]=k4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2)=k +14(k +2)=k +14(k +1+1). 所以当n =k +1时,等式也成立.由①②可知对于一切n ∈N +等式都成立.思维升华 用数学归纳法证明恒等式应注意(1)明确初始值n 0并验证当n =n 0时等式成立.(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标.(3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.题型二 用数学归纳法证明不等式例1 等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1成立. (1)解 由题意得,S n =b n +r ,当n ≥2时,S n -1=b n -1+r .所以a n =S n -S n -1=b n -1(b -1).由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列.又a 1=S 1=b +r ,a 2=b (b -1),所以当a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1. (2)证明 由(1)及b =2知a n =2n -1.因此b n =2n (n ∈N +),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式=2, 左式>右式,所以结论成立.②假设当n =k (k ≥1,k ∈N +)时结论成立,即2+12·4+14·…·2k +12k >k +1,则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1, 要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2, 即证2k +32≥(k +1)(k +2),由均值不等式得2k +32=(k +1)+(k +2)2≥(k +1)(k +2)成立, 故2k +32k +1≥k +2成立, 所以当n =k +1时,结论成立.由①②可知,当n ∈N +时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1成立.思维升华 用数学归纳法证明与n 有关的不等式,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用均值不等式、不等式的性质等放缩技巧,使问题得以简化.跟踪训练1 数学归纳法证明:对一切大于1的自然数,不等式⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15·…·⎝⎛⎭⎫1+12n -1> 2n +12均成立.证明 ①当n =2时,左边=1+13=43,右边=52. ∵左边>右边,∴不等式成立.②假设当n =k (k ≥2,且k ∈N +)时不等式成立,即⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1>2k +12. 则当n =k +1时,⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+12(k +1)-1 >2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2(k +1)+12. ∴当n =k +1时,不等式也成立.由①②知对一切大于1的自然数n ,不等式都成立.题型三 归纳—猜想—证明命题点1 与函数有关的证明问题例2 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式;(2)若f (x )≥ag (x )恒成立,求实数a 的取值范围.解 由题设得g (x )=x 1+x(x ≥0). (1)由已知,得g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x 1+x1+x 1+x=x 1+2x , g 3(x )=x 1+3x ,…,可猜想g n (x )=x 1+nx .下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x,结论成立. ②假设当n =k (k ≥1,k ∈N +)时结论成立,即g k (x )=x1+kx . 则当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx1+x 1+kx =x 1+(k +1)x,即结论成立. 由①②可知,结论对n ∈N +恒成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax 1+x恒成立. 设φ(x )=ln(1+x )-ax 1+x(x ≥0), 则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(当且仅当x =0,a =1时等号成立),∴φ(x )在[0,+∞)上单调递增.又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立,∴当a ≤1时,ln(1+x )≥ax1+x 恒成立(当且仅当x =0时等号成立). 当a >1时,对x ∈(0,a -1],有φ′(x )≤0,∴φ(x )在(0,a -1]上单调递减,∴φ(a -1)<φ(0)=0.即当a >1时,存在x >0,使φ(x )<0,∴ln(1+x )≥ax 1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].命题点2 与数列有关的证明问题例3 已知数列{a n }的前n 项和为S n ,a 1=-23,且S n +1S n+2=a n (n ≥2). (1)计算S 1,S 2,S 3,S 4的值,猜想S n 的表达式;(2)用数学归纳法证明所得的结论.(1)解 S 1=a 1=-23, S 2+1S 2+2=S 2-S 1⇒S 2=-34, S 3+1S 3+2=S 3-S 2⇒S 3=-45, S 4+1S 4+2=S 4-S 3⇒S 4=-56. 由此猜想:S n =-n +1n +2(n ∈N +). (2)证明 ①当n =1时,左边=S 1=a 1=-23,右边=-1+11+2=-23. ∵左边=右边,∴原等式成立.②当n =k (k ≥1,k ∈N +)时,假设S k =-k +1k +2成立, 则当n =k +1时,S k +1+1S k +1+2=S k +1-S k ,得 1S k +1=-S k -2=k +1k +2-2=k +1-2k -4k +2 =-k -3k +2=-k +3k +2, ∴S k +1=-k +2k +3=-(k +1)+1(k +1)+2, ∴当n =k +1时,原等式也成立.综合①②得对一切n ∈N +,S n =-n +1n +2成立. 命题点3 存在性问题的证明例4 是否存在a ,b ,c 使等式⎝⎛⎭⎫1n 2+⎝⎛⎭⎫2n 2+⎝⎛⎭⎫3n 2+…+⎝⎛⎭⎫n n 2=an 2+bn +c n对一切n ∈N +都成立,若不存在,说明理由;若存在,请用数学归纳法证明你的结论.解 取n =1,2,3,可得⎩⎪⎨⎪⎧ a +b +c =1,8a +4b +2c =5,27a +9b +3c =14,解得a =13,b =12,c =16. 下面用数学归纳法证明⎝⎛⎭⎫1n 2+⎝⎛⎭⎫2n 2+⎝⎛⎭⎫3n 2+…+⎝⎛⎭⎫n n 2=2n 2+3n +16n =(n +1)(2n +1)6n . 即证12+22+…+n 2=16n (n +1)(2n +1), ①当n =1时,左边=1,右边=1,∴等式成立;②假设当n =k (k ≥1,k ∈N +)时等式成立,即12+22+…+k 2=16k (k +1)·(2k +1)成立, 则当n =k +1时,等式左边=12+22+…+k 2+(k +1)2=16k (k +1)(2k +1)+(k +1)2 =16[k (k +1)(2k +1)+6(k +1)2] =16(k +1)(2k 2+7k +6) =16(k +1)(k +2)·(2k +3), ∴当n =k +1时等式成立;综合①②得当n ∈N +时等式成立,故存在a =13,b =12,c =16使已知等式成立. 思维升华 “归纳—猜想—证明”属于探索性问题的一种,一般要经过计算、观察、归纳,然后猜想出结论,再用数学归纳法证明.在用这种方法解决问题时,应保证猜想的正确性和数学归纳法步骤的完整性.跟踪训练2 已知正项数列{a n }中,对于一切的n ∈N +均有a 2n ≤a n -a n +1成立.(1)证明:数列{a n }中的任意一项都小于1;(2)探究a n 与1n的大小关系,并证明你的结论. 证明 (1)由a 2n ≤a n -a n +1,得a n +1≤a n -a 2n .∵在数列{a n }中,a n >0,∴a n +1>0,∴a n -a 2n >0,∴0<a n <1,故数列{a n }中的任何一项都小于1.(2)由(1)知0<a 1<1=11, 那么a 2≤a 1-a 21=-⎝⎛⎭⎫a 1-122+14≤14<12, 由此猜想a n <1n. 下面用数学归纳法证明:当n ≥2,且n ∈N +时猜想正确.①当n =2时已证;②假设当n =k (k ≥2,且k ∈N +)时,有a k <1k成立, 那么1k ≤12,a k +1≤a k -a 2k =-⎝⎛⎭⎫a k -122+14 <-⎝⎛⎭⎫1k -122+14=1k -1k 2=k -1k 2<k -1k 2-1=1k +1, ∴当n =k +1时,猜想正确.综上所述,对于一切n ∈N +,都有a n <1n .1.若f (n )=1+12+13+…+16n -1(n ∈N +),则f (1)的值为( ) A.1B.15C.1+12+13+14+15D.非以上答案答案 C解析 等式右边的分母是从1开始的连续的自然数,且最大分母为6n -1,则当n =1时,最大分母为5,故选C.2.已知f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的关系是( )A.f (k +1)=f (k )+(2k +1)2+(2k +2)2B.f (k +1)=f (k )+(k +1)2C.f (k +1)=f (k )+(2k +2)2D.f (k +1)=f (k )+(2k +1)2答案 A解析 f (k +1)=12+22+32+…+(2k )2+(2k +1)2+[2(k +1)]2=f (k )+(2k +1)2+(2k +2)2.3.利用数学归纳法证明不等式1+12+13+…+12n -1<f (n )(n ≥2,n ∈N +)的过程中,由n =k 到n =k +1时,左边增加了( )A.1项B.k 项C.2k -1项D.2k 项答案 D解析 令不等式的左边为g (n ),则 g (k +1)-g (k )=1+12+13+…+12k -1+12k +12k +1+…+12k +1-1-⎝⎛⎭⎪⎫1+12+13+…+12k -1 =12k +12k +1+…+12k +1-1, 其项数为2k +1-1-2k +1=2k +1-2k =2k .故左边增加了2k 项.4.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A.k 2+1B.(k +1)2C.(k +1)4+(k +1)22D.(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2答案 D解析 等式左边是从1开始的连续自然数的和,直到n 2.故n =k +1时,最后一项是(k +1)2,而n =k 时,最后一项是k 2,应加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.5.设f (x )是定义在正整数集上的函数,且f (x )满足当f (k )≥k +1成立时,总能推出f (k +1)≥k +2成立,那么下列命题总成立的是( )A.若f (1)<2成立,则f (10)<11成立B.若f (3)≥4成立,则当k ≥1时,均有f (k )≥k +1成立C.若f (2)<3成立,则f (1)≥2成立D.若f (4)≥5成立,则当k ≥4时,均有f (k )≥k +1成立答案 D解析 当f (k )≥k +1成立时,总能推出f (k +1)≥k +2成立,说明如果当k =n 时,f (n )≥n +1成立,那么当k =n +1时,f (n +1)≥n +2也成立,所以如果当k =4时,f (4)≥5成立,那么当k ≥4时,f (k )≥k +1也成立.6.用数学归纳法证明122+132+…+1(n +1)2>12-1n +2,假设n =k 时,不等式成立,则当n =k +1时,应推证的目标不等式是_________________________________.答案 122+132+…+1(k +1)2+1(k +2)2>12-1k +3解析 观察不等式中分母的变化便知.7.已知f (n )=1+12+13+…+1n (n ∈N +),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则其一般结论为________________________________________________________________________.答案 f (2n )>n +22(n ≥2,n ∈N +) 解析 观察规律可知f (22)>2+22,f (23)>3+22,f (24)>4+22,f (25)>5+22,…,故得一般结论为f (2n)>n +22(n ≥2,n ∈N +). 8.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是________________.答案 1(2k +1)(2k +2)解析 不等式的左边增加的式子是12k +1+12k +2-1k +1=1(2k +1)(2k +2). 9.若数列{a n }的通项公式a n =1(n +1)2,记c n =2(1-a 1)·(1-a 2)…(1-a n ),试通过计算c 1,c 2,c 3的值,推测c n =________.答案 n +2n +1 解析 c 1=2(1-a 1)=2×⎝⎛⎭⎫1-14=32, c 2=2(1-a 1)(1-a 2)=2×⎝⎛⎭⎫1-14×⎝⎛⎭⎫1-19=43, c 3=2(1-a 1)(1-a 2)(1-a 3)=2×⎝⎛⎭⎫1-14×⎝⎛⎭⎫1-19×⎝⎛⎭⎫1-116=54, 故由归纳推理得c n =n +2n +1. 10.用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n ·1·3·5…(2n -1)(n ∈N +)时,从n =k 到n =k +1时左边需增乘的代数式是________.答案 4k +2解析 用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n ·1·3·5…(2n -1)(n ∈N +)时, 从n =k 到n =k +1时左边需增乘的代数式是(k +1+k )(k +1+k +1)k +1=2(2k +1). 11.求证:1n +1+1n +2+…+13n >56(n ≥2,n ∈N +). 证明 ①当n =2时,左边=13+14+15+16>56,不等式成立. ②假设n =k (k ≥2,k ∈N +)时命题成立,即1k +1+1k +2+…+13k >56.当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1) =1k +1+1k +2+…+13k +⎝ ⎛⎭⎪⎫13k +1+13k +2+13k +3-1k +1 >56+⎝ ⎛⎭⎪⎫13k +1+13k +2+13k +3-1k +1 >56+⎝ ⎛⎭⎪⎫3×13k +3-1k +1=56. ∴当n =k +1时不等式亦成立.∴原不等式对一切n ≥2,n ∈N +均成立.12.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a 2n(n ∈N +),且点P 1的坐标为(1,-1). (1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N +,点P n 都在(1)中的直线l 上.(1)解 由点P 1的坐标为(1,-1)知,a 1=1,b 1=-1.所以b 2=b 11-4a 21=13,a 2=a 1·b 2=13. 所以点P 2的坐标为⎝⎛⎭⎫13,13.所以直线l 的方程为2x +y -1=0.(2)证明 ①当n =1时,2a 1+b 1=2×1+(-1)=1成立.②假设n =k (k ≥1,k ∈N +)时,2a k +b k =1成立,则2a k +1+b k +1=2a k ·b k +1+b k +1=b k1-4a 2k(2a k +1) =b k 1-2a k =1-2a k 1-2a k=1, 所以当n =k +1时,命题也成立.由①②知,对n ∈N +,都有2a n +b n =1,即点P n 都在直线l 上.13.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( )A.n +1B.2nC.n 2+n +22D.n 2+n +1答案 C解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域. 14.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N +)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( )A.(k +3)3B.(k +2)3C.(k +1)3D.(k +1)3+(k +2)3 答案 A解析 假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.15.已知x i >0(i =1,2,3,…,n ),我们知道(x 1+x 2)·⎝⎛⎭⎫1x 1+1x 2≥4成立. (1)求证:(x 1+x 2+x 3)⎝⎛⎭⎫1x 1+1x 2+1x 3≥9. (2)同理我们也可以证明出(x 1+x 2+x 3+x 4)·⎝⎛⎭⎫1x 1+1x 2+1x 3+1x 4≥16.由上述几个不等式,请你猜测一个与x 1+x 2+…+x n 和1x 1+1x 2+…+1x n(n ≥2,n ∈N +)有关的不等式,并用数学归纳法证明. (1)证明 方法一 (x 1+x 2+x 3)⎝⎛⎭⎫1x 1+1x 2+1x 3≥33x 1x 2x 3·331x 1·1x 2·1x 3=9(当且仅当x 1=x 2=x 3时,等号成立).方法二 (x 1+x 2+x 3)⎝⎛⎭⎫1x 1+1x 2+1x 3=3+⎝⎛⎭⎫x 2x 1+x 1x 2+⎝⎛⎭⎫x 3x 1+x 1x 3+⎝⎛⎭⎫x 3x 2+x 2x 3≥3+2+2+2=9(当且仅当x 1=x 2=x 3时,等号成立).(2)解 猜想:(x 1+x 2+…+x n )⎝⎛⎭⎫1x 1+1x 2+…+1x n≥n 2(n ≥2,n ∈N +).证明如下:①当n =2时,由已知得猜想成立;②假设当n =k (k ≥2,k ∈N +)时,猜想成立,即(x 1+x 2+…+x k )⎝⎛⎭⎫1x 1+1x 2+…+1x k≥k 2, 则当n =k +1时,(x 1+x 2+…+x k +x k +1)⎝ ⎛⎭⎪⎫1x 1+1x 2+…+1x k +1x k +1 =(x 1+x 2+…+x k )⎝⎛⎭⎫1x 1+1x 2+…+1x k +(x 1+x 2+…+x k )1x k +1+x k +1⎝⎛⎭⎫1x 1+1x 2+…+1x k +1 ≥k 2+(x 1+x 2+…+x k )1x k +1+x k +1⎝⎛⎭⎫1x 1+1x 2+…+1x k +1 =k 2+⎝ ⎛⎭⎪⎫x 1x k +1+x k +1x 1+⎝ ⎛⎭⎪⎫x 2x k +1+x k +1x 2+…+⎝ ⎛⎭⎪⎫x k x k +1+x k +1x k +1≥k 2+2+2+…+2+1k 个 =k 2+2k +1=(k +1)2,所以当n =k +1时不等式成立.综合①②可知,猜想成立.。