1.4.2有理数的除法1
- 格式:doc
- 大小:56.00 KB
- 文档页数:3
1.4.2有理数的除法(1)教学目标:知识与技能:理解除法是乘法的逆运算,理解倒数概念,会求有理数的倒数,掌握除法法则,会进行有理数的除法运算;过程与方法:通过自主探索的方法观察、交流、归纳出有理数除法法则及倒数的方法。
情感态度价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神、转化思想.学习重难点:重点:有理数除法法则难点:(1)商的符号的确定;(2)0不能作除数的理解;教学方法:引导法,鼓励法,讲解法学习方法:做练习法,独立思考教学工具:彩色粉笔教学过程:复习引入1)、小红从家里到学校,每分钟走50米,共走了20分钟。
问小红家离学校有 1000 米,列出的算式为 50X20=1000 。
2)放学时,小红仍然以每分钟50米的速度回家,应该走 20 分钟。
列出的算式为 1000从上面这个例子你可以发现,有理数除法与乘法之间的关系是 。
自主学习自学教材中第 页的内容。
(要求理解倒数的概念,掌握倒数的求法)写出下列各数的倒数-4 的倒数 ,3的倒数 ,-2的倒数 ; 提问:37,52,321和5的倒数各是多少? 0有没有倒数?π有没有倒数?有则请求出来。
合作讨论比较大小: 1、 8÷(-4) 8×(41-); 2、(-15)÷3 (-15)×31; 3、(411-)÷(一2) (411-)×(21-); 与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。
有理数的除法法则是: 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0.当堂检测1、计算(1) ; (2) 0÷(-1000);(3) ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷2332375 (4)÷课堂小结倒数的求法:乘积是1的两个数互为倒数。
有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。
人教版数学七年级上册第1章 1.4.2有理数的除法同步练习一、单选题(共12题;共24分)1、两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数( )A、一定相等B、一定互为倒数C、一定互为相反数D、相等或互为相反数2、下列运算中没有意义的是( )A、﹣2020÷[(﹣)×3+7]B、[(﹣)×3+7]÷(﹣2020)C、( ﹣)÷[0﹣(﹣4)]×(﹣2)D、2 ÷(3 ×6﹣18)3、小虎做了以下4道计算题:①0﹣(﹣1)=1;②;③;④(﹣1)2020=﹣2020,请你帮他检查一下,他一共做对了( )A、1题B、2题C、3题D、4题4、下列运算正确的是( )A、﹣(﹣1)=﹣1B、|﹣3|=﹣3C、﹣22=4D、(﹣3)÷(﹣)=95、计算: 的结果是( )A、±2B、0C、±2或0D、26、若a+b<0,且,则( )A、a,b异号且负数的绝对值大B、a,b异号且正数的绝对值大C、a>0,b>0D、a<0,b<07、计算:1÷(﹣5)×(﹣)的结果是( )A、1B、﹣1C、D、﹣8、36÷(﹣9)的值是( )A、4B、18C、﹣18D、﹣49、计算×(﹣8)÷(﹣)结果等于( )A、8B、﹣8C、D、110、计算:﹣15÷(﹣5)结果正确的是( )A、75B、﹣75C、3D、﹣311、下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)= ;④(﹣4)÷ ×(﹣2)=16.其中正确的个数( )A、4个B、3个C、2个D、1个12、下列是一名同学做的6道练习题:①(﹣3)0=1;②a3+a3=a6;③(﹣a5)÷(﹣a3)=﹣a2;④4m﹣2= ;⑤(xy2)3=x3y6;⑥22+23=25,其中做对的题有( )A、1道B、2道C、3道D、4道二、填空题(共5题;共5分)13、计算:﹣12÷(﹣3)=________.14、如果>0,>0,那么7ac________0.15、计算:6÷(﹣)×2÷(﹣2)=________.16、计算:﹣2÷|﹣|=________.17、已知:13=1= ×1×2213+23=9= ×22×3213+23+33=36= ×32×4213+23+33+43=100= ×42×52…根据上述规律计算:13+23+33+…+193+2020________.三、计算题(共4题;共30分)18、计算:( + ﹣)÷(﹣)19、计算:(﹣3)2÷2 ﹣(﹣)×(﹣).2020算:(1)(﹣36 )÷9(2)(﹣)×(﹣3 )÷(﹣1 )÷3.21、综合题。
1.4.2有理数的除法(1)教学设计活动1探究有理数的除法 问题1正数除以负数因为2×(-4)=-8 所以=-2负数除以负数 (-8)÷(-4)因为(2)×(-4)=-8 所以(-8)÷(-4) =2 零除以负数 0÷(-4)因为0×(-4)=0 0÷(-4)=0除以一个负数等于乘以这个负数的倒数。
活动2再次验证结论两者的关系-38÷0=?通过以上式子大小比较,你有什么发现吗?2:讲解新知用自己的语言概括规律并用字母表示注:使用的条件。
给学生给足时间自己探究自己发现,自己验证,此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能不易发现更不会加以修改推广,得到结论,而忽略了使用的条件,此时教师应引导学生注意观察对比,用自己的语言描述发现的规律.直到准确为止。
学生分组讨论,教师深入小组倾听学生的讨论,并注意规范学生的数学语言,并注意学生学生语言的严谨性 此次活动中,教师应重点关注:1.学生在小组活动中的参与意识.2.学生在探究,考虑问题是否全面.3.学生在描述通过探索规律得到的结论,语言是否严密、规范.4.学生在小组讨论交流的过程中,是否敢于发表自己的见解,注意倾听他人的见解,并能重新审视完善自己的想法.(学生活动)让学生对比得出两者相等的关系 老师点评:(1)既然相等我们就可以把除法转换成乘法来进行 运算。
(2)注意转化的方法(3)再次验证加深理解并得出结论(4)-38÷0的结果如何? 学生要说出理由这很重要!教师要关注:1、教师要规范学生的数学语言,并注意学生学生语言的严谨性)41()8(-⨯-)41(0-⨯)41(8-⨯)21()411____()2()411(;31)15____(3)15();41(8_____)4(8-⨯--÷-⨯-÷--⨯-÷教学反思《孤独之旅》教学设计知识目标:理解小说内容,体会孤独的含义。
1.4.2 有理数的除法(一)
[教学目标]
1.使学生理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运
算;
2.运用转化思想,理解有理数除法的意义,培养学生新旧知识之间联系的思维
能力,通过乘除法之间的逆运算,培养学生逆向思维的能力,提高学生的计算能
力,培养转化和全面分析问题的能力.
[教学重点、难点]
1.教学重点:正确运用有理数除法法则进行有理数除法运算;
2.教学难点:理解零不能做除数,零没有倒数,寻找有理数除法转化为有理数
乘法的方法和条件;
3.疑点:乘除法运算顺序.
[教学过程设计]
一、课前复习提问
1.有理数乘法法则;
2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律;
3.倒数的意义.
二、讲授新课
(一)有理数除法法则的推导
[问题]怎样计算8÷(-4)呢?
[提问]小学学过的除法的意义是什么?
得出 ①8÷(-4)=-2;又②8×(41)=-2;于是有
③8÷(-4)=8×(41).
由此得出有理数除法法则:
除以一个不等于0的数,等于乘以这个数的倒数.
可以表示为:
a÷b=a·b1(b≠0) .
类似于乘法法则可得:
两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于
0的数,都得0.
对有理数除法法则的理解:(1)法则所揭示的内容告诉我们,有理数除法与
小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算
转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);(2)法则
揭示有理数除法的运算步骤:第一步,确定商的符号,第二步,求出商的绝对值.
(二)有理数除法法则的运用
例1 计算:(1)(-36)÷9;
(2)(2512)÷(53).
强调:两数相除,先确定商的符号,再确定商的绝对值.
例2 化简下列分数:
(1)312; (2)1245.
强调:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一
种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,
转化为乘法.
例3 计算:
(1)(-12575)÷(-5);
(2)-2.5÷)(4185;
(三)课堂练习
1.教材P44练习及练习1;
2.补充练习
(1)-1÷(411)= ,0÷14113= , ÷(-3)=9.
(2)倒数等于本身的数是 .
(3)若a、b互为倒数,则-13ab= .
(4)被除数是-343,除数比被除数大121,则商是 .
(5)若ab=1,且a=-132,则b .
(6)计算:
(-32)+(-2);
-(-261)÷(-125);
2.125÷(-281);
(-0.009)÷0.03;
3137
2
4
.
(7)若有理数a≠0,b≠0,则bbba的值为 .
(8)若a、b、c为有理数,且ccbbaa=-1,求abcabc的值.
(四)小结
1.通过小学除法意义的理解和类比,得出有理数除法法则,法则一:除以一个
数等于乘以这个数的倒数,零不能做除数.法则二:两数相除,同号得正,异好
号得负,并把绝对值相除;零除以任何一个不等于零的数都得零.
2.有理数的除法有两种方法,一般能整除时用第二种方法.强调要先确定结果
的符号.
(五)作业
教材P46中4,5,6.