2013-2014学年度第二学期八年级数学试卷1
- 格式:doc
- 大小:330.50 KB
- 文档页数:6
北京市石景山区2013—2014学年度第二学期期末考试初二数学试题一、选择题(每小题3分,共24分,每小题只有一个答案符合题意) 1.若一个正多边形的一个外角是40°,则这个正多边形的边数是( ).A .10B .9C .8D .6 2.若532q =,则q 的值是( ). A .103B .215 C .310D .1523.下列四张扑克牌图案中,是中心对称图形的是( ).4.执行如图所示程序框图,y 与x 之间函数关系所对应图象为( )5.初二年级1小君,小菲分别用甲、乙表示.设两同学得分的平均数依次为x 甲,x 乙,得分的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是( ). A .x x =乙甲,22S S >乙甲 B . x x =乙甲,22S S <乙甲 C .x x >乙甲,22S S >乙甲 D . x x <乙甲,22S S <乙甲 6.综合实践课上,小超为了测量某棵树的高度,用长为2m 的竹竿作测量工具,移动竹竿,使竹竿顶端、树的顶端的影子恰好落在地面的同一点(如图).此时竹竿与这一点相距6m,与树相距15m ,则树的高度为 ( ) .A . 4mB . 5mC . 7mD . 9m 7.王老师组织摄影比赛,小语上交的作品如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x 英寸(如图),下面所列方程正确是( ) .A DC B 第4题A .(7)(5)375x x ++⨯=⨯B .(72)(52)375x x ++=⨯⨯C .(72)(52)375x x ++⨯=⨯D .(7)(5)375x x ++=⨯⨯8.如图:已知P 是线段AB 上的动点(P 不与A,B 重合),4AB =,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;连结PG ,当动点P 从点A 运动到点B 时,设 PG=m ,则m 的取值范围是( ). A2m ≤< B .2m << C .4m ≤< D .32m <二、填空题(本题共21分,每空3分) 9.方程22x x =的解为_________________. 10.函数y =x 的取值范围是___________.11.在菱形ABCD 中, AC =6,BD =8,则菱形ABCD的周长为__________,面积为________.12. 如图,在△ABC 中,∠ACB=58°,D ,E 分别是AB , AC 中点.点F 在线段DE 上,且AF ⊥CF ,则∠FAE = °.13.在平面直角坐标系xOy 中,O 是坐标原点,将直线y x =绕原点O 逆时针旋转15°,再向上平移3个单位得到直线l ,则直线l 的解析式为_______________________.14.给出定义:若直线与一个图形有且只有两个公共点,则直线与该图形位置关系是相交.坐标系xOy 中, 以()1,1A --, B (3,0), ()1,1C , D (0,3)为顶点,顺次连结AB 、BC 、CD 、DA 构成图形M .若直线y x b =-+与M 相交,则b 的取值范围是____________. 三、解答题(本题共15分,每小题5分) 15.用配方法...解方程:23630x x --=16.已知:关于x 的一元二次方程2230x x m --+=有实数根.(1)求m 的取值范围;(2)若m 为符合条件的最小整数,求此时方程的根.第6题 第7题 第8题第12题17.如图,直线x y l 2:1=与直线3:2+=kx y l 在同一平面直角坐标系内交于点P . (1)直接写出....不等式2x > kx +3的解集 (2)设直线2l 与x 轴交于点A ,求△OAP 的面积.四、解答题(本题共15分,每小题5分) 18.我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,依次连接各边中点得到中点四边形EFGH .(1)这个中点四边形EFGH 的形状是_________________(2)请证明你的结论.19.如图,在矩形ABCD 中,AB =5,BC =4,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,求FC 的长.B20.如图,在平面直角坐标系xOy 中,O 是坐标原点,一次函数y kx b =+的图象与x 轴交 于点A (3-,0),与y 轴交于点B ,且与正比例函数43y x =的图象的交点为C (m ,4) (1) 求一次函数y kx b =+的解析式;(2) D 是平面内一点,以O 、C 、D 、B 四点为顶点的四边形 是平行四边形,直接写出....点D五、列方程解应用题(本题5分)21.小明对新发地水果批发市场某种水果销售情况调查发现:如果每千克盈利10元,每天可售出500千克.对市场进一步调查发现,在进价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,则日销售量将减少20千克.如果市场每天销售这种水果盈利了6 000元,同时顾...客又得到了实惠.......,那么每千克这种水果涨了多少元?六、解答题(本题10分,每题5分) 22.小辰根据北京市统计局发布的有关数据制作的统计图表的一部分,请你结合下面图表中提供的信息解答下列问题.(注:能源消费量的单位是万吨标准煤,简称标煤).“十一五”期间北京市新能源和可再生能源消费量统计图 2010年北京市各类能源消费量占能源消费总量的百分比统计图(1)2010年北京市新能源和可再生能源消费量是____________万吨;并补全条形统计图并在图中标明相应数据......; (2)2010年北京市能源消费总量约是____________万吨标煤(结果精确到百位)?(3)据 “十二五”规划,到2015年,本市能源消费总量比2010年增长31%,其中新能源和可再生能源利用量占全市能源消费总量的6%.小辰调查发现使用新能源每替代一万吨标煤,可减少二氧化碳排放量约为2万吨,到2015年,由于新能源和可再生能源的开发利用,北京市可减少二氧化碳排放量约为多少万吨? 解: 23.已知关于x 的方程 03)13(2=+++x m mx . (1)求证: 不论m 为任何实数, 此方程总有实数根;(2)若方程()23130mx m x +++=有两个不同的整数根,且m 为正整数,求m 的值.图1FE图3七、解答题(本题5分)24. 数学课外选修课上李老师拿来一道问题让同学们思考.原问题:如图1,已知△ABC ,在直线BC 两侧..,分别画出两个..等腰三角形△DBC ,△EBC 使其面积与△ABC 面积相等;(要求:所画的两个三角形一个以BC 为底.一个以BC 为腰);小伟是这样思考的:我们学习过如何构造三角形与已知三角形面积相等.如图2,过点A 作直线l ∥BC ,点D 、E 在直线l 上时,ABC DBC EBC S S S ∆∆∆==,如图3,直线l ∥BC ,直线l 到BC 的距离等于点A 到BC 的距离,点D 、E 、F 在直线l 上,则ABC DBC EBC FBC S S S S ∆∆∆∆===.利用此方法也可以计算相关三角形面积,通过做平行线,将问题转化,从而解决问题. (1)请你在下图中,解决李老师提出的原问题;参考小伟同学的想法,解答问题:(2)如图4,由7个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,若每个正六边形的边长为1, △ABC 的顶点都在格点上,则△ABC 的面积为________.(3)在平面直角坐标系xOy 中,O 是坐标原点,()()1,0,0,2,A B -D 是直线l :321+=x y 上一点,使△ABO 与△ABD 面积相等,则D 的坐标为_______________.图2备用图1B备用图2备用图3八、几何探究(本题5分)25.已知:在正方形ABCD 中,E 、G 分别是射线CB 、DA 上的两个动点,点F 是CD 边上,满足EG ⊥BF , (1)如图1,当E 、G 在CB 、DA 边上运动时(不与正方形顶点重合),求证:GE =BF . (2)如图2,在(1)的情况下,连结GF,求证:FG BE +.(3)如图3. 当E 、G 运动到BC 、AD 的反向延长线时,请你直接写出....FG 、BE 、BF 三者的数量关系(不必写出证明过程).(3)FG 、BE 、BF 三者的数量关系为______________________________________A 图1A 图2图3北京市石景山区2013—2014学年度第二学期期末考试初二数学答案及评分参考一、选择题(本题共8道小题,每小题3分,共24分)二、填空题(本题共21分,每空3分)9. 120,2x x ==(漏解扣1分,出现错解0分) 10.3x ≥; 11.20,24. 12.61° 13.3y + 14.22b -<<或3b =(对一种得2分);三、解答题(本题共3个小题,每小题5分,共15分)15.解:原方程化为:2210x x --= ………………………………………………1分 22111x x -+=+ ………………………………………………2分 ()212x -= ………………………………………………3分 ∴1211x x == ………………………………………………5分 16.解:(1)由题意:0∆≥ ………………………………………………1分 即:()4430m --≥解得 2m ≥ ………………………………………………3分 (2)当2m =时,原方程化为2210x x -+=解得121x x == ………………………………………………5分(阅卷说明:若考生答案为1x =,扣1分)17. 解:(1)x > 1;………………………………………………1分(2)把1=x 代入x y 2=,得2=y .∴点P (1,2). ……………………………………………………………2分 ∵点P 在直线3+=kx y 上, ∴32+=k . 解得 1-=k .∴3+-=x y . ………………………………………………………………3分 当0=y 时,由30+-=x 得3=x .∴点A (3,0). ……………………4分 ∴32321=⨯⨯=∆OAP S ………………………………………………5分四、解答题(本题共15分,每小题5分)18. (1)平行四边形; ……………………………………… 1分 (2)证明:连结AC ……………………………………… 2分∵E 是AB 的中点,F 是BC 中点,∴EF ∥AC ,EF =12AC . 同理HG ∥AC ,HG =12AC . …… ……… 4分∴EF ∥HG ,EF =HG , ∴四边形EFGH 是平行四边形. ……………………………………… 5分 19.解法一:由题意,△ABF ≌△AEF得AE =AB =5,AD =BC =4,EF =BF. …………………………… 1分 在Rt △ADE 中,由勾股定理,得DE =3. …………………………………… 2分 在矩形ABCD 中,DC =AB =5. ∴CE =DC -DE =2. …………………………………………………………… 3分设FC =x ,则EF =4-x .在Rt △CEF 中,()22242x x -=+. .……………… 4分 解得23=x . ………………………………… …… 5分 即FC =23. 解法二:由题意,△ABF ≌△AEF得AE =AB =5,AD =BC =4,EF =BF. …………………………… 1分 在Rt △ADE 中,由勾股定理,得DE =3. …………………………………… 2分 在矩形ABCD 中,DC =AB =5. ∴CE =DC -DE =2. ………………………………… 3分 由题意∠AED +∠FEC =90° 在Rt △CEF 中,∠EFC +∠FEC =90° ∴∠EFC =∠AED . 又∵∠D =∠C =90°, ∴Rt △AED ∽Rt △EFC ∴CF CEDE DA= .……… ………4分 ∴FC =23.………………………………… …… 5分20. 解:(1)∵点C (m ,4)在直线43y x =上,∴443m =,解得3m =. ……………………………………………… 1分∵点A (3-,0)与C (3,4)在直线(0)y kx b k =+≠上,∴03,43.k b k b =-+⎧⎨=+⎩ 解得2,32.k b ⎧=⎪⎨⎪=⎩ ……………………………………………… 2分 ∴一次函数的解析式为223y x =+. ………………………………………………3分(2) 点D 的坐标为(3-,2-)或(3,6)(3,2)…………………………………………… 5分(阅卷说明:出现正确解得1分,三个点计算都正确得2分)五、列方程解应用题(本题5分)21.解:设市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠时,每千克这种水果涨了x 元 …………………………………………… 1分由题意得 (10)(50020)6000x x +-=……………………………………………3分 整理,得 215500x x -+=.解得 15x =,210x =. ……………………………………………4分 因为顾客得到了实惠,应取 5x =答:销售这种水果盈利6 000元,同时顾客又得到了实惠时,每千克这种水果涨5元. .…………………………………………… 5分 六、解答题(本题10分,每题5分) 22.解:⑴ 补全统计图如右图,所补数据为98+36+78.5+8+2.8=223.3. ………2分 ⑵ 2010年北京市总能耗量约是223.3÷3.2%≈7000(万吨标煤).………3分 ⑶到2015年,由于新能源和可再生能源的开发 利用北京市可减少二氧化碳排放量约为 7000×(1+31%)×6%×2=1100.4(万吨).………………………5分23. 解:(1)当m =0时,原方程化为,03=+x此时方程有实数根 x =3-. ……………………………………… 1分 当m ≠0时,原方程为一元二次方程.∵()()222311296131m m m m m ∆=+-=-+=-≥0.∴ 此时方程有两个实数根. …………………………………………3分综上, 不论m 为任何实数时, 方程 03)13(2=+++x m mx 总有实数根. (2)∵mx 2+(3m +1)x +3=0. 解得 13x =-,21x m=-………………………………………4分 ∵方程()23130mx m x +++=有两个不同的整数根,且m 为正整数, ∴1m = …………………………………5分 七、解答题(本题5分)24.(1)……………………………2分(2) △ABC的面积为………………………3分(3) 则D的坐标为()2,428,33⎛⎫-⎪⎝⎭………………………5分八、几何探究(本题5分)25.(既可以理解为平移也可以理解为旋转)(1)证明:延长DA至M,使AM=CF,连结MB∵四边形ABCD是正方形∴BA=BC,∠MAB=∠C=90°,∠ABC=90°∴△BAM≌△BCF∴BM=BF,∠MBA=∠FBC ……………1分∴∠MB F=90°,∴MB∥GE∴四边形MBEG是平行四边形∴MB=GE∴GE=BF ……………………2分(2)连结MF∵BM=BF ,且∠MBF=90°∴△MBF是等腰直角三角形∴MF=…………………3分∵四边形MBEG是平行四边形∴MG=BE在△MGF中,MG+FG>MF∴FG BE+…………………4分(3BE FG+>…………………5分。
房山区2013—2014学年度第二学期期末考试八年级数学试卷一.选择题:(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个....是符合题意的,把“答题卡”上相应的字母处涂黑. 1.下列图形中,是中心对称图形的是A. B. C. D.2.在平面直角坐标中,点P (-3,5)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若一个多边形的内角和等于720°,则这个多边形的边数是A. 8B. 7C. 6D. 54. 在一个不透明的盒子中放有2个黄色乒乓球和4个白色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出白色乒乓球的概率为A .12 B .13 C . 23 D .165. 在函数31-=x y 中,自变量x 的取值范围是( ) A. x ≠3 B.x ≠0 C. x >3 D. x ≠-36. 正方形具有而矩形没有的性质是( )A.对角线互相平分 B . 对边相等C .对角线相等D .每条对角线平分一组对角7. 如图,函数y =a x -1的图象过点(1,2),则不等式a x -1>2的解集是 A. x <1 B. x >1 C. x <2 D. x >2PMCBBDA8.如图,矩形ABCD中,AB=1,AD=2,M是A D的中点,点P在矩形的边上,从点A出发沿DCBA→→→运动,到达点D运动终止.设APM△的面积为y,点P经过的路程为x,那么能正确表示y与x之间函数关系的图象是 ( )C. D.二.填空题(本题共16分,每小题4分)9. 如图,在□ABCD中,已知∠B=50°,那么∠C的度数是.10. 已知一个菱形的两条对角线的长度分别为6和8,那么这个菱形的周长是.11. 甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.通常新手的成绩不太稳定,那么根据图中的信息,估计甲和乙两人中的新手是;他们这10次射击成绩的方差的大小关系是s2甲s2乙(填“<”、“>”或“=”).12. 如图所示,在平面直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…OP n(n为正整数).那么点P6的坐标是,点P2014的坐标是 .三.解答题:(本题共30分)13.用指定的方法解下列方程:(每小题5分,本题共10分)(1)x 2+4x -1=0(用配方法) (2)2x 2-8x +3=0(用公式法)14. (本题5分)已知:如图,E 、F 是□ABCD 对角线AC 上两点,AF=CE . 求证:BE ∥DF .15. (本题5分)已知2514x x -=,求代数式()()()212111x x x ---++的值.16. (本题5分) 如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点.(1)判断四边形EFGH 是何种特殊的四边形,并说明你的理由;(2)要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件HGF DCBEA17. (本题5分)已知:关于x 的一元二次方程()02122=-+--m x m mx (m >0).(1)求证:方程总有两个不相等的实数根;(2)m取何整数值时,此方程的两个实数根都为整数?四.解答题(本题共21分)18. (本题5分)判断A(1,3)、B(-2,0)、C(-4,-2)三点是否在同一直线上,并说明理由.19. (本题5分)据统计,2014年3月(共31天)北京市空气质量等级天数如下表所示:(1)请根据所给信息补全统计表;(2)请你根据“2014年3月北京市空气质量等级天数统计表”,计算2014年3月空气质量等级为优和良的天数出现的频率一共是多少?(精确到0.01)(3)市环保局正式发布了北京PM2.5来源的最新研究成果,专家通过论证已经分析出汽车尾气排放是本地主要污染源.在北京市小客车数量调控方案中,将逐年增加新能源小客车的指标. 已知2014年的指标为2万辆,计划2016年的指标为6万辆,假设2014~2016年新能源小客车指标的年增长率相同且均为x,求这个年增长率x. (参考数据:≈2≈.1≈414,),≈,.23.244923665732.120. (本题5分)已知:在平面直角坐标系中,点A、B分别在x轴正半轴上,且线段OA、OB(OA<OB)的长分别等于方程x2-5x+4=0的两个根,点C在y轴正半轴上,且OB=2OC.(1)试确定直线BC的解析式;(2)求出△ABC的面积.DCBADCBA DCBAOEDHCGBFA21. (本题6分)如图,正方形ABCD的两条对角线把正方形分割成四个等腰直角三角形,将这四个三角形分别沿正方形ABCD的边向外翻折,可得到一个新正方形EFGH.请你在矩形ABCD中画出分割线,将矩形分割成四个三角形,然后分别将这四个三角形沿矩形的边向外翻折,使得图1得到菱形,图2得到矩形,图3得到一般的平行四边形(只在矩形ABCD中画出分割线,说明分割线的作法,不画出翻折后的图形).图 1 图 2 图3五.解答题(本题共21分)22. (本题6分)如图,直线5+-=xy分别与x轴、y轴交于A、B两点.(1)求A、B两点的坐标;(2)已知点C坐标为(4,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标;(3)请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在平面直角坐标系中作出图形,并求出点N的坐标.23. (本题7分)如图所示,在□ABCD 中,BC =2AB ,点M 是AD 的中点,CE ⊥AB 于E ,如果∠AEM =50°,求∠B 的度数.MDCBE A24. (本题8分)直线434+-=x y 与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图所示放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线m x y +=经过点C ,交x轴于点E .①请直接写出点C 、点D 的坐标,并求出m 的值;②点P (0,)是线段OB 上的一个动点(点P 不与0、B 重合),经过点P 且平行于x 轴的直线交AB 于M 、交CE 于N.设线段MN 的长度为d ,求d 与之间的函数关系式(不要求写自变量的取值范围);③点P (0,)是y 轴正半轴上的一个动点,为何值时点P 、C 、D 恰好能组成一个等腰三角形?房山区2013—2014学年度第二学期终结性试卷参考答案和评分参考八年级数学一、选择题(本题共32分,每小题4分)1.A2.B3.C4.C 5.A 6.D 7.B 8.A二、填空题(本题共16分,每小题4分)9. 130° 10. 20 11. 乙 ;s2甲< s 2乙 (此题每空2分)12. (0,-64)或(0,-26) ;(0,-22014)(此题每空2分)三、解答题(本题共30分,每小题5分)13.(1)解: 142=+x x ……………………………1分5442=++x x ……………………………2分()522=+x ……………………………3分52±=+x ……………………………4分521+-=x 522--=x ……………………………5分(2) 解: 3,8,2=-==c b a ……………………………1分ac b 42-=∆∴()32482⨯⨯--=40=>0 ……………………………2分 代入求根公式,得()4102822408242±=⨯±--=-±-=a ac b b x ……………………………4分 ∴方程的根是2104,210421-=+=x x ……………………………5分14.证明:∵□ABCDHGFDCBEA∴AB ∥DC, AB=CD ……………………………2分 ∴∠BAE=∠DCF ……………………………3分 在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠=CF AE DCF BAE CD AB ∴△ABE ≌ △CDF ……………………………4分 ∴BE =DF ……………………………5分15.解:原式=()11212222+++-+--x x x x x ……………………………2分=11213222+---+-x x x x ……………………………3分 =152+-x x ……………………………4分∵1452=-x x∴原式=15 ……………………………5分16.(1)四边形EFGH 是平行四边形 ;……………………………1分证明: 在△ACD 中 ∵G 、H 分别是CD 、AC 的中点,∴GH ∥AD ,GH=21AD 在△ABC 中 ∵E 、F 分别是AB 、BD 的中点,∴EF ∥AD ,EF=21AD ……………………………2分 ∴EF ∥GH ,EF=GH ……………………………3分 ∴四边形EFGH 是平行四边形. ………………………4分……………………………5分17.解:(1) ()2,12,-=--==m c m b m aac b 42-=∆∴()[]()24122----=m m mm m m m 8448422+-+-=4=>0……………………………1分∴此方程总有两个不等实根……………………………2分(2) 由求根公式得mm m x x 212,121-=-==……………………………3分 ∵方程的两个根均为整数且m 是整数 ∴m 2-1是整数,即m2是整数 ∵m >0 ∴m =1或2……………………………5分FE FEADCBADCBBCDA18.解:设A (1,3)、B (-2,0)两点所在直线解析式为b kx y +=∴⎩⎨⎧+-=+=b k bk 203…………………1分解得⎩⎨⎧==21b k ……………………………3分∴2+=x y ……………………………4分 当=x -4时,2-=y∴点C 在直线AB 上,即点A 、B 、C 三点在同一条直线上.……………5分19.(1) 3 ……………………………1分(2) (5+11)÷31≈0.52,∴空气质量等级为优和良的天数出现的频率一共是0.52…………………………2分 (3)列方程得:()6122=+x ,…………………………3分解得311+-=x ,3-12-=x (不合题意,舍去)…………………4分 ∴732.0≈x 或2.73≈x %答:年增长率为73.2% …………………………5分20.解: (1) ∵OA 、OB 的长是方程x 2-5x +4=0的两个根,且OA <OB ,解得1,421==x x …………………………1分∴OA =1,OB=4∵A 、B 分别在x 轴正半轴上,∴A (1,0)、B (4,0)…………………………2分 又∵OB =2OC ,且点C 在y 轴正半轴上 ∴OC =2,C (0,2)…………………………3分 设直线BC 的解析式为b kx y +=∴⎩⎨⎧=+=b b k 240,解得⎪⎩⎪⎨⎧=-=221b k∴直线BC 的解析式为221-+=x y …………………………4分 (2)∵A (1,0)、B (4,0) ∴AB =3∵OC =2,且点C 在y 轴上 ∴3232121=⨯⨯=⋅=∆OC AB S ABC…………………………5分21.图1 图2 图3得到菱形的分割线做法:联结矩形ABCD 的对角线AC 、BD (把原矩形分割为四个全等的等腰三角形);得到矩形的分割线做法:联结矩形ABCD 的对角线BD ,分别过点A 、C 作AE ⊥BD 于E ,CF ⊥BD 于F (把原矩形分割为四个直角三角形);得到平行四边形的分割线做法:联结矩形ABCD 的对角线BD ,分别过点A 、C 作AE ∥CF ,分别交BD 于E 、 F (把原矩形分割为四个三角形).每图分割线画法正确各1分,每图分割线作法叙述基本正确各1分,共6分. 22. 解:(1) ∵直线5+-=x y 分别与x 轴、y 轴交于A 、B 两点令0=x ,则5=y ;令0=y ,则5=x∴点A 坐标为(5,0)、点B 坐标为(0, 5);…………………………2分 (2) 点C 关于直线AB 的对称点D 的坐标为(5,1)…………………………3分 (3)作点C 关于y 轴的对称点C ′,则C ′的坐标为(-4,0)联结C ′D 交AB 于点M ,交y 轴于点N ,…………………………4分 ∵点C 、C ′关于y 轴对称 ∴NC = NC ′,又∵点C 、D 关于直线AB 对称,∴CM=DM ,此时,△CMN 的周长=CM+MN+NC= DM +MN+ NC ′= DC ′周长最短;设直线C ′D 的解析式为b kx y +=∵点C ′的坐标为(-4,0),点D 的坐标为(5,1)∴⎩⎨⎧+=+=b k b k 4-051,解得⎪⎪⎩⎪⎪⎨⎧==9491b k ∴直线C ′D 的解析式为9491+=x y ,…………………………5分 与y 轴的交点N 的坐标为 (0,94) …………6分23.解:联结并延长CM ,交BA 的延长线于点N∵□ABCD∴AB ∥CD, AB=CD …………………1分∴∠NAM=∠D∵点M 是的AD 中点,∴AM=DM在△NAM 和△CDM 中 ∵⎪⎩⎪⎨⎧∠=∠=∠=∠DMC AMN DMAM DNMA ∴△NAM ≌ △CDM ……………………2分∴NM=CM,NA=CD …………………………4分∵AB=CD∴NA= AB, 即BN=2AB∵BC=2AB ∴BC= BN, ∠N=∠NCB …………………………5分∵CE ⊥AB 于E,即 ∠NEC=90°且NM=CM∴EM=21NC=NM …………………………6分 ∴∠N=∠NEM =50°=∠NCB∴∠B=80° …………………………7分24. 解:(1)点C 的坐标为(-5,4),点D 的坐标为(-2,0)…………………………2分∵直线m x y +=经过点C ,∴=m 9 …………………………3分(2) ∵MN 经过点P (0,t )且平行于x 轴∴可设点M 的坐标为(t x M ,),点N 的坐标为(t x N ,)…………………………4分D∵点M 在直线AB 上,直线AB 的解析式为434+-=x y , ∴t 434+-=M x ,得343+-=t x M 同理点N 在直线CE 上,直线CE 的解析式为9+=x y ,∴t 9+=N x ,得9-t x N =∵MN ∥x 轴且线段MN 的长度为d , ∴()1247-9-343+=-+-=-=t t t x x d N M …………………………5分(3) ∵直线AB 的解析式为434+-=x y ∴点A 的坐标为(3,0),点B 的坐标为(0,4)AB=5∵菱形ABCD∴AB=BC=CD=5∴点P 运动到点B 时,△PCD 即为△BCD 是一个等腰三角形,此时t =4;…………………………6分∵点P (0,t )是y 轴正半轴上的一个动点,∴OP =t ,PB =4-t∵点D 的坐标为(-2,0)∴OD=2,由勾股定理得22224t OP OD PD +=+=同理,()2222425-+=+=t BP BC CP 当PD=CD=5时, 224t PD +==25,∴21=t (舍负)…………………7分当PD=CP 时,PD 2=CP 2, 24t +()2425-+=t ∴t 837=……………………8分综上所述,t =4,21=t ,t 837=时,△PCD 均为等腰三角形. 备注:此评分标准仅提供一种解法,其他解法仿此标准酌情给分。
OD CBA 2013--2014学年第二学期初二期末统测数 学 试 卷 2014.7学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1. 用配方法解方程2470x x --=时,原方程应变形为A. ()2211x -= B. ()2211x += C. ()2423x -= D. ()2423x += 2. 下列各曲线中,不.表示y是x 的函数的是Oxy yxO3. 对于函数21y x =-,当自变量 2.5x =时,对应的函数值是 A. 2 B. 2- C. 2± D. 44.在社会实践活动中,某小组对甲、乙、丙、丁四个地区三到六月的黄瓜价格进行调查.四个地区四个月黄瓜价格的平均数均为3.60元,方差分别为2=18.1s 甲,2=17.2s 乙,2=20.1s 丙,2s =12.8丁.三到六月份黄瓜的价格最稳定的地区是 A . 甲 B . 乙C . 丙D . 丁5.关于x 的方程 230x x c -+=有实数根,则整数c 的最大值为A. 3B. 2C. 1D. 06. 如图1,在矩形ABCD 中,有以下结论:①AOB △是等腰三角形;②ABO ADO S S =△△;③AC BD =;④AC BD ⊥;⑤当=45ABD ∠︒时,矩形ABCD 会变成正方形.正确结论的个数是A. 2B. 3C. 4D. 57. 一次函数(1)5y m x m =-+-的图象经过二、三、四象限,则实数m 的取值范围是ABCDDCBAA. 15m <<B. 5m >C. m <1 或5m >D. m <18. 如图2,在四边形ABCD 中,==90A C ∠∠︒,且BD 平分ABC ∠,3BD =,2BC =,AD 的长度为A. 1B. 5C. 13D. 59.依次连接四边形ABCD 的四边中点得到的图形是正方形,则四边形ABCD 的对角线需满足 A. AC BD = B. AC BD ⊥C. AC BD =且AC BD ⊥D. AC BD ⊥且AC 与BD 互相平分10. 如图,四边形ABCD 中,AD BC ∥,=60B ∠︒,=4cm AB AD BO ==,8cm OC =,点M 从B 点出发,按从B A D C →→→的方向,沿四边形BADC 的边以1cm/s 的速度作匀速运动,运动到点C 即停止.若运动的时间为t ,MOD △的面积为y ,则y 关于t 的函数图象大约是二、填空题(本题共14分,每空2分) 11. 我市5月份某一周最高气温统计如下表:/C ︒温度22 24 26 29 天数2131则这组数据的中位数是 ,平均数是 .FE DCBA 12. 在函数12x y x -=-中,自变量x 的取值范围是 . 13. 将ABC △纸片折叠,使点A 落在边BC 上,记落点为点D ,且折痕EF BC ∥,若4BC =,则EF 的长度为 .14.一次函数y kx b =+的图象如下图,当1y >时,x 的取值范围是________________.15.关于x 的方程()2+2110mx m x m -++=有实数根,则字母m 的取值范围是 .16. 直线443y x =+与x 轴、y 轴分别交于点A 和点B ,在x 轴上取点C ,使ABC △为等 腰三角形,则点C 的坐标是 .三、解答题(本题共30分,其中第17题4分,第19题6分,其余均5分) 17.解方程:()2-41221x x x +=-.18.已知a 是方程2514x x +=的根,求()()()()()2211113232.a a a a a ---+++-的值.19.已知关于x 的一元二次方程: ()241330mx m x m -+++=.(1) 求证:方程总有两个实根;(2) 若m 是整数,方程的根也是整数,求m 的值.ABCDE FMNDCBA20.如图,在菱形ABCD 中, 13AD =,24BD =,AC ,BD 交于点O .(1)求菱形ABCD 的面积; (2)求点O 到边CD 的距离.21. 在四边形ABCD 中, =2AB AD =, 60A ∠=︒, 25BC =, 4CD =. (1) 求ADC ∠的度数. (2) 求四边形ABCD 的面积.22. (列一元二次方程解应用题)在一块长22米、宽17米的矩形地面上,要修建宽度相同的两条互相垂直的道路(两条道路各与矩形的一边平行),生育部分种植花草,使花草的面积为300平方米.求道路的宽度.四、解答题(本题共20分,其中第26题8分,其余均6分)23. 一次函数(0)y kx b k =+≠的图象由直线3y x =向下平移得到,且过点()1,2A . (1)求一次函数的解析式;(2)求直线y kx b =+与x 轴的交点B 的坐标;(3)设坐标原点为为O ,一条直线过点B ,且与两条坐标轴围成的三角形的面积是12, 这条直线与y 轴交于点C , 求直线AC 对应的一次函数的解析式.24. 已知,如图,在平行四边形ABCD 中,点M ,N 分别在边AB ,DC上,作直线MN ,分别交DA 和BC 的延长线于点E ,F ,且AE CF =.(1) 求证:AEM CFN△≌△;(2) 求证:四边形BNDM 是平行四边形.25. 设一元二次方程20ax bx c ++=的两根为12,x x ,根据根与系数的关系,则有1212+= -,b cx x x x a a=.根据以上材料,解答下列问题.已知关于x 的方程()2221+0x k x k --=有两个实数根12,x x .(1)求实数k 的取值范围; (2)若12121,x x x x +=-求k 的值.26.如图,在平面直角坐标系xOy 中,点A 在x 轴的正半轴上,点B 在y 轴的负半轴上,且5OA OB ==.点C 是第一象限内一动点,直线AC 交y 轴于点F .射线BD 与直线AC 垂直,垂足为点D ,且交x 轴于点M .OE OC ⊥,交射线BD 于点E .(1)求证:不论点C 怎样变化,点O 总是在线段CE 的垂直平分线上; (2)若点C 的坐标为()24, ,求直线BD 的解析式.。
2013-2014学年初二第二学期期末试卷数 学说明:1.全卷共4页,考试用时90分钟,满分为120分.一、选择题:(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,答案填写在答题卡相应的位置上.)1.与12是同类二次根式的是( )A .4B .8C .18D .272.下面计算正确的是( )A .3333+=B .2733÷=C .235=gD .()222-=-3.数据1、2、5、3、5、3、3的中位数是( ) A.1 B.2 C.3 D.5 4.一个矩形的两条对角线的夹角为60°,且对角线的长度为8cm ,则较短边的长度为( )A .8cmB . 6cmC .4cmD . 2cm 5.已知关于x 的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x 轴的交点是( )A .(0,1)B .( 1,0)C .(0,-1)D .(-1,0)6.下列方程中是关于x 的一元二次方程的是( )A .2210x x+= B .20ax bx c ++= C .223253x x x --= D .(1)(2)1x x -+=7.顺次连接对角线互相垂直的四边形四边中点所得的四边形是( )A .梯形B .矩形C .菱形D .正方形8.关于x 的方程240x x a -+=有两实数根,则实数a 的取值范围是( )A .4a ≤B .4a <C .4a >D .4a ≥9、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ) (A )4 cm (B )5 cm (C )6 cm (D )10 cmABCDEQ PR M N (图1)(图2)4 9y xO10、如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( ).A .N 处B .P 处C .Q 处D .M 处二、填空题:(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.)11. 若x 、y 为实数,且满足033=++-y x ,则2012⎪⎪⎭⎫⎝⎛y x 的值是 。
2013—2014学年八年级数学科第二学期期末检测题班别: 姓名: 评价:一、 填空题。
(每小题4分,共32分)1、当x_______时,分式2-xx 2+1 的值为负数。
2、当x=_______时,分式x 3与x-62的值互为相反数。
3、已知反比例函数y=xm 5-的图象分布在第二、四象限内,则m 的取值范围是______。
4、已知y 与x 成反比例,且当x=3时,y=-6;则当y=3时,x= ______。
5、在△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,AB=8,则BC=______ 。
6、如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD=120°,AB+AC=15cm ,则BD=______ cm 。
7、如图,在直角梯形中,底AD=6 cm ,BC=11 cm ,腰CD=12 cm ,则这个直角梯形的周长为______cm 。
8、数据11,9,7,10,14,7,6,5的中位数是______ ,众数是______。
二、 选择题。
(每小题5分,共40分)9、若分式 x 2-9x-3 的值为零,则x 的值是 ( )A 、3B 、-3C 、±3D 、0110、人的头发的直径约为0.00007m ,用科学记数法表示这长度时,正确的是( )A 、0.7×10-5mB 、0.7×10-6mC 、7×10-5mD 、7×10-6m11、当路程s 一定时,速度v 与时间t 之间的函数关系是 ( )A 、正比例函数B 、反比例函数C 、一次函数D 、函数关系不能确定12、已知函数y=x1( x >0),则 ( )A 、函数在第一象限内,且y 随x 的增大而减小B 、函数在第一象限内,且y 随x 的增大而增大C 、函数在第二象限内,且y 随x 的增大而减小D 、函数在第二象限内,且y 随x 的增大而增大13、在△ABC 中,已知AC=6,AB=8,BC=10,则 ( )A 、∠A=90°B 、∠B=90°C 、∠C=90°D 、∠B=∠C14ABCD 中,∠C=108°,点E 在ADAE=CD ,则∠ABE= ( )A 、18°B 、36°C 、72°D 、108°15、用二块边长为a 的等边三角形纸片拼成的四边形是 ( )A 、菱形B 、矩形C 、正方形D 、等腰梯形16、下列各组数据中,方差是2的是 ( )A 、101,98,102,100,99B 、101,101,102,102,99C 、100,100,99,98,98D 、103,101,97,99,1002三、 解答题。
2013-2014学年第二学期八年级期末试卷数 学本试卷共8大题,计23小题,满分100分,考试时间120分钟一、选择题(本大题共10小题,每小题2分,共20分)【 】A.x<1B.x ≥1C.x ≤-1D.x<-12. 下列二次根式是最简二次根式的是………………………………………………………………【 】A.21B.2.0C. 3D. 8 3. 如图,在直角三角形ABC 中,∠C=90°,AB=10,AC=8,点E,F 分别为AC 和AB 的中点,则EF 的值为…………………………………………………………………………………………【 】 A.3 B.4 C.5 D.64. 平行四边形一边长12cm ,那么它的两条对角线的长度可能是………………………【 】 A.8cm 和14cmB.10cm 和14cmC.18cm 和20cmD.10cm 和34cm5. 如图,菱形纸片ABCD 中,∠A=60°,折叠菱形纸片ABCD,使点C 落在DP(P 为AB 中点)所在的直线上,得到经过点D 的折痕DE.则∠DEC 的大小为……………………………【 】 A.78° B.75° C.60° D.45°6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为………………………【 】A .42B .32C .42 或 32D .37 或 33 7. △ABC 的周长为60,三条边之比为13∶12∶5,则这个三角形的面积为……………【 】 A.30B.90C.60D.120第3题图 第5题图米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是……………………【 】 A.干旱第50天时,蓄水量为1 200立方万米 B.干旱开始后,蓄水量每天增加20立方万米C.干旱开始时,蓄水量为200立方万米D.干旱开始后,蓄水量每天减少20立方万米9. 刘翔在出征雅典奥运会前刻苦进行110米跨栏训练,教练对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的………【 】 A .众数B .方差C .平均数D .频数10.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。
绝密★启用前 试卷类型:A2013-2014学年八年级下学期期末考试数学试题 (满分120分,考试时间120分钟) 第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,选错、不选或选出的答案超过一个均记零分。
1. 下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .2. 下列计算正确的是(A )228=- (B )31227-=49-=1(C )1)52)(52(=+- (D )23226=-32x -x 的取值范围是( ) A .x >0 B .x≥-2 C .x≥2 D .x≤24.下列方程中是关于x 的一元二次方程的是( )A .x2+21x =0 B .ax2+bx+c=0C .(x-1)(x+2)=1D .3x2-2xy-5y2=05.东营市5月下旬11天中日最高气温统计如下表: 日期21 22 23 24 25 26 27 28 29 30 31 最高气温(℃)2222202322252730262427则这11天永州市日最高气温的众数和中位数分别是( ) A .22,25 B .22,24 C .23,24 D .23,25 6.不能判定一个四边形是平行四边形的条件是( )A .两组对边分别平行B .一组对边平行另一组对边相等C .一组对边平行且相等D .两组对边分别相等7.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是 (A )点A(B )点B (C )点C (D )点D 8.方程x (x-2)+x-2=0的解是( )A BCDMP P 1 11(第7题图)(第12题)A B CD N M NM D CB A A .2 B .-2,1C .-1D .2,-19.如图,在平行四边形ABCD 中,过点C 的直线CE ⊥AB ,垂足为E ,若∠EAD=53°,则∠BCE 的度数为( ) A .53° B .37° C .47° D .123°10. 若方程01032=+-m x x 有两个同号不等的实数根,则m 的取值范围是(A )M≥0 (B )0>m (C )0<M<325 (D )m <0≤32511.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF . 将△ABE 绕正方形的对角线交点O 按顺时针方向旋转到△BCF ,则旋转角是( ) A .45° B .60° C .90° D .120°12.在△MBN 中, BM =6,点A ,C ,D 分别在MB ,NB ,MN 上, 四边形ABCD 为平行四边形,∠NDC =∠MDA ,□ABCD 的周长是 (A )24 (B )18 (C )16 (D )12第Ⅱ卷(非选择题 共84分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13.四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是矩形。
苏教版2013-2014学年第二学期期末考试初二数学试卷2014.6本试卷由填空题、选择题和解答题三大题组成.共29小题.满分130分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持纸面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将选择题的答案写在答题纸相应的位置上.1x的取值范围是A.x<2 B.x≠2 C.x ≤2 D.x≥22.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是A.正三角形B.正方形C.等腰直角三角形D.平行四边形3.对于函数y=6x,下列说法错误的是A.它的图像分布在第一、三象限B.它的图像与直线y=-x无交点C.当x>0时,y的值随x的增大而增大D.当x<0时,y的值随x的增大而减小4.下列运算正确的是A.x y x yx y x y---=-++B.()222a b a ba ba b--=+-C.21111xx x-=-+D.()222a b a ba ba b-+=--5.下列各根式中与是同类二次根式的是A B C D6.关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为12”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在12附近,正确的说法是A.①④B.②③C.②④D.①③7.如图,点F是□ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是A.ED DFEA AB=B.DE EFBC FB=C.BC BFDE BE=D.BF BCBE AE=8.如图,矩形AOBC中,顶点C的坐标(4,2),又反比例函数y=kx的图像经过矩形的对角线的交点P,则该反比例函数关系式是A.y=8x(x>0) B.y=2x(x>0)C.y=4x(x>0) D.y=1x(x>0)9的值为A.0 B.25 C.50 D.8010.如图,在△ABC中,∠C=90°,B C=6,D,E分别在AB,AC上,将△ADE沿DE翻折后,点A落在点A'处,若A'为CE的中点,则折痕DE的长为A.1 B.2 C.4 D.6二、填空题本大题共8小题.每小题3分,共24分.把答案直接填在答题纸相对应的位置上.11.若分式21a+有意义,则a的取值范围是▲.12.袋中共有2个红球,2个黄球,4个紫球,从中任取—个球是白球,这个事件是▲事件.13=▲.14.小丽同学想利用树影测量校园内的树高,她在某一时刻测得小树高为1.5m时,其影长为1.2 m,此时她测量教学楼旁的一棵大树影长为5m,那么这棵大树高约▲m.15.如图,在△ABC中,∠ACB=90°,∠A=35°,若以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,则θ值等于▲.16.如图,等腰梯形ABC D中,AD∥BC,AD=2,BC=4,高DF=2.腰DC的长等于▲.17.如图,点A、B在反比例函数y=kx(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,S△BNC=2,则k的值为▲.18.已知n是整数,则n的最小值是▲.三、解答题 本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分8分,每小题4分)计算:(1)226912414421x x x x x x -+-÷+++ (2)222412a a a a a ---÷+20.(本题满分8分,每小题4分)计算:(1)- )20x +-≥21.(本题满分5分)解方程:42511x xx x +-=--.22.(本题满分5分)如图,E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF (1)求证:四边形AECF 是平行四边形;(2)若BC =10,∠BAC =90°,且四边形AECF 是菱形, 求BE 的长.23.(本题满分5分)如图,“优选1号”水稻的实验田是边长为a m(a>1)的正方形去掉一个边长为1m 的正方形蓄水池后余下的部分;“优选2号”水稻的实验田是边长为(a -1)m 的正方形,两块试验田的水稻都收了600 kg . (1)优选 ▲ 号水稻的单位面积产量高;(2)“优选2号”水稻的单位面积产量是“优选1号”水稻的单位面积产量的多少倍?24.(本题满分6分)如图,在□ABCD 中,点E 在BC 上,∠CDE =∠DAE . (1)求证:△ADE ∽△DEC ;(2)若AD =6,DE =4,求BE 的长.25.(本题满分6分)“初中生骑电动 车上学”的现象越来越受到社会 的关注,某校利用“五一”假期, 随机抽查了本校若干名学生和部分 家长对“初中生骑电动车上学”现象的看法,统计整理制作了的统计图,请回答下列问题: (1)这次抽查的家长总人数是多少? (2)请补全条形统计图和扇形统计图; (3)从这次接受调查的学生中,随机抽查一个学生,则抽到持哪一类态度学生的可能性大?26.(本题满分80=(1)(2)将如图等腰三角形纸片沿底边BC 上的高AD 剪成两个三角形, 其中AB =AC =m ,BC =n .用这两个三角形你能拼成多少种平 行四边形?分别求出它们对角线的长(画出所拼成平行四边形 的示意图)27.(本题满分8分)如图,在平面直角坐标系中,双曲线经过点B ,连结OB .将OB 绕点O 按顺时针方向旋转90°并延长至A ,使OA =2OB ,且点A 的坐标为(4,2). (1)求过点B 的双曲线的函数关系式;(2)根据反比例函数的图像,指出当x<-1时,y 的取值范 围;(3)连接AB ,在该双曲线上是否存在一点P ,使得S △ABP = S △ABO ,若存在,求出点P 坐标;若不存在,请说明理由.28.(本题满分8分)喝绿茶前需要烧水和泡茶两个工序,即需要 将电热水壶中的水烧到100℃,然后停止烧水,等水温降低 到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min) 成一次函数关系;停止加热过了1分钟后,水壶中水的温度 y (℃)与时间x (min )近似于反比例函数关系(如图). 已知水壶中水的初始温度是20℃,降温过程中水温不低于 20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x。
八年级数学第1 页共6 页2013-2014学年度(下)八年级期末质量检测数学(满分:150分;考试时间:120分钟) 注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置.一、精心选一选:本大题共8小题,每小题4分,共32分.1、下列计算正确的是()A .234265+=B .842=C .2733¸=D .2(3)3-=-2、顺次连接对角线相等的四边形的各边中点,所得图形一定是()A .矩形B .直角梯形C .菱形D .正方形3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是()A .甲B .乙C .丙D .丁4、一组数据4,5,6,7,7,8的中位数和众数分别是()A .7,7 B .7,6.5 C .5.5,7 D .6.5,7 5、若直线y=kx+b 经过第一、二、四象限,则k,b 的取值范围是()(A) k>0, b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<0 6、如图,把直线L 沿x 轴正方向向右平移2个单位得到直线L ′,则直线L /的解析式为()A.12+=x yB. 42-=x yC. 22y x =- D. 22+-=x y 7、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为()(A )4 cm (B )5 cm (C )6 cm (D )10 cm A第7题BCDEEDCBA(第8题A B C D E F 8、如图,ABC D 和DCE D 都是边长为4的等边三角形,的等边三角形,点点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为(的长为( )(A )3(B )23(C )33(D )43二、细心填一填:本大题共8小题,每小题4分,共32分.分. 9、计算123-的结果是的结果是 . 10、实数p 在数轴上的位置如图所示,化简22(1)(2)_______p p -+-=。
2013~2014学年度八年级第二学期期末试卷(试卷满分120分,答题时间90分钟)一、精心选一选:(每小题2分,共24分)在下列各题的四个备选答案中,只有一个是正确的,请把正确答案的代号写在题后的括号内。
1、下列计算正确的是( )A .4333=1-B .23=5+C .12=22D .322=52+ 2、小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误..的是( ) A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米3、如图1,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )A 、(2,0)B 、(51,0-)C 、(101,0-)D 、(5,0)4、某校开展“节约每一滴水”活动,为了了解开展活动的一个月以来节约用水的病况,从 节水量/m 3 0.2 0.25 0.3 0.4 0.5 家庭数/个 24671) A. 130m 3 B. 135m 3 C. 6.5m 3 D. 260m 3 5、下列函数中,y 随x 的增大而减小的函数是( ) A . y =2x+8 B . y =﹣2+4x C . y =﹣2x+8 D . y =4x6、如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )A .8米B .10米C .12米D .14米7、为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为1.6m.根据各班选出的学生,测量其身高,计算得到的数据如右表所示,学校应选择()A.九(1)班B. 九(2)班C. 九(3)班D. 九(4)班8、根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x -2 0 1y 3 p 0 A.1 B.-1 C.3 D.-39、如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A. 3B.3.5C.2.5D.2.810、如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.23<x B.x<3 C.23>x D.x>311、如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()学生平均身高(单位:m)标准差九(1)班 1.57 0.3九(2)班 1.57 0.7九(3)班 1.6 0.3九(4)班 1.6 0.7A DEOStA O StB OStCOS tO DACBPA .2B .4C .4D .812、如图,点P 是等边△ABC 的边上的一个作匀速运动的动点,其由点A 开始沿AB 边运动到B 再沿BC 边运动到C 为止,设运动时间为t ,△ACP 的面积为S ,S 与t 的大致图象是( )二、细心填一填:(每小题3分,共24分)13、请写出一个图形经过一、三象限的正比例函数的解析式 .14、一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15、张老师想对同学们的打字能力进行测试,他将全班同学分成5组.经统计,这5个小组平均每分钟打字的个数如下:100,80,x ,90,90.已知这组数据的众数与平均数相等,那么这组数据的中位数是 .16、在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:则这10个小组植树株数的方差是____________.17、如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是___________植树株数(株) 5 67 小组个数 3 4318、若整数x 满足|x|≤3,则使为整数的x 的值是 (只需填一个).19、如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 .20、如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为(﹣2,0),(﹣1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴对称变换,得到△A ′B ′C ′(A 和A ′,B 和B ′,C 和C ′分别是对应顶点),直线y=x+b 经过点A ,C ′,则点C ′的坐标是 .三、耐心解一解(本大题共72分)21、计算:(第1、2小题每小题5分,第3小题8分共18分)(1)(2)(﹣)﹣﹣|﹣3|(3)若29x y -+与|x -y -3|互为相反数,则x +y 的值为多少?22、(10分.)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:△ADC △ECD;(2)若BD=CD,求证四边形ADCE是矩形.23、(12分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与x(时间)之间的函数关系图像(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?24.(10分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:平均数中位数方差命中10环的次数甲7 0乙 1甲、乙射击成绩折线图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?25、(10分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型30 45B型50 70(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?26、(12分)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x 轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.2013~2014学年度八年级第二学期期中试卷答案一、精心选一选:1、C .2、B3、C.4、A.5、C6、B .7、C .8、A9、C. 10、A 11、B 12、C 二、细心填一填:13、y=x (答案不唯一).14、m >﹣2.15、90. 16、0.6 17、AE=cm ,18、﹣2或3 19、y=﹣2x ﹣2 20、(1,3)三、耐心解一解(本大题共72分)21、(1)(2)﹣6.(3)因为29x y -+与|x -y -3|互为相反数,所以29x y -+=0,|x -y -3|=0所以⎩⎨⎧=--=+-03092y x y x 所以⎩⎨⎧==1215y x ,所以27=+y x .22、证明:(1)∵△ABC 是等腰三角形 ∴∠B=∠ACB. AB=AC 又四边形ABDE 是平行四边形 ∴∠B=∠EDC AB=DE ∴∠ACB=∠EDC, AC=DE.DC=DC ∴△ADC ≅△ECD ; (2)∵AB=AC,BD=CD. ∴AD ⊥BC. ∴∠ADC=90°∵四边形ABDE 是平行四边形 ∴AE 平行且等于BD 即AE 平行且等于DC.∴四边形ADCE 是平行四边形. ∴四边形ADCE 是矩形.23、解(1)设y kx b =+,根据题意得301.590k b k b +=⎧⎨+=⎩,解得60180k b =-⎧⎨=⎩60180(1.53).y x x =-+≤≤ (2)当2x =时,60218060y =-⨯+= ∴骑摩托车的速度为60230÷=(千米/时) ∴乙从A 地到B 地用时为90303÷=(小时)24、补全表格如下: 甲、乙射击成绩统计表平均数 中位数 方差 命中10环的次数 甲 7 7 4 0 乙77.55.41甲、乙射击成绩折线图(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出;(3)如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲乙的平均成绩相同,乙只有第5次射击比第四次射击少命中1环,且命中1次10环,而甲第2次比第1次、第4次比第3次,第5次比第4次命中环数都低,且命中10环的次数为0次,即随着比赛的进行,乙的射击成绩越来越好.25、解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(75﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.26、解:(1)解方程x2﹣14x+48=0得x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,OA=8,则A(8,0).∵点A、C都在直线MN上,∴,解得,,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(﹣a+6﹣6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).。
2013-2014学年度第二学期八年级数学试卷
本试卷总分100分,标准答题时间120分钟
一选择题(本题共10小题,共计23分)
1:(2.0分) 已知两数之和为25,两数之差为3,则这两个数为()
A. 8和17
B. 6和17 C 14和11 D. 12和13
2:(2.0分) 点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是()
A. y=4x
B. y=2x
C. y=x
D. y=2-4x
3:(2.0分)函数y=-x/5是不是正比例函数()
A 是 B. 不是 C.无法确定
4:(2.0分) 有一块形状如图的四边形玻璃,不小心把DEF部分打碎,现只知道AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,则边AD的长为()cm
A. 118
B. 127
C. 135 D140
5:(2.0分) 如图12-63,在梯形ABCD中,DC//AB,DC+CB=AB,∠A=51°,∠CBA=( )°。
A. 77
B 78
C. 88
D. 87
6:(2.0分) 如图.在平行四边形ABCD中,对角线AC和BD相交于点O,则下面条件能判定平行四边形ABCD是矩形的是( )
A. AC=BD
B. AC⊥BD
C. AC=BD且AC⊥BD
D. AB=AD
7:(2.0分) 甲地向乙地打长途电话所需付的电话费y(元)与通话时间x(分钟)之间的函数关系式为一次函数且其图象经过点(3,2)(5,4)当x≥3时,该图象的解析式为()
A. y=x+1
B. C. y=x D. y=x-1(x≥3)
8:(3.0分) 平行四边形ABCD中,对角线AC、BD相交于O点,AB=AC=2,∠ABC=60°,则BD的长为()
A. 6
B. 2
C. D
9:(3.0分) 如图所示,在矩形ABCD 中,AE ⊥BD 于点E ,且
,则∠EAC 的度数是( )
A. 38°
B 。
45°
C. 54°
D. 62°
10:(3.0分) 在平行四边形ABCD 中,点E 、F 分别在边BC 、AD 上,如果点E 、F 分别由下列各种情况得到,那么四边形AECF 不一定是平行四边形的是( )
A. AE 、CF 分别平分∠DAB ,∠BCD
B.∠BEA =∠CFA
C. E 、F 分别BC 、AD 的中点
D.
二 填空题 (本题共8小题,共计21分)
11:(2.0分) 如图,D ,E ,F 分别为△ABC 三边的中点,则图中平行四边形的个数为_______.
12:(3.0分) 已知菱形的两条对角线的长分别为5和6,则它的面积是____.
13:(3.0分)某校七年(2班)6位女生的体重(单位:千克)是:36,38,40,42,42,45,这组数据的众数为_____。
14:(2.0分)如图是小明从学校到家里行进的路程S(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走的快,其中正确的有____(填序号)。
15:(3.0分)已知一次函数y =kx +b 的图象与直线y =2x 平行,且与y 轴的交点到x
轴的距
离为3,则一次函数的解析式为_____________.
16:(3.0分)如图,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间____秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.
17:(3.0分)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y=kx+b(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是______________.
18:(2.0分)如图,以边长为1的正方形ABCD 的边AB 为对角线作第二个正方形AEBO 1,再以BE 为对角线作第三个正方形EFBO 2,如此作下去,…,则所作的第n 个正方形的面积S n =____.
三 解答题 (本题共8小题,共计56分)
19:(6.0分)如图,点E 、F 、G 、H 分别是平行四边形ABCD 的边AB 、BC 、CD 、DA 的中点。
求证:ΔBEF ≌ΔDGH 。
20:(6.0分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE。
求证:①ΔAFD≌ΔCEB
②四边形ABCD是平行四边形。
21:(8.0分)如图,在平行四边形ABCD的对角线上AC 上取两点E和F,若AE=CF.
求证:∠AFD=∠CEB.
22:(7.0分)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB、OB 分别表示父、子俩送票、取票过程中,离体育馆的路程S(米)与所用时间t(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
(1)求点B的坐标和AB所在直线的函数关系式;
(2)小明能否在比赛开始前到达体育馆?
23:(8.0分)如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上。
设F 、H 分别是B 、D 落在AC 上的两点,E 、G 分别是折痕CE 、AG 与AB 、CD 的交点。
(1)求证:四边形AECG 是平行四边形;
(2)若AB =4cm ,BC =3cm ,求线段EF 的长。
24:(9.0分)如图,在△ABC 中,AB =AC ,D 为BC 中点,四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形.
25:(10.0分)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60cm×30cm,B 型板材规格是40cm×30cm.现只能购得规格是150cm×30cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(下图是裁法一的裁剪示意图)
设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z
张,且
所裁出的A、B两种型号的板材刚好够用.
(1)上表中,m=______,n=________;
(2)分别求出y与x和z与x的函数关系式;
(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?
26:(2.0分)如图,一次函数y=x+b的图象经过点B(-1,0),且与反比例函数 (k为
不等于0的常数)的图象在第一象限交于点A(1,n).求:
(1) 一次函数和反比例函数的解析式;
(2)当1≤x≤6时,反比例函数y的取值范围.。