黄芪粉对商品蛋鸡免疫功能的影响
- 格式:doc
- 大小:340.50 KB
- 文档页数:3
黄芪粉喂鸡的功能主治1. 提高鸡的免疫力•黄芪粉富含多种氨基酸、矿物质和生物活性成分,能增强鸡体免疫力,降低鸡只发生感染性疾病的风险。
•黄芪粉中的多糖物质对鸡的免疫系统具有调节作用,可以提高抗病能力。
2. 增强鸡的抗应激能力•黄芪粉中的黄酮类化合物可以降低环境应激对鸡身体的不良影响,减少鸡在环境改变时的生理反应,提高鸡的应对能力。
•黄芪粉中的多种有效成分能够改善鸡体内环境,减轻鸡的身体压力,增强抗应激能力。
3. 促进鸡的生长发育•黄芪粉中的生物碱以及丰富的维生素和矿物质,能够促进鸡的生长发育,提高鸡的体重和饲养效益。
•黄芪粉中的天然植物酮类成分,可以刺激鸡体内的激素分泌,促进鸡的饮食摄取和消化吸收,增强鸡的食欲。
4. 改善鸡的消化系统功能•黄芪粉中的多酚化合物可以刺激鸡胃肠道的分泌功能,增加鸡的食欲,改善鸡的消化能力。
•黄芪粉中的纤维素和膳食纤维可以增加鸡的肠道蠕动,促进鸡的排便,预防便秘和消化不良。
5. 增加鸡蛋的产量和品质•黄芪粉中的多种营养物质对鸡的生殖系统具有调节作用,能够提高鸡蛋的产量和品质。
•黄芪粉中的抗氧化物质可以改善鸡体内的氧化应激反应,保护鸡卵中的营养成分,提高鸡蛋的氧化稳定性。
6. 提高鸡肉的质量和口感•黄芪粉中的天然植物酮类成分可以促进鸡体内脂肪代谢,降低鸡肉中的脂肪含量,提高鸡肉的质量。
•黄芪粉中的多糖物质可以改善鸡肉的组织结构,增加鸡肉的嫩度和口感。
以上是黄芪粉喂鸡的功能主治的一些介绍,黄芪粉作为一种天然植物提取物,对鸡的健康生长有着广泛的作用。
然而,在使用黄芪粉喂鸡时,需要合理控制用量,在遵循农药使用规定的前提下进行使用。
另外,建议在使用黄芪粉之前,进行充分的调研和实验,以确定黄芪粉在特定鸡种和饲养环境下的最佳效果。
黄芪多糖对动物免疫器官的发育的促进作用12.07(改)黄芪多糖类产品对种鸡免疫器官的发育的促进作用摘要:在实验室接种健康雏鸡60只。
将实验鸡随机分为5组每组12只,设立免疫对照和空白对照组,按照一定的试验方法进行试验,观测分析结果。
结论表明,芪黄素和富特两种黄芪多糖产品对促进法氏囊和脾脏发育、促进体液抗体提高具有明显的作用。
关键词:黄芪多糖粉;种鸡;免疫器官;富特中药黄芪有增强机体的免疫、抗肿瘤、抗病毒、抗氧化、抗衰老等多种功能,能影响动物胸腺、脾脏和法氏囊等免疫器官的发育,促进淋巴细胞转化和增殖及巨噬细胞吞噬功能,提高动物机体的细胞免疫和体液免疫能力。
黄芪多糖是黄芪中含量最多、免疫活性较强的一类物质。
1 材料与方法1.1实验动物与分组健康雏鸡60只,随机分为5组每组12只。
1.2试验药物芪黄素、富特。
(连续使用17天)1.3试验时间2012年7月6日至2012年8月21日1.4试验方法实验安排在实验室接种健康雏鸡60只。
将实验鸡随机分为5组每组12只,设立免疫对照和空白对照组。
按照下表进行实验:药品名称药品使用量饮用日期饮用日龄免疫日龄免疫时间疫苗名称免疫剂量芪黄素每升水兑入本品400mg 7.11-7.27 4-20d 8d 7.15日ND-K华南0.3ml/只鸡富特200ml/瓶,兑水150kg 7.11-7.27 4-20d 8d 7.15日ND-K华南0.3ml/只鸡免疫组8d 7.15日ND-K华南0.3ml/只鸡空白组在接种疫苗的第1天、29天、36天、43天分别检测ND抗体。
分别剖检各组鸡只,称量每只鸡体重(g),对应采集鸡胸腺、脾脏和法氏囊(mg)进行称重并记录,对比各组数据。
2 结果表一抗体检测结果日期日龄芪黄素富特免疫空白不免疫空白7.8 母源7.60 7.60 7.60 7.608.5 29d 5.00 5.17 5.08 3.08 8.12 36d 5.70 6.10 5.10 2.00 8.1943d6.296.805.112.25图一中监所ND 检测抗原5 5.7 6.295.17 6.1 6.85.08 5.15.117.63.0822.2512345678母源29d 36d 43d芪黄素富特免疫空白不免疫空白表二对胸腺、脾脏和法氏囊发育的存进作用平均体重平均胸腺重平均脾重平均法氏囊重法体比脾体比胸体比芪黄素 1123.125 4.25 1.18 2.73 0.0024 0.00105 0.0038 富特1109.375 3.78 1.1 2.86 0.0026 0.00099 0.0034 免疫空白 1159.375 4.45 0.96 2.44 0.0021 0.00083 0.0038 不免疫空白1067.53.360.941.660.00160.000880.0031(注:因收集胸腺时附带的结蒂组织较多,去除难度大,所以数据偏差较大,在分析当中不做评论。
养殖与饲料2016年第7期摘要本文从多方面概述了黄芪对畜禽机体的生理作用,如:黄芪能增强畜禽心脏供血功能、保护心脏;增强畜禽机体免疫功能;增加畜禽机体红细胞数量、增强造血功能;保护畜禽机体肝脏、肺脏、肾脏及胃;增强畜禽机体抗应激能力;减缓畜禽机体衰老;调节畜禽机体血压等。
同时也指出需要合理规避黄芪对畜禽机体的副作用。
关键词黄芪;机体免疫;畜禽黄芪对畜禽机体的生理作用韩东良1随亚楠2陈涛21.河南省商水县动物疫病预防控制中心,河南商水466100;2.河南省周口市动物疫病预防控制中心,河南周口466000收稿日期:2016-04-26韩东良,男,1963年生,高级兽医师。
黄芪是常用中草药之一,有黄耆、黄蓍、绵芪、北芪、北蓍等多种别名,豆科植物,国内主产于内蒙古、甘肃、山西等地。
用黄芪制作畜禽饲料添加剂时,是将其根部晒干后按照畜禽的不同生长阶段、不同配方粉碎至相应大小的颗粒,加入畜禽饲料中,从而起到宏观的生理作用,其在畜禽机体内的生理作用主要有以下几点。
1增强畜禽心脏供血功能、保护心脏黄芪能丰富畜禽心肌细胞内细胞质中的线粒体和糖原颗粒的含量,加强心肌细胞的能量代谢。
心肌细胞能量代谢的加强使得心肌细胞能量充足,增强心肌收缩力与舒张力,二者的加强使得心脏收缩、舒张振幅增大,同时使冠状动脉扩张,心脏血液输出、输入量增加,改善心肌供血,减少心肌缺血的情况发生。
同时,使得心律有力地保持稳定,起到保护心脏的作用。
2增强畜禽机体免疫功能黄芪能大幅度提高畜禽血液中白细胞总数含量,增强巨噬细胞、中性粒细胞的杀菌能力及吞噬功能。
黄芪也能促进淋巴细胞转化,能使自然杀伤细胞数量增加、功能完善,并且提高其活性。
黄芪还可以提高体液中免疫球蛋白含量,增加畜禽机体特异性免疫细胞、非特异性免疫细胞的数量及功能,从而增强畜禽机体免疫功能。
3增加畜禽机体红细胞数量、增强造血功能黄芪能增加红细胞数量及血红蛋白含量,提高机体红细胞的比容,同时改善造血干细胞造血环境,促进造血干细胞的增殖及分化,而且通过扩张毛细血管改善血液循环和营养状况等方式间接刺激造血功能。
黄芪多糖对鸡抗病能力的影响黄芪是常用的中草药材,具有养血补气、提高免疫力、抗氧化等多种功效。
黄芪多糖是黄芪中的一种主要有效成分,具有调节免疫功能、抗炎、抗肿瘤等作用。
在畜禽养殖中,黄芪多糖也被广泛应用于提高禽类抗病能力。
本文将对黄芪多糖对鸡抗病能力的影响进行探讨。
一、黄芪多糖对鸡免疫功能的影响黄芪多糖可以增强鸡的免疫功能,促进鸡体内淋巴细胞增殖和活化,增加白细胞和巨噬细胞的吞噬活性,提高鸡体内的免疫球蛋白水平和抗体产生能力,增强鸡对病原微生物的抵抗能力,降低鸡发生疾病的风险。
实验证明,长期添加黄芪多糖的饲料组鸡只免疫球蛋白水平显著高于对照组,抗体滴度也有所提升,且在感染疾病后,黄芪多糖组鸡只的存活率明显高于对照组,说明黄芪多糖可以提高鸡的免疫功能,增强抗病能力。
氧化应激是导致鸡体内氧自由基产生过剩和抗氧化能力下降的重要原因,而黄芪多糖具有良好的抗氧化作用。
它可以清除自由基,提高鸡体内抗氧化酶的活性,减少氧化应激对鸡体造成的损害,维护鸡体内环境的稳定,保护鸡体内的细胞和组织免受氧化损伤。
实验结果显示,添加黄芪多糖的饲料可以显著提高鸡体内抗氧化酶活性,减少氧化损伤指标的产生,改善鸡体内氧化应激状态,提高鸡的抗氧化能力,从而增强抗病能力。
黄芪多糖不仅可以提高鸡的免疫功能和抗氧化能力,还可以促进鸡的生长发育。
黄芪多糖可以促进鸡体内的氨基酸的吸收利用,提高蛋白质合成的速度,从而促进鸡的生长发育,增加鸡的体重和肉质,并提高饲料的利用率。
实验结果显示,添加黄芪多糖的饲料可以显著提高鸡的日增重和饲料转化率,促进鸡的生长发育,提高鸡的生产性能。
四、黄芪多糖在鸡养殖中的应用黄芪多糖在鸡养殖中的应用可以通过添加到饲料中或者直接喂食的方式进行。
一般来说,添加到饲料中的方式更为常见,可以根据饲料的成分和鸡的生长发育阶段适当调整黄芪多糖的用量,以发挥最佳的效果。
在实际应用中,还需要根据饲料的成分和鸡的生长发育情况,结合饲养管理的要求,科学合理地制定黄芪多糖的使用方案,以确保其有效使用。
兽用黄芪粉的功能主治
1. 强身健体
•促进兽体生长发育:黄芪粉富含多种氨基酸、维生素和微量元素,能提供兽体生长发育所需的营养物质,促进兽体健康的生长发育。
•增加免疫力:黄芪粉中的多糖类物质对兽体的免疫系统有一定的调节作用,能够增强兽体的免疫力,提高抗病能力。
2. 改善消化功能
•缓解腹泻问题:黄芪粉中的多种活性成分能够调节兽体的肠道菌群平衡,增加有益菌的数量,减少有害菌的繁殖,从而改善消化功能,缓解腹泻问题。
•促进食欲:黄芪粉中的苦味成分能够刺激兽体的食欲,增加食欲,提高食物的消化吸收能力。
3. 抗氧化作用
•减少自由基的产生:黄芪粉中的多酚类物质具有很强的抗氧化作用,能够减少自由基的产生,提高兽体的抗氧化能力,减少组织的氧化损伤。
•促进新陈代谢:黄芪粉中的活性成分能够促进兽体的新陈代谢,增加细胞的能量产生,提高兽体的运动能力和抗疲劳能力。
4. 改善循环系统
•降低血脂和胆固醇:黄芪粉中的多种成分能够降低兽体血液中的低密度脂蛋白胆固醇,增加高密度脂蛋白胆固醇的比例,保护心血管系统的健康。
•活化血液:黄芪粉中的活性成分能够活化兽体血液,增加血液流动性,改善血液循环,减少心血管疾病的发生风险。
5. 缓解压力和疲劳
•提高应激能力:黄芪粉中的多种成分能够调节兽体的神经内分泌系统,提高应激能力,对抗各种应激因素,缓解压力和焦虑情绪。
•增加体力和耐力:黄芪粉中的活性成分能够提高兽体的能量产生效率,增加体力和耐力,延缓疲劳的发生,提高兽体工作和运动能力。
以上是兽用黄芪粉的功能主治的介绍,黄芪粉作为一种天然草药,具有很多的
保健功效,但使用时需按照兽医的指示进行,以保证其安全有效的应用。
D ESCRIPTION OF PROBLEMR eactive oxygen species (ROS), including superoxide, hydroxyl radicals, hydrogen per-oxide, and nitric oxide, are continuously gener-ated inside cells by several oxidases and by the dismutation of the superoxide anion formed by electron leakage during mitochondrial respira-tion [1]. Oxidative stress, which is induced by the imbalance between the production and re-moval of ROS, is regarded as a primary factor in various degenerative diseases, such as cancer [2], atherosclerosis [3], gastric ulcers [4], and aging [5]. As a result, there is a growing interest in using natural antioxidants because of the po-tential negative effect of synthetic antioxidants on human health [6]. Singh et al. [7] reported that both the essential oil and an acetone extract of Myristica fragrans Houtt. (aril part) exhib-ited a broad spectrum of antimicrobial activity against the tested microorganisms and were ef-fective in preventing rapeseed oil from oxidiz-ing. Jang et al. [8] demonstrated that inclusion of a medicinal herb extract in the diet increased© 2012 Poultry Science Association, Inc.E ffects of Astragalus membranaceus on laying performance and antioxidant status of laying hensZ. Y. Z uo ,* W. R. Y ang ,*1Y. W ang ,† Z. B. Y ang ,* S. Z. J iang ,* and G. G. Z hang * *D epartment of Animal Sciences and Technology, Shandong Agricultural University, Tai-an, Shandong, 271018, P. R. China; and †A griculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, Alberta, T1J 4B1, CanadaPrimary Audience: Nutritionists, Researchers, Egg ProducersS UMMARYI nterest in the use of natural feed additives in the animal and poultry industries is growing. In the present study, we assessed the effects of dietary supplementation of Astragalus mem-branaceus root powder (AMP) on the laying performance and serum and egg yolk antioxidant status of laying hens. Four groups (135 each) of laying hens fed a corn- and soybean meal-based diet were supplemented with 0, 5, 10, or 15 g/kg of diet of AMP for 10 wk, and their layingperformance and serum and egg yolk antioxidant status were measured. Supplementation of AMP did not affect ADFI or average egg weight but did linearly increase egg mass of the lay-ing hens. Antioxidant status of the serum and egg yolk was improved, as judged by an increase in antioxidant enzymatic activities and a decrease in concentrations of oxidized products, with supplementation of AMP in a dose-dependent manner. In conclusion, supplementing a corn- and soybean meal-based laying hen diet with AMP at levels of 5 to 10 g/kg of diet had the potential to improve the antioxidant status of laying hens and improve laying performance.K ey words:a ntioxidant status ,A stragalus membranaceus,l aying hen ,l aying performance2012 J. Appl. Poult. Res. 21 :243–250/ 10.3382/japr.2011-00351 1Corresponding author: w ryang@ at Poultry Science Association Member on March 20, 2014/ Downloaded from244JAPR: Research Reportthe dietary antioxidative potential. Zhang et al. [9] also reported that supplementing ginger powder at a level of 5 g/kg improved the antioxi-dant status of broilers and that its efficacy in en-hancing the antioxidant capacity was enhanced as the particle size decreased from 300 to 37 μm. The dried roots of Astragalus membranaceus (AM), also known as Huangqi, is a traditional medicinal herb that originated in Northern Chi-na. In traditional Chinese medicine, AM is an important “qi tonifying” or adaptogenic herb and is often used in combination with other herbs, such as angelica, Paeonia lactiflora, and ginseng, to improve overall well-being [10]. Astragalus membranaceus has been reported to contain various bioactive compounds, including astragalosides, flavonoids, isoflavones, isofla-van, saponins, kumatakenin, choline, betaine, polysaccharides, and glucuronic acid [11–13], and to possess antinociceptive [14], anti-aging [15], anti-infarction [16], hepatoprotective [17], immunomodulating [18], anti-inflammatory [19], and antitumor effects [20]. The increas-ing availability of AM because of the improved technology in Huangqi cultivation and produc-tion has made it possible to extend its use as a feed supplement to benefit animal and poultry health and production. Research conducted in our laboratory showed that dietary supplemen-tation of AM improved growth performance and enhanced the antioxidant status and carcass quality of broiler chickens [21]. However, in-formation on the effect of AM on laying hens is lacking. The objective of this study was to assess the effects of supplementing AM at dif-ferent levels on the production performance and the serum and egg yolk antioxidant status of lay-ing hens.MATERIALS AND METHODS Preparation of the AM Root PowderOne batch of fresh AM roots [22] was cleaned by rinsing with tap water to remove soil, dried at 65°C, and then ground to pass through a 300-μm screen to yield an AM powder (AMP). The AMP was stored in covered containers at ambi-ent temperature (21 to 24°C) before being mixed into the diets.Experimental Design, Birds, and ManagementA 10-wk feeding experiment was conductedat the Research Station of Shandong Agricul-tural University, Tai-an, China. The animal careand use protocol was approved by the Shan-dong Agricultural University Animal Nutrition Research Institute. The experiment was a com-pletely randomized design, with different levelsof AMP supplementation as the treatments.A total of 540 laying hens (Hy-Line Brown,27 wk old) were randomly allocated into 20 feeding units (each with 9 cages in 3 levels, with3 birds/cage) that were then randomly assignedto 4 dietary treatments (5 units/treatment). Eachmetal wire cage (46 × 50 × 44 cm) was equippedwith an independent feeder and 2 nipple drink-ers. Feeding units were located randomly insidea ventilated house. The house was maintained ata temperature of 22 ± 2°C and in a daily photo-period of 16L:8D during the entire experimental period.A corn- and soybean meal-based diet (Table1) that was formulated to meet or slightly ex-ceed nutrient requirements [23] was left un-modified (control) or was supplemented with 5,10, or 15 g/kg of diet above the prepared AMP (treatments denoted as AMP5, AMP10, andAMP15, respectively) by replacing equivalent amounts of wheat bran in the diet formulation.The AMP was first mixed with a premix, whichwas subsequently mixed with other dietary in-gredients and then stored in covered containersbefore feeding. Experimental diets were madeevery 2 wk. The experiment lasted for a periodof 10 wk and commenced after an adaptationperiod of 1 wk. All feeding conditions were thesame between the adaptation and experimental periods. The diet was offered to the laying henstwice daily for ad libitum intake, and all henshad free access to water. Mortalities and healthstatus of the experimental laying hens were vi-sually observed and recorded daily throughoutthe entire experimental period.Laying PerformanceThe feed residue in each feeding unit was weighed at the end of each feeding week to ob-tain the ADFI. The number of eggs from each feeding unit was recorded, and the weights of in-at Poultry Science Association Member on March 20, 2014/Downloaded from245 ZUO ET AL.: ASTRAGALUS MEMBRANACEUS AND LAYING HENSdividual eggs were measured daily to determine the daily egg mass (g/d per hen) and laying rate.Assay of Antioxidant Status in the Egg Yolk and SerumAt wk 5 and 10 of the experiment (32 and 37 wk of the age), 15 eggs (3 per feed unit) were randomly chosen from each treatment to deter-mine antioxidant activity of the egg yolk. On the same dates, 10 laying hens (2 per feed unit) were also randomly selected from each treat-ment, and a blood sample (5.0 mL) was taken from the wing vein of each hen into an non-heparinized tube for subsequent determination of antioxidant activity of the serum. The blood samples were allowed to clot at 37°C for 2 h and subsequently centrifuged [24] at 1,500 × g and 4°C for 10 min to obtain the serum, which was then stored at −20°C for analysis of the activities of total superoxide dismutase (T-SOD), gluta-thione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and concentration of malon-dialdehyde (MDA). Yolks of 3 eggs from each unit in each treatment were pooled and homog-enized for 5 min with ice-cold isotonic physi-ological saline (0.154 mol/L; pH 7.4) at a ratio of 1:9. The homogenates were then centrifuged at 1,500 × g and 4°C for 10 min, and the su-pernatant was subjected to analysis for activity of T-SOD and for concentrations of protein and MDA.All these determinations used spectropho-tometric methods and followed the analytical instructions of kits [25], as described by Zhang et al. [9]. Enzyme activities and MDA content were expressed as units per milligram of protein for egg yolk and units per milliliter for serum.at Poultry Science Association Member on March 20, 2014/ Downloaded from246JAPR: Research ReportData Calculation and Statistical Analyses Average daily feed intake, egg mass, and FE (ADFI:egg mass) were calculated as the mean value of each unit over the 10-wk experimental period. Antioxidant parameters of egg yolk and serum on 2 sampling dates were calculated, and the mean was used for each sample. Data were analyzed statistically by one-way ANOV A using the GLM procedures of SAS [26], with dietary concentration of AMP as the main treatment effect and the individual unit (5) as the statisti-cal unit. The significance of difference among treatments was tested using LSMEANS with the PDIFF option of SAS [26]. Orthogonal polyno-mial contrasts were used to determine linear and quadratic responses of laying hens to AMP lev-els [26]. Significance and trends of significance were declared if P < 0.05 and P ≤ 0.1, respec-tively.RESULTS AND DISCUSSION Laying PerformanceAll laying hens were healthy, and no mortal-ity was observed during the entire experimental period (data not shown). Average egg weight and ADFI over the 10-wk feeding period were similar among treatments. In contrast, laying rate and egg mass of birds were linearly in-creased (P = 0.044 and 0.019, respectively) and the ADFI:egg mass ratio tended (P = 0.097) to be linearly decreased as the levels of AMP in-creased from 5 to 15 g/kg of diet (Table 2). The increased egg mass with AMP supple-mentation was due to the increased laying rate rather than the individual egg weight. Likewise, the tendency for improvement in feed conver-sion was mainly due to the increased egg mass rather than the effect on feed intake. However, it was not clear why inclusion of AMP led to a linear increase in laying rate.Although AMP and its extract have been used as an immunomodulating agent in both humans and experimental animals and poultry for many years, little information is available on the ef-fects of AMP as a feed additive on the laying performance of hens. Wang et al. [21] reported that AMP supplemented at a level of 10 g/kg hada growth-promoting effect on grower broilers(4 to 6 wk) but not for the entire experimental period, and the effect was dose-dependent. For piglets, Hu et al. [27] also reported the same growth-promoting effect of AMP prepared by using different comminution techniques. On the contrary, Ma et al. [28] reported that a diet con-taining 10 g/kg of AMP did not affect the growth rate of chickens. Therefore, the effects of AMP on animal and poultry growth performance may vary depending on the dietary concentra-tion, particle size, and animal or bird species. Furthermore, supplementing the diets of laying hens with AMP up to a level of 15 g/kg of diet improved laying performance by improving egg mass and potentially improving FE.Serum Antioxidant Status Supplementing AMP up to a level of 15 g/kg of diet quadratically increased T-SOD (P < 0.01) and GSH-Px (P < 0.05) activities in the serum at wk 5, but not at wk 10 of the experiment (Tableat Poultry Science Association Member on March 20, 2014/ Downloaded from247 ZUO ET AL.: ASTRAGALUS MEMBRANACEUS AND LAYING HENS3). At wk 5, laying hens consuming diets AMP5 and AMP10 had higher (P < 0.05) serum T-SOD activities than laying hens consuming the con-trol and AMP15 diets, whereas a difference in GSH-Px activities was observed only between the control and AMP10 diets (P < 0.05). Serum T-AOC was quadratically increased (P < 0.01) but the concentration of MDA was quadratically reduced (P < 0.05) with AMP supplementation at both wk 5 and 10 of the experiment. Com-pared with laying hens fed the control diet, all hens supplemented with AMP had a higher (P < 0.01) serum T-AOC activities at both wk 5 and 10 but a lower (P < 0.05) MDA concentration at wk 5.The increased activities of T-SOD, GSH-Px, and T-AOC but reduced MDA concentration in the serum with AMP supplementation in this study indicated that AMP enhanced the antioxi-dant status of laying hen serum. This is consis-tent with the observation of Wang et al. [21], who also reported increased activities of T-AOC (in both liver and serum) and GSH-Px (in liver) and a reduced MDA concentration in the serum of broilers resulting from dietary AMP supple-mentation at levels of 5, 10, and 15 g/kg. On the basis of these 2 studies, the optimal dietary level of AMP for improving the antioxidant status of serum would be between 5 and 10 g/kg of diet for both laying hens and broilers. It is well acknowl-edged that GSH-Px, superoxide dismutase, and catalase are 3 endogenous antioxidant enzymes constituting the antioxidant cellular enzymatic system [29]. Malondialdehyde is one of the end products of lipid peroxidation, and it can endog-enously reflect the extent of lipid peroxidation [30]. Therefore, the higher activities of T-SOD and GSH-Px in the AMP-supplemented groups in this study may have resulted in a greater ca-pacity of laying hens to scavenge free radicals and ROS and reduce the MDA concentration, as indicated by the lower extent of lipid peroxida-tion. In addition, on the basis of the increased level of T-AOC in the serum of AMP-supple-mented hens, the increase in nonenzymatic an-tioxidant defenses also contributed to reducing endogenous lipid peroxidation and oxidation. The enhanced serum antioxidant status with AMP supplementation in a dose-dependent manner was due to the combined action of an-tioxidant compounds in AMP. Astragalus mem-branaceus has been reported to contain varieties of naturally occurring compounds, such as poly-saccharides, saponins, and flavonoids [31–33]. Astragalus polysaccharides have been reported to possess strong antioxidant and antitumor activities [34]. Yan et al. [35] reported that ad-ministration of AM polysaccharides at a rate of 40, 80, and 160 mg/kg of BW significantly increased serum and liver antioxidant enzymeat Poultry Science Association Member on March 20, 2014/ Downloaded from248JAPR: Research Reportactivities in a dose-dependent manner and de-creased lipid peroxidation levels in mice. It has also been demonstrated that flavonoids and sa-ponins, which are bioactive compounds found in AMP, increased the antioxidant status by increasing endogenous antioxidants and scav-enging free radicals [36, 37]. Further research is needed to determine the interaction of these AMP compounds in improving the antioxidant status of animals and poultry fed different diets. Egg Yolk Antioxidant StatusActivity of T-SOD in the egg yolk was not affected by AMP supplemented at either wk 5 or 10, but concentration of MDA in the egg yolk was linearly and quadratically reduced (P < 0.001) by AMP at both wk 5 and 10 of the experiment (Table 4). Egg yolks from all AMP-supplemented laying hens had lower (P < 0.001) concentrations of MDA at both wk 5 and 10 as compared with the control. This is consistent with the increase in serum antioxidant status with AMP observed in this study. Our results were also in agreement with the report of Sa-hin et al. [38], who observed that egg yolk MDA concentrations of quail decreased linearly in response to an increase in the level of dietary resveratrol (another naturally occurring plant antioxidant compound). In numerous studies, a dose-dependent increase in egg yolk antioxi-dant content was observed in response to dietary antioxidants in poultry [39, 40]. Therefore, the enhanced antioxidant status of egg yolk in the AMP-supplemented groups can likely be attrib-uted to the antioxidant compounds in AMP, as discussed above. Further studies are needed to elucidate the antioxidant mechanisms of AMP and to investigate the carryover effects of di-etary AMP supplementation on product quality with respect to shelf life and its nutritive value for humans as a functional food.CONCLUSIONS AND APPLICATIONS1. Supplementing the diets of laying henswith AMP at levels up to 15 g/kg linearlyincreased laying rate and egg productionbut tended (P ≤ 0.1) to linearly improveFE without affecting ADFI and averageegg weight during the 10-wk period ofexperiment.2. Supplementing the diets of laying henswith AMP enhanced antioxidant enzymeactivities and retarded lipid oxidation inthe serum and egg yolk in a dose-depen-dent manner, with the optimal dietaryAMP level being 5 to 10 g/kg of diet.3. Therefore, AMP is a natural feed addi-tive that has the potential to increase thelaying performance of laying hens.REFERENCES AND NOTES1. Fridovich, I. 1978. The biology of oxygen radicals. Science 201:875–880.2. Muramatsu, H., K. Kogawa, M. Tanaka, K. Okumura, Y. Nishihori, K. Koike, T. Kuga, and Y. Niitsu. 1995. Super-oxide dismutase in SAS human tongue carcinoma cell line is a factor defining invasiveness and cell motility. Cancer Res. 55:6210–6214.at Poultry Science Association Member on March 20, 2014/ Downloaded from249 ZUO ET AL.: ASTRAGALUS MEMBRANACEUS AND LAYING HENS3. Kris-Etherton, P. M., M. Lefevre, G. R. Beecher, M.D. Gross, C. L. Keen, and T. D. Etherton. 2004. Bioactive compounds in nutrition and health-research methodologies for establishing biological function: The antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu. Rev. Nutr. 24:511–538.4. Adesina, O. A., M. O. Japhet, E. Donbraye, T. E. Ku-mapayi, and A. Kudoro. 2009. Anti hepatitis E virus antibod-ies in sick and healthy individuals in Ekiti State, Nigeria. Afr. J. Microbiol. Res. 3:533–536.5. Oliver, C. N., B. Ahn, E. J. Moerman, S. Goldstein, and E. R. Stadtmaan. 1987. Age-related changes in oxidized protein. J. Biol. Chem. 262:5488–5491.6. Dragland, S., H. Senoo, K. Wake, K. Holte, and R. Blomhoff. 2003. Several culinary and medicinal herbs are important sources of dietary antioxidants. J. Nutr. 133:1286–1290.7. Singh, G., P. Marimuthu, C. S. de Heluani, and C. Catalan. 2005. Antimicrobial and antioxidant potentials of essential oil and acetone extract of Myristica fragrans Houtt. (aril part). J. Food Sci. 70:M141–M148.8. Jang, A., X. D. Liu, M. H. Shin, B. D. Lee, S. K. Lee, J. H. Lee, and C. Jo. 2008. Antioxidative potential of raw breast meat from broiler chicks fed a dietary medicinal herb extract mix. Poult. Sci. 87:2382–2389.9. Zhang, G. F., Z. B. Yang, Y. Wang, W. R. Yang, S. Z. Jiang, and G. S. Gai. 2009. Effects of ginger root (Zingiber officinale) processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poult. Sci. 88:2159–2166.10. Sun, W. Y., W. Wei, L. Wu, S. Y. Gui, and H. Wang. 2007. Effects and mechanisms of extract from Paeonia lac-tiflora and Astragalus membranaceus on liver fibrosis in-duced by carbon tetrachloride in rats. J. Ethnopharmacol. 112:514–523.11. Ma, X. Q., Q. Shi, J. A. Duan, T. T. Dong, and K. W. Tsim. 2002. Chemical analysis of Radix astragali (Huangqi) in China: A comparison with its adulterants and seasonal variations. J. Agric. Food Chem. 50:4861–4866.12. Ma, X., P. Tu, Y. Chen, T. Zhang, Y. Wei, and Y. Ito. 2004. Preparative isolation and purification of isoflavan and pterocarpan glycosides from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography. J. Chromatogr. A 1023:311–315.13. Liu, W., J. Chen, W. J. Zuo, X. Li, and J. H. Wang. 2007. A new isoflavane from processed Astragalus membra-naceus. Chin. Chem. Lett. 18:1092–1094.14. Yang, Q., J. T. Lu, A. W. Zhou, B. Wang, G. W. He, and M. Z. Chen. 2001. Antinociceptive effect of astragalo-sides and its mechanism of action. Acta Pharmacol. Sin. 22:809–812.15. Lei, H., B. Wang, W. P. Li, Y. Yang, A. W. Zhou, and M. Z. Chen. 2003. Anti-aging effect of astragalosides and its mechanism of action. Acta Pharmacol. Sin. 24:230–234. 16. Luo, Y., Z. Qin, Z. Hong, X. Zhang, D. Ding, J.-H. Fu, W.-D. Zhang, and J. Chen. 2004. Astragaloside IV pro-tects against ischemic brain injury in a murine model of tran-sient focal ischemia. Neurosci. Lett. 363:218–223.17. Gui, S. Y., W. Wei, H. Wang, L. Wu, W. Y. Sun, W. B. Chen, and C. Y. Wu. 2006. Effects and mechanisms of crude astragalosides fraction on liver fibrosis in rats. J. Ethnophar-macol. 103:154–159.18. Cho, W. C. S., and K. N. Leung. 2007. In vitro and in vivo immunomodulating and immunorestorative effects of Astragalus membranaceus. J. Ethnopharmacol. 113:132–141.19. Ko, J. K., and C. W. Chik. 2009. The protective actionof radix Astragalus membranaceus against hapten-induced colitis through modulation of cytokines. Cytokine 47:85–90.20. Ionkova, I., G. Momekov, and P. Proksch. 2010. Ef-fects of cycloartane saponins from hairy roots of Astragalus membranaceus Bge., on human tumor cell targets. Fitotera-pia 81:447–451.21. Wang, H. F., W. R. Yang, H. W. Yang, Y. Wang, Z.B. Yang, S. Z. Jiang, and G. G. Zhang. 2010. Effects of As-tragalus membranaceus on growth performance, carcass characteristics, and antioxidant status of broiler chickens. Acta Agric. Scand. A Animal Sci. 60:151–158.22. Bozhou Medicine Co., Bozhou, Anhui, China.23. NRC. 1994. Nutrient Requirements of Poultry. 9th rev. ed. Natl. Acad. Press, Washington, DC.24. D-37520 Osterode, Kendro Laboratory Products, Heraeus Instruments, Germany.25. Nanjing Jiancheng Bioengineering Institute, Nanjing, China.26. SAS Institute. 2000. User’s Guide. Release 8.1 ed. SAS Inst. Inc., Cary, NC.27. Hu, Y. L., C. L. Xu, Y. Z. Wang, Y. J. Li, J. X. Liu,and J. Feng. 2006. Effect of dried roots of Astragalus mem-branaceus in the diets of young growing pigs on growth performance and immune function. J. Anim. Feed Sci. 15:599–607.28. Ma, D. Y., A. S. Shan, and Q. D. Li. 2004. Effects of Chinese medical herbs on chicken growth and immuniza-tion. Acta Zoonutrimenta Sin. 16:36–40.29. Blokhina, O., E. Virolainen, and K. V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen depriva-tion stress: A review. Ann. Bot. 91:179–194.30. Sumida, S., K. Tanaka, H. Kitao, and F. Nakadomo. 1989. Exercise-induced lipid peroxidation and leakage of enzyme before and after vitamin E supplementation. Int. J. Biochem. 21:835–838.31. Ma, X., P. Tu, Y. Chen, T. Zhang, Y. Wei, and Y. Ito. 2003. Preparative isolation and purification of two isofla-vones from Astragalus membranaceus Bge. var. mongholi-cus (Bge.) Hsiao by high-speed counter-current chromatog-raphy. J. Chromatogr. A 992:193–197.32. Zhang, W. D., C. Zhang, R. H. Liu, H. L. Li, J. T. Zhang, C. Mao, S. Moran, and C. L. Chen. 2006. Preclinical pharmacokinetics and tissue distribution of a natural cardio-protective agent astragaloside IV in rats and dogs. Life Sci. 79:808–815.33. Yu, Q. T., P. Li, Z. M. Bi, J. Luo, and X. D. Gao. 2007. Two new saponins from the aerial part of Astraga-lus membranaceus var. mongholicus. Chin. Chem. Lett. 18:554–556.34. Li, R., W. C. Chen, W. P. Wang, W. Y. Tian, and X.G. Zhang. 2010. Antioxidant activity of Astragalus polysac-charides and antitumour activity of the polysaccharides and siRNA. Carbohydr. Polym. 82:240–244.35. Yan, H., Y. P. Xie, S. G. Sun, X. D. Sun, F. X. Ren,Q. R. Shi, S. H. Wang, W. D. Zhang, X. M. Li, and J. Zhang. 2010. Chemical analysis of Astragalus mongholicus poly-saccharides and antioxidant activity of the polysaccharides. Carbohydr. Polym. 82:636–640.at Poultry Science Association Member on March 20, 2014/Downloaded from250JAPR: Research Report36. Yu, D. H., Y. M. Bao, C. L. Wei, and L. J. An. 2005. Studies of chemical constituents and their antioxidant activi-ties from Astragalus mongholicus Bunge. Biomed. Environ. Sci. 18:297–301.37. Sheng, B. W., X. F. Chen, J. Zhao, D. F. He, and X. Y. Nan. 2005. Astragalus membranaceus reduces free radical-mediated injury to renal tubules in rabbits receiving high-energy shock waves. Chin. Med. J. (Engl.) 118:43–49. 38. Sahin, K., F. Akdemir, C. Orhan, M. Tuzcu, A. Hayirli, and N. Sahin. 2010. Effects of dietary resveratrol supplementation on egg production and antioxidant status.Poult. Sci. 89:1190–1198.39. Meluzzi, A., F. Sirri, G. Manfreda, N. Tallarico, andA. Franchini. 2000. Effect of dietary vitamin E on the qual-ity of table eggs enriched with n-3 long chain fatty acids.Poult. Sci. 79:539–545.40. Akdemir, F., and K. Sahin. 2009. Genistein supple-mentation to the quail: Effects on egg production and eggyolk genistein, daidzein, and lipid peroxidation levels.Poult. Sci. 88:2125–2131.at Poultry Science Association Member on March 20, 2014/Downloaded from。
黄芪多糖对种鸡生产性能及抗体水平影响摘要:在种鸡产蛋高峰193日龄-213日龄进行添加黄芪多糖粉每天饮水八小时,可明显降低鸡群疫苗应激引起的死亡率,有效维持产蛋高峰时间,新城疫抗可体效价提高了0.75个抗体滴度,离散度缩短了26.69%--48.90%。
关键词:黄芪多糖新城疫抗体自由饮水1 材料与方法1.1 试验材料共计4栋194-219日龄种鸡(约43973只)、H5抗原、H9抗原、ND抗原、96孔V型微量反应板、微量移液器(50ul或25ul)、枪头若干、注射器、抗凝剂、生理盐水1.2 试验药品黄芪多糖粉由北京生泰尔生物科技有限公司提供1.3 试验时间2013年3月12日----2013年4月3日,共计21天。
1.4 试验方法1.4.1 试验分组试验1组:7栋种鸡,母鸡约6327只试验2组:9栋种鸡,母鸡约13868只对照1组:8栋种鸡,母鸡约6220只对照2组:10栋种鸡,母鸡约13814只1.4.2试验方法1.4.2.1 分别统计试验组和对照组试验的产蛋率、死亡率等生产性能。
1.4.2.2 试验前对照组、试验组分别进行H9、H5、ND抗体水平检测。
1.4.2.3 试验1组和试验2组鸡群从194日开始,在饮水中添加黄芪多糖粉,使用剂量为100克兑水1000公斤,自由饮水8--10小时,共计使用21天,其他进行常规的饲养管理和免疫。
对照组鸡群常规的饲养管理、免疫、用药。
并对鸡群每天产蛋率、死亡只数进行统计,每间隔12天对试验组和对照组进行一次抗体检测。
2 试验结果图表1、2:试验组和对照组死亡数量统计表(将试验1组、试验2组视为一个组,即试验组;对照1组和对照2组视为一组,即对照组)试验期间死亡只数统计表1所有鸡群免疫用药情况说明:3月14日注射新支流油苗0.7毫升,H5 0.5毫升,I 系3倍量(采集当地毒株) 3月27日新支弱毒疫苗气雾免疫 3月19-22硫酸新霉素饮水试验期间死亡只数统计图2组别鸡只数量(只)死淘数死亡率相对减少数量(只)试验前试验后 对照组21911215623491.6%———试验组 22062 21796 266 1.2% 83图表3、4:产蛋率统计日期 3月12日3月13日3月14日3月15日3月16日3月17日3月18日3月19日3月20日3月21日3月22日3月23日3月24日3月25日3月26日3月27日3月28日3月29日3月30日3月31日4月1日 4月2日 4月3日日龄 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 对照组 76.39% 75.88% 78.82% 79.78% 80.99% 82.05% 81.57% 80.67% 79.66% 82.04% 82.37% 82.31% 83.29% 83.08% 83.77% 83.08% 83.42% 83.60% 83.14% 83.26% 82.68% 82.58% 82.18% 试验组 75.40% 76.05% 77.55% 80.30% 79.91% 81.39% 81.25% 80.21% 81.68% 81.73% 82.18% 82.08% 82.38% 83.04% 84.05% 83.57% 83.54% 83.90% 84.09% 83.40% 83.65% 82.93% 82.43%表5:抗体水平统计抗体检测记录检测指标组别检测时间检测日龄抗体水平离散度平均水平ND 试验组13.11193♀9 10 10 10 9 10 10 10 10 11 5.73% 9.9♂10 7 9 10 7 9 9 8 13.77% 8.6254.5218♀11 11 11 11 0 11♂12 11 9 11 12 12 12 11 9.20% 11.254.24235♀10 10 10 12 9 9 10 10 9 107.67%9.910 10 10 10 11 10 9 11 11 10♂10 10 10 10 10 10 10 0 10 对照组13.11193♀12 10 12 10 12 12 12 13 9.12% 11.63♂9 10 10 10 10 10 10 8 10 10 6.96% 9.74.5218♀13 12 13 12 13 13 13 12 12 4.20% 12.56♂8 8 8 13 12 12 14 13 23.30% 114.24 235♀9 10 8 10 10 10 9 12 8 814.15%9.539 11 7 9 11 9 9 10 12♂8 8 10 11 12 9 11 15.96% 9.86 试验组23.11193♀12 12 10 11 8.70% 11♂11 10 11 12 12 11 11 6.19% 11.144.5 218♀12 10 11 11 10 10 10 10 11 11 6.60% 10.6♂9 10 10 9 10 10 13 11 10 11.76% 10.224.24 235♀12 10 9 10 10 10 10 11 1214.01%10.17 8 14 9 10 8 10 10 10 10♂10 9 11 12 12.30% 10.5对照2组3.11 193♀10 10 10 10 11 11 10 10 12 11 6.73% 10.5♂11 10 11 10 10 11 11 11 12 6.19% 10.78 4.5218♀13 11 12 13 14 13 11 12 15 15 11.23% 12.9♂12 11 9 14 12 13 11 13.69% 11.71 4.24 235♀11 10 7 7 10 7 6 10 7 819.02%8.479 7 7 11 10 10 8 9 7♂8 11 9 12 9 12 7 10 9 10 16.87% 9.7试验结论:1、(见图表1、2)试验组比对照组减少死亡83只,种鸡试验组比对照组死亡率降低了25%。
养鸡养鸭养鹅养畜生的用黄芪添加黄芪比你们放抗生素牛多了黄芪用于饲料添加剂,可以显著提高饲养动物的免疫力,改善患病动物健康状况,提高动物生产性能和提高肉蛋品质,缩短饲养时间,提高饲料利用率。
黄芪(Astragalus)又名黄耆,指豆科植物黄芪的根,药典中规定蒙古黄芪或膜荚黄芪的根为黄芪正品,是“扶本固正”类常用中药。
黄芪含有多糖,黄酮,皂甙,多种氨基酸和微量元素,既具有丰富营养又具有药效功能。
1 黄芪的成分和功能黄芪含有多糖、黄酮、皂甙、多种氨基酸、维生素和微量元素,此外还含有苦味素、香豆素、胆碱、甜菜碱、亚油酸和叶酸等营养物质。
黄芪味甘、性温,具有补气升阳、固表止汗、托脓排毒、生肌消肿的功效。
临床上还用其辅助治疗心脏病、冠心病、糖尿病等。
其中黄芪多糖(Astragaluspolydsaccharide,APS)是发挥主要药效的成分之一,也是含量最多,最常用的饲料添加剂。
黄芪多糖水解后得到五种单糖,其中4种已鉴定,分别为:葡萄糖、阿拉伯糖、葡糖醛酸和半乳糖醛酸,含量均为2.5%左右。
刘星楷从黄芪中分离得到分子量为37500的白色粉末状多糖,为а-糖苷键连接。
有人测定黄芪不同部位多糖的含量,发现茎叶的含量较根少,种子最少。
方对鼎从国产蒙古黄芪中获得3种多糖。
其中黄芪多糖1由D-葡萄糖、D-半乳糖和L-阿拉伯糖组成,分子量为36300;黄芪多糖2分子量为12300,二者均有增强免疫活性的作用;黄芪多糖3分子量为34600,无明显免疫活性。
黄芪多糖具有重要的免疫调节作用,可以显著提高机体细胞免疫和体液免疫,是天然的免疫促进剂,临床上已用于免疫增强剂和免疫佐剂。
此外,黄芪多糖还参与神经内分泌免疫调节,具有抗肿瘤、抗病毒、抗菌的功能。
黄芪皂甙(AstragulusSaponins,AS)是黄芪中又一重要的皂甙类有效成分,目前从黄芪及其同属近缘植物中已分离出40多种,均以9,19-环羊毛脂烷型的四环三萜皂甙类为甙元,总称为黄芪皂甙或黄芪总皂甙。
山黄粉和黄芪多糖对蛋鸡生产性能和免疫机能的影响山黄粉和黄芪多糖对蛋鸡生产性能和免疫机能的影响近年来,随着人们对健康的关注日益增加,以及对传统养殖方式的质疑,绿色、健康的农产品已经成为市场的主流需求。
因此,提高蛋鸡生产性能和免疫机能成为了养殖业的重要研究方向。
本文将从山黄粉和黄芪多糖两个角度出发,探讨它们对蛋鸡生产性能和免疫机能的影响。
山黄粉,简称黄粉,是一种天然的中药饲料添加剂。
据研究表明,山黄粉中富含多种生物活性物质,如黄酮类、干姜烯类和鞣质等。
这些物质除了具有抗氧化、抗炎、抑菌等作用外,还能增强蛋鸡的免疫力。
在一项实验中,将山黄粉添加到蛋鸡饲料中,研究发现山黄粉组的蛋鸡产蛋量明显高于对照组。
这说明山黄粉有助于提高蛋鸡的生产性能。
值得一提的是,山黄粉还能增强蛋鸡的免疫机能。
研究发现,山黄粉能够增加蛋鸡体内白细胞数量和产生抗体的能力,从而提高蛋鸡的免疫力。
此外,山黄粉还能调节蛋鸡肠道菌群的平衡,减轻蛋鸡肠道炎症,增强蛋鸡对疾病的抵抗力。
综上所述,山黄粉对蛋鸡生产性能和免疫机能具有积极影响。
黄芪多糖是一种由黄芪提取的多糖类化合物,具有多种生物活性。
研究表明,黄芪多糖具有抗菌、抗炎、增强机体免疫力等作用。
将黄芪多糖添加到蛋鸡饲料中,能够显著提高蛋鸡体重和饲料转化率,进而增加蛋鸡的生产性能。
一项研究还发现,黄芪多糖能够提高蛋鸡的免疫功能,增强蛋鸡对常见疾病的抵抗力。
这是因为黄芪多糖能够刺激蛋鸡的免疫细胞活性,并促进免疫细胞的增殖和分化,从而提高蛋鸡的免疫功能。
除此之外,黄芪多糖还能提高蛋鸡肠道健康。
研究发现,黄芪多糖能够抑制有害菌的生长,促进有益菌的繁殖,从而改善蛋鸡肠道菌群的平衡。
蛋鸡肠道菌群的平衡对于蛋鸡的健康至关重要,它不仅影响蛋鸡对营养的吸收利用,还直接影响蛋鸡的免疫机能。
因此,黄芪多糖对蛋鸡的肠道健康具有重要作用。
综上所述,山黄粉和黄芪多糖对蛋鸡的生产性能和免疫机能具有积极影响。
它们可以提高蛋鸡的产蛋量和体重,改善饲料转化率,增强蛋鸡的免疫力和抵抗疾病的能力。
黄芪粉对商品蛋鸡免疫功能的影响
作者:郭明明
来源:《农村实用科技信息》2014年第01期
摘要:为了探讨不同添加水平黄芪粉对商品蛋鸡免疫功能的影响。
试验选取27周龄健康的产蛋高峰期商品蛋鸡600只,随机分为4个处理,每个处理5个重复,每个重复30只,对照组饲喂基础日粮;试验组分别在对照组基础上添加0.5 %、1.0 %、1.5 %黄芪粉。
预示期为7 d,试验期为70 d。
于试验第35 d和第70 d时,对各项血液生理指标以及新城疫和禽流感抗体效价进行测定。
试验第70 d时,添加1.5 %黄芪粉组血液中间细胞显著高于对照组(P
关键词:免疫增强剂;黄芪;商品蛋鸡;免疫功能
根据有关资料的研究说明黄芪这种药物的使用主要作为免疫增强剂使用,能对免疫系统起到调节作用,能够刺激T、B淋巴细胞,巨噬细胞,免疫细胞,并且刺激补体促进细胞因子生成,来达到增强免疫系统的功能。
本实验以商品蛋鸡为实验对象,在日粮中添加黄芪,研究日粮中添加不同水平的黄芪对商品蛋鸡免疫系统的影响。
为免疫增强剂作为饲料添加剂在蛋鸡健康养殖和畜产品品质方面提供依据。
1 实验设计
1.1实验材料
黄芪粉(简单加黄芪粉的主要成分),蛋鸡普通全价商品日粮。
1.2实验动物与设计
试验选取27周龄健康的产蛋高峰期商品蛋鸡600只,随机分为4组,每个组5个重复,每个重复30只,对照组饲喂全价基础日粮(根据NRC蛋鸡标准饲喂);试验组分别在对照组基础上添加0.5 %、1.0 %、1.5 %黄芪粉。
设预示期7 d试验期为70 d。
1.3饲养与管理
本实验用全封闭式鸡舍立体笼养,每笼3只,期间自由采食饮水,光照为16L:8D。
地面光照强度为15LX,温度为22~24度,湿度为55 %~60 %。
1.4测定方法
1.4.1免疫系统的测定
1.4.1.1血液生理指标的测定
分别在试验的第35 d和70 d,每个重复各选取2只体重接近的健康商品蛋鸡,翅静脉取抗凝血,利用全自动动物血细胞分析仪(PE-6800VET,)测定血液红细胞总数(RBC)、血红蛋白(HGB)、白细胞总数(WBC)、淋巴细胞(LYM)、中间细胞(MID)、粒细胞(GRAN)等血液生理指标。
1.4.1.2抗体效价测定
分别在实验的第35d和第70d,每个重复组各选取2只体重接近的健康商品蛋鸡,翅静脉采血,离心机离心分离血清,-20 ℃保存,然后采用血凝抑制试验方法分别测定新城疫和禽流感的抗体效价。
1.5数据处理
数据以平均值+标准误差表示采用SAS(SAS2000)统计,处理间差异采用ANOVA进行,采用正交多项式比较法对不同黄芪梯度的处理效应进行一次线性和二次曲线回归分析,多重比较采用Duncan氏法,以P
2 结果与分析
2.1日粮添加黄芪粉对血液生理指标的影响
表中数据表明,添加不同水平的黄芪粉对各处理组第35 d和第70 d的红细胞总数、白细胞总数、淋巴细胞、红细胞压积、血红蛋白浓度均没有影响;添加不同水平的黄芪粉对各处理组第70 d的中间细胞和血液粒细胞均有影响;添加不同水平的黄芪粉对各处理组第35d的中间细胞没有影响,而对第35 d的粒细胞有影响。
试验第70 d时,添加1.5 %黄芪粉组血液中间细胞显著高于对照组(P0.05)。
试验第35 d 和70 d,各添加组之间和对照组粒细胞差异均不显著(P>0.05)。
由此得出,在蛋鸡日粮中添加黄芪粉对蛋鸡血液指标的影响主要集中在粒细胞和中间细胞上,而对其他血液指标没有影响,尤其以添加1.5%黄芪粉对血液中间细胞影响较大。
2.2日粮添加黄芪粉对血清抗体效价的影响
表中数据表明,添加不同水平黄芪粉对试验第35d新城疫和Re-5H5亚型禽流感抗体效价及试验第70d禽流感H9亚型抗体效价均有影响。
试验第35 d时,添加1.0 %黄芪粉组的新城疫抗体效价以及添加0.5 %黄芪粉组的Re-5H5亚型禽流感抗体效价均显著高于对照组(P0.05)。
试验第70d时,添加不同水平黄芪粉的各
处理组和对照组之间均无显著差异(P>0.05)。
由此得出,在商品蛋鸡日粮中添加适量黄芪粉可有效提高蛋鸡血清的新城疫和禽流感抗体效价。
3 结论
3.1试验第70 d时,日粮中添加1.5 %黄芪粉组商品蛋鸡的血液中间细胞显著高于对照组(P
3.2试验第35 d时,添加1.0 %黄芪粉组的新城疫抗体效价以及添加0.5 %黄芪粉组的Re-5H5亚型禽流感抗体效价均显著高于对照组(P。