工业窑炉节能技术
- 格式:doc
- 大小:821.50 KB
- 文档页数:11
工业窑炉节能技术措施工业窑炉是工业生产中常用的设备之一,在电力、冶金、化工等行业广泛应用。
然而,由于传统的窑炉结构和工艺存在着能源消耗高、热效率低的问题,导致能源浪费和环境污染。
为了提高工业窑炉的能源利用率和节能效果,采取一些技术措施是非常必要的。
下面就是几种常见的工业窑炉节能技术措施。
第一,改进窑炉结构。
通过改进窑炉的结构设计,优化燃烧系统和传热系统,可以提高窑炉的热效率。
例如,采用先进的燃烧器和燃烧辅助设备,可以改善燃烧效果,提高燃烧效率;采用高效的换热器和余热回收系统,可以将废热回收利用,降低能源消耗。
此外,还可以设计保温层,减少热能的散失,提高窑炉的能源利用效果。
第二,优化燃料选择。
选择合适的燃料可以降低工业窑炉的能源消耗。
一种常见的做法是替代传统的燃料,如煤炭和柴油,采用替代燃料,如煤气、天然气和生物质燃料。
这些替代燃料能够提供更高的热值,同时不产生环境污染物,达到节能减排的目的。
另外,可以利用工业余热来进行燃烧,充分利用能源资源。
第三,加强测控系统。
通过加强工业窑炉的测控系统,可以实时监测和调控窑炉的运行状态,保证窑炉的正常运行和高效工作。
例如,可以安装温度、压力和流量传感器,实时监测窑炉内的温度、压力和气体流量等参数,根据实时数据进行调整,保持窑炉的最佳工作状态。
第四,开展能源管理和节能培训。
加强针对工业窑炉的能源管理和节能培训,提高操作人员的节能意识和技能水平。
通过合理使用和操作设备,减少人为操作失误和能源浪费。
此外,还可以制定能源管理制度,建立节能激励机制,激发员工的节能热情,提高节能效果。
第五,采用智能控制技术。
近年来,随着智能化技术的快速发展,智能控制技术在工业窑炉中的应用也越来越广泛。
智能控制技术可以实现对窑炉的自动化控制和运行管理,提高窑炉的工作效率和能源利用效果。
例如,利用物联网技术和大数据分析,实现对窑炉运行状态和能源消耗的实时监测和智能调节,及时发现问题和调整参数,提高窑炉的节能效果。
工业窑炉节能技术姓名:张*专业:动力机械及工程一绪论1.1采用先进技术,使工业窑炉不断改造升级窑炉的更新改造应该以优质、高效、节能、环保、安全、智能化、多工种、工序联动及自动化为主。
水泥预分解技术是最具现代化、规模化的水泥生产方法,在世界各国被普遍采用,成为当代水泥生产方式的主流。
该技术以悬浮预热和预分解为核心,利用现代流体力学、燃烧动力学、反应动力学、热工学、计算流体力学数值预测技术、粉体工程学和工程测试技术等现代科学理论和技术,并采用计算机信息及网络化技术,具有高效、优质、节能、节约资源等特点,符合可持续发展的要求。
在工业窑炉燃烧技术节能方面,通过将高温空气燃烧技术、富氧燃烧技术、脉冲燃烧节能技术、水煤浆燃烧技术和流化床燃烧技术等先进燃烧技术应用于工业锅炉中,可显著提高燃烧热效率。
2.1 推进工业窑炉余压热利用我国工业窑炉主要以煤炭为燃料,以电能为动力,是典型的耗能大户。
一般工业窑炉烟气带走的热量占燃料炉总供热量的30%~70%,充分回收烟气余热是节能的主要途径。
通常烟气余热利用途径有:1)装设预热器,利用烟气预热助燃空气和燃料;2)装设余热锅炉,生产热水或是蒸汽,以供生产或生活;3)利用烟气作为低温炉的热源或用来预热冷的工件或炉料。
二工业窑炉节能基本原理2.1 工业窑炉的分类工业窑炉是指加热或熔化金属或非金属的装置而言,加热或熔化金属的装置称为工业炉,加热或熔化非金属的装置称为窑炉。
工业窑炉是工业加热的关键设备,同时工业窑炉又是高能耗设备。
目前,全国工业窑炉年能耗约占总能耗的25%,占工业总能耗的60%。
目前工业窑炉根据行业分类主要如图2.1.隧道窑陶瓷、耐火材料工业窑炉玻璃熔炉间歇式倒焰窑玻璃窑炉退火炉其他玻璃窑炉工业窑炉立窑水泥窑炉回转窑炼铁高炉钢铁工业窑炉炼铁转炉图 2.1 工业窑炉分类2.2 工业炉窑炉节能原理2.2.1 工业窑炉节能因素分析由于工业窑炉是集发热、传热、反应的功能于一身,有的还兼有输送物料的功能。
窑炉节能措施的实施及应用摘要:近年来,国家对于环境保护越来越重视。
在“双碳”目标的要求下,各行各业都在朝着节能减排各个细节深挖潜力。
窑炉是建材、轻工及冶金等行业的热工设备,其通常是用耐材及钢构组合砌筑而成,结合实际需要,能够建造不同类型不同规模的窑炉,借助电、油、燃气等达到高温运行目的。
依照不同品种,窑炉可划分成搪瓷窑、玻璃窑、水泥窑、陶瓷窑炉等。
大型窑炉所用燃料,以天然气居多,其次是轻柴油、煤气、重油等,电窑一般规模较小,通常是以钼棒、硅碳棒、电炉丝等为主要的发热元件,总体结构相对简洁,实操极具便捷性。
窑炉总体结构设计、燃料及其燃烧方式、耐火材料选定等,均关系着其能否实现节能运行。
为确保能够达到这一目标,对窑炉各项节能措施有效实施与其应用开展综合分析较为必要。
关键词:窑炉;节能措施;实施应用引言针对工业窑炉节能减排的技术特点进行详细探索和研究,在此基础上进行优化与集成处理,完成企业生产过程中对窑炉污染与能量消耗的控制,同时还对窑炉设备使用特点制定出窑炉型号以及结构上的优化策略,解决模型建立问题,从根本上完成窑炉使用者、窑炉生产企业以及第三方技术服务企业之间的信息沟通。
1窑炉节能减排技术价值窑炉设备作为工业发展的核心条件,对于工业进步和成长具有十分重要的中作用和现实意义,该设备主要通过充分燃烧燃料从而产生热能物质。
按照行业生产模式一般分为水泥窑炉、蒸汽炉、玻璃窑炉、裂解炉等方面,所以窑炉行业未来发展趋势应侧重在环保行业,对于窑炉自身的基础保温效果来说,增加窑炉基础燃烧率、热能使用率、减少窑炉基础散热、提升窑炉耐火性能同样成为提高要炉设备节能水平的重要途径。
对于工业窑炉来说,设备隔热保温材料对于设备使用质量和效果具有举足轻重的作用,只有使用高水平保温材料,才能从根本上解决设备使用过程中对于环保型的实际需求。
技术人员针对窑炉设备长期跟进和管理最终发现,窑炉设备节能改造技术方式相对比较复杂,比如:使用全新燃烧嘴、调整炭烧嘴布置与设定、完善码胚防止位置、安装烟道、对于梭式窑炉进行热量利用、选择适合的温度检测位置点以及控制方法、增加窑炉隔热保温性能等。
工业窑炉节能技术措施工业窑炉是工业生产中常用的设备,主要用于加热、熔炼、干燥和烧结生产过程中的物料。
然而,由于工业窑炉需要大量的能源供应,其能耗高、效率低、排放污染物等问题日益突出,已成为制约工业生产可持续发展的重要因素。
因此,如何提高工业窑炉的节能效益成为了一个迫切的问题。
一、选择合适的燃料燃料的选择是影响工业窑炉能耗的关键因素之一。
在使用燃料时应优先考虑清洁、低碳、高效的燃料,如天然气。
天然气具有热值高、燃烧效率高、烟气排放少等优点,比其它燃料更适合于工业窑炉。
此外,可利用余热回收系统将排出的废热转化成电能或蒸汽,进一步提高能源利用效率。
二、采用优化的复合燃烧技术采用复合燃烧技术可有效降低工业窑炉的能耗及排放,提高其环保效益。
混合燃烧区块煤、生物质燃料、油类以及天然气等燃料,可以充分利用各种燃料的优点,实现优化的燃烧效果。
同时,采用喷射预混合燃烧技术、中心燃烧、径向燃烧等新型的复合燃烧技术,可进一步提高工业窑炉的热效率,减少氧化物、氮氧化物等有害气体的排放。
三、优化工艺条件工业窑炉生产是一个复杂的过程,包括加热、烘干、煅烧、烧结等环节。
在各个生产环节中,工艺条件的优化对能耗的降低和节能效益的提高起到重要的作用。
可以通过优化工艺流程、调节工艺参数等措施来实现。
四、引入智能控制技术引入智能控制技术,对工业窑炉的节能效果也有显著的影响。
智能控制系统不仅可以根据温度、氧含量、排放物等信息来自动调节工艺参数,还可以通过大数据云计算等技术来实现更加精准的控制和预测,进一步提高生产的效率和减少能源的消耗。
综上所述,通过采用合适的燃料、优化的复合燃烧技术、优化工艺条件和引入智能控制技术等措施,工业窑炉的节能效果可以得到大大提升。
在未来的工业生产中,我们应坚持绿色节能的理念,减少能源的浪费和污染,促进可持续发展。
随着社会经济的不断发展,我国玻璃工业的竞争也越来越激烈,节约能耗、降低成本已成为企业的核心竞争力。
而玻璃生产具有资源消耗多、污染严重和能耗高等特点,不仅影响到企业的生存,也制约了整个行业的发展。
节能降耗是企业降低成本、提高效益的最佳途径。
燃烧技术的节能1、全氧燃烧技术为了降低浮法玻璃窑炉烟气中的NOx污染,欧美国家开发推广出新型的全氧燃烧技术,主要是通过全氧来代替助燃空气,气体中不含有N₂,只有极少量的NOx,浮法玻璃窑炉烟气污染的总体积可减少80%,并且会降低废弃带走的热量。
全氧燃烧技术工艺的核心在于全氧燃烧喷枪,为加强燃料与氧气混合的接触面积,全氧燃烧喷枪整体成矩形,能更为精准地控制火焰覆盖率,在燃烧过程中进行分阶段全氧燃烧,能将燃烧喷枪的更多能量转化为热辐射,并产生更多碳黑,加强火焰亮度,充分利用浮法玻璃窑炉的传热均匀性,加强黑体辐射的传热效率,提高更短波段热辐射在玻璃液中的穿透效率。
使用全氧燃烧技术的浮法玻璃窑炉能提高20%的热效率,但采用这项工艺时,需要重视对浮法玻璃窑炉耐火材料的选择,烟气中水蒸气的浓度会因全氧燃烧而增加,会在浮法玻璃生产过程中,产生浓度较大的碱性蒸汽,加速耐火材料的侵蚀,影响窑龄和生产规模。
2、富氧燃烧技术采用富氧燃烧技术生产浮法玻璃的基本原理,主要是原料通过富氧燃烧减少了烟气的产生,燃烧产物中二氧化碳和水蒸气的分压和含量增加,NOx的含量降低,火焰黑度加大,火焰温度提升,加快了原料的燃烧过程,提高了火焰在配合料与玻璃液之间的传热效率,从而提高了浮法玻璃窑炉的熔化效率。
富氧燃烧技术对燃烧设备具有更高要求。
燃料在燃烧过程中需要氧气,这些氧气通常来源于空气,但氧气在助燃空气中仅占21%的比重,而空气中其余的氮气并不会参加燃烧,反而会吸收大量的热量,阻碍燃烧效率的提高,增加燃料消耗。
因此提高空气中的氧气含量,可以更好地保持热量,提高燃料利用效率。
用28%的富氧空气进行燃烧试验时,热量损失减少25%,热量损失的减少也降低了燃料消耗。
工业窑炉节能技术措施在工业生产中,窑炉常作为生产过程中的关键设备使用。
然而,传统的窑炉存在能源利用效率低下的问题,这不仅令企业在生产成本上存在较大压力,也加剧了环境污染的程度。
为此,采取一些节能技术措施已经成为了目前窑炉设计建造和使用中的重要问题。
窑炉节能技术措施的意义窑炉作为工业生产过程中耗能量非常大的设备之一,其能源利用问题是影响生产成本和环境保护的关键之一。
充分利用各种可利用的节能技术,对于提高窑炉能源利用效率,减少企业生产成本,推动产业节能减排等具有重要意义。
节能技术措施1. 窑炉内部结构优化设计窑炉内部结构的优化设计是减少炉内能量损耗的重要技术方案。
通过优化窑炉的形状、尺寸、炉膛内部抗氧化涂层等,可以降低炭化物质量、促进燃料和空气的混合,减少干燥和煤气化的能量消耗。
2. 燃料改良技术燃料改良技术是现代化节能技术的重要范畴之一。
在窑炉运行过程中,燃料是产生炉内高温的物质之一,因此利用更加高效的燃料,如优质煤、天然气等,需要进行燃料的优化选择。
3. 窑炉的热能回收技术热能回收技术是窑炉节能的有效方法之一。
通过在窑炉的废气中配置热交换器,可将废气中的热能回收,从而获得更多的能量。
这样在整个生产流程中可将一定的热能回收,从而有效减少能源消耗。
4. 窑炉运行监测和运维技术窑炉运行监测和运维技术是窑炉节能保障的关键。
通过对窑炉运行过程中的各项参数进行监测,及时发现问题,并采取正确的方法来解决,可以有效地保障窑炉的升温效率,也可以及时发现和消除缺陷。
此外,采用智能节能设备,可以有效地对窑炉进行精细化管理,为企业实现科学化生产管理创造良好前提。
窑炉节能技术措施的创新随着科技创新不断深入,窑炉的节能技术措施也需要不断创新。
窑炉集成式节能系统、能源在线监测平台和大数据分析技术的应用等都是窑炉节能技术创新的重要方向。
结论由于窑炉是工业生产过程中派不可少的设备之一,其能源利用效率的提高具有重要意义。
通过对窑炉内部结构进行优化设计、采用高效燃料、利用热能回收技术和智能节能设备等,可以有效地提升窑炉的能源利用效率,降低企业生产成本和能源消耗。
工业窑炉节能技术措施在工业生产中,窑炉是不可或缺的设备之一,窑炉使用也是耗能最大的环节之一。
因此,采取有效的节能措施,是每个企业必须要面对的问题。
本文将对工业窑炉节能技术措施进行详细介绍。
节能技术措施1. 提高窑炉的热效率1.1 预热燃料和进料窑炉的热效率与燃料和进料的温度相关。
因此,提高燃料和进料的温度,能够有效提高窑炉的热效率。
在窑炉生产过程中,部分废气和煤气是可以通过余热回收系统进行再次加热,然后用于加热燃料和进料。
使用废气和煤气的余热回收和再利用,不仅可以节约能源,并且能够降低工厂的污染排放。
1.2 选择合适的燃料燃料的选择直接影响到窑炉的耗能情况。
通常来讲,较为节能的燃料,包括天然气、粉煤灰、飞灰等。
对于工业窑炉,选用合适的燃料不仅可以节约能源,而且可以降低窑炉运转时的排放。
2. 优化窑炉操作2.1 控制窑炉的进气量在窑炉操作中,合理调节进气量可以起到节能的作用。
具体来讲,通过控制窑炉的进气量,使得燃烧充分,避免短路现象的产生,从而提高燃气利用率。
2.2 数字控制技术利用数字化技术对窑炉操作进行控制,减少了人为因素的干扰,可以有效控制窑炉的热效率。
同时,数字控制技术还能够提高生产效率,降低生产成本。
3. 窑炉换热器的优化3.1 换热器的清洁在窑炉的换热器中,存在着大量的积灰,这会导致换热器效率的降低。
因此,定期对换热器进行清洁是必要的。
对于换热器的清洗,可以使用高压气体或者蒸汽进行冲洗,也可以使用高压水枪进行清洗。
3.2 使用高效换热器在窑炉生产中,采用高效换热器能够有效提高窑炉的热效率。
目前市面上普及的高效换热器主要有板式、螺旋式和轴流式等。
采用高效换热器可提高窑炉的热效率。
总结以上就是工业窑炉节能技术措施的相关介绍。
除了以上措施外,还有很多其他有效的节能措施,如组织技术革新、减少工艺流程、采用新型材料等等。
工业生产和环境保护的紧密联系,需要企业在发展经济的同时,不断追求创新,提高技术水平,为节能减排做出应有的贡献。
新型窑炉节能方案引言随着全球能源消耗的持续增加和环境污染的加剧,能源问题和环保问题已成为亟待解决的重大挑战。
窑炉是工业生产中能源消耗较大的设备之一,因此提高窑炉的能源利用率和降低排放已成为窑炉设计和改进的重要目标。
本文将介绍一种新型的窑炉节能方案,旨在提高窑炉的能源利用率并降低对环境的影响。
背景传统的窑炉设计存在能源浪费和环境污染的问题。
传统窑炉的排烟温度高,导致大量热能的损失;同时,废气中含有大量的有害物质排放到大气中,对环境造成严重影响。
因此,开发一种新型的窑炉节能方案刻不容缓。
新型窑炉节能方案的优势相比传统窑炉,新型窑炉节能方案具有以下优势:1.热交换效率高:新型窑炉采用热交换技术,可以充分利用废气中的热能,显著提高能源利用效率。
2.废气净化效果好:新型窑炉装备了废气净化设备,可以有效去除废气中的有害物质,降低对环境的影响。
3.运行成本低:新型窑炉的设计使得运行成本大幅降低,能够在长期运行中节省大量能源和维护成本。
新型窑炉节能方案的核心技术新型窑炉节能方案的核心技术包括热交换技术和废气净化技术。
热交换技术热交换技术是新型窑炉节能方案的关键。
新型窑炉通过在废气的排烟道中设置热交换器,将废气中的热量转移到新鲜空气中,再供给窑炉燃烧,从而提高能源利用效率。
这种热交换技术不仅可以降低排烟温度,减少热能损失,还可以提高窑炉的加热效果,使得窑炉工作更加高效。
废气净化技术废气净化技术是新型窑炉节能方案的另一个重要组成部分。
新型窑炉采用先进的废气净化设备,可以去除废气中的颗粒物、有机物和有害气体等污染物质,使得废气排放达到环保标准。
同时,废气净化技术还可以回收部分废气中的热能,进一步提高能源利用效率。
新型窑炉节能方案的实施与应用新型窑炉节能方案的实施需要以下几个步骤:1.设计与改进:根据窑炉的工作特点和能量流动规律,对传统窑炉进行设计和改进,采用热交换技术和废气净化技术,提高能源利用率和环保性能。
2.安装与调试:根据设计方案,对新型窑炉进行安装和调试,确保各项技术指标符合要求。
第二节工业窑炉节能技术一、概述在工业生产中,利用燃料燃烧产生的热量,或将电能转化为热能,从而买现对工件或物料进行熔炼、加热、烘干、烧结、裂解和蒸馏等各种加工工艺所用的热工设备,称为工业炉窑。
工业窑炉主要由炉衬、炉架、供热装置(如燃烧装置、电加热元件)、预热器、炉前管道、排烟系统、炉用机械等部分组成。
目前,工业炉窑广泛应用于国民经济各行各业,如冶金、建材、化工、轻工、食品和陶瓷等行业。
其品种多、耗能高、影响大,是工业加热的关键设备。
其加热技术的发展与高效节能技术的采用,对于提高产品质量、降低生产成本、合理利用能源、改善劳动条件、实现文明生产等都有很大影响。
工业窑炉的类型繁多,在不同的行业需要满足不同的应用背景和生产工艺要求。
工业窑炉一般应满足如下要求:(1)炉温、气氛易于控制,保证热加工产品质量达到工艺要求;(2)炉子生产率高;(3)热效率高,单位产品能耗低;(4)使用寿命长,砌筑和维护方便,筑炉材料消耗少;(5)机械化、自动化程度高;(6)基建投资少,占地面积小月、便于布置;(7)对环境污染少,劳动条件好。
在实际应用中,应根据不同的工业窑炉和具体生产工艺要求,从设计、施工、运行操作和维护管理等各方面综合考虑,力求尽可能达到上述的基本要求。
目前,我国工业窑炉年耗煤达3亿多吨,约占我国工业用煤的40%。
水泥、墙体材料窑炉每年消耗煤炭约2.24亿t,其中水泥窑约7 800座,年耗煤1.6亿t,平均能效比国外先进水平低20%以上;墙体材料窑炉约10万座,年耗煤6 400万t,平均能效比国外先进水平低30%以上。
钢铁工业窑炉每年消耗煤炭约6 600万t,其中球团工序回转窑生产线20多条,平均能效比国外先进水平低50%以上;石灰热工窑炉约350座,平均能效比国外先进水平低10%;耐火材料热工窑炉约1 900余座,平均能效比国外先进水平低10%~20%。
我国工业窑炉存在的主要问题是:技术水平低,装备陈旧落后、规模小;能耗高,大部分缺乏除尘脱硫污染控制设施,污染严重;运行管理水平低,管理粗放。
我国工业窑炉的节能潜力巨大,例如:钢铁厂余热资源据估计相当于1 000多万吨标准煤,其中65%是可以回收的,而目前只回收了总量的10%,仍有约500多万吨标准煤的能量可以回收利用。
因此,如果全国的工业窑炉能够平均节能10%,则年节约的能源相当于1亿tee。
随着全球经济、资源和环境一体化趋势的发展,我国的工业炉窑技术及装置水平面临极大挑战,节能减排更是势在必行。
因此,工业炉窑的发展必须走科技含量高、经济效益好、资源消耗低、环境污染少的可持续发展道路。
其主要趋势可概括如下:(1)燃料方面①合理组织工业窑炉气体燃料;②合理使用西气东输工程给东部、中部地区送来的可观天然气;③大力开发水电资源,有效地优化我国能源结构;④大力实施洁净煤技术,其中煤气化是洁净煤燃烧的核心技术。
(2)技术方面①选择合适炉型结构,提高机械化程度;②不断改善燃料燃烧状况;③采用新型炉用材料,优化炉衬结构;④应用高效余热回收技术及装置。
(3)能源方面应把握开源节流两手抓。
根据我国能源形势,工业窑炉节能势在必行。
(4)环保方面①调整燃料结构,尽可能选用天然气、油或煤转成气作燃料,或选用各种煤的清洁燃烧技术;②采用先进燃烧技术,降低NO x的生成;③节约能源、减少燃耗,减少工业窑炉燃料消耗量。
二、工业窑炉的分类与简介常见工业窑炉及其用途见表1.2-1。
工业窑炉的类型繁多,用途各异。
工业窑炉的分类方法很多,实际应用中一般是按其某些主要特征来进行分类的。
如按工艺特点分为加热炉和熔炼炉;按所使用能源种类分为燃料炉和电加热炉;按工作温度高低分为高温炉、中温炉、低温炉;按热工操作制度分为连续式工作窑炉和间歇式工作窑炉;按炉型特点分为室燃炉、步进炉、竖炉等;按工作制度分为辐射式工作制度窑炉、对流式工作制度窑炉和层式工作制度窑炉。
表1.2-1 常见工业窑炉及其用途下面对工业窑炉的分类和用途简单介绍如下。
(一)按工艺特点分工业窑炉按工艺特点可分为加热炉和熔炼炉两类。
加热炉主要是用于完成物料的加热,提高物料的温度,改变物料的物理机械性能,而物料物态并没有改变。
主要包括加热炉、步进炉、室状炉、罩式炉、辊底炉、干燥炉,石灰石、白云石的焙烧炉等。
熔炼炉主要用于碳金属、合金、特种金属的熔炼和提温。
(二)按使用能源种类分工业窑炉按所使用能源种类可分为燃料炉和电炉两种。
燃料炉(又称火焰炉)是指借燃料燃烧释放的热量,对物料进行热加工的设备,一般分为燃煤窑炉、燃油窑炉和燃气窑炉等,在各种工业窑炉中燃料炉应用较为普遍。
电炉是将电能转化为热能,从而用来加热物料的设备,一般分为电弧炉、电阻炉、感应炉、电子束炉和等离子炉等。
(三)按工作温度分工业窑炉拄工作温度可分为高温炉、中温炉和低温炉三种。
高温炉的工作温度在1 000℃以上,炉内物料与周围介质热交换以辐射传热为主。
钢铁冶金企业中的各种熔炼炉和加热炉大多属于此类。
中温炉的工作温度在650~1 000℃间,炉内物料与周围介质的热交换,辐射和对流各占一定比例。
金属热处理过程的诸多炉子多属于中温炉。
低温炉的工作温度低于650℃,炉内物料和周围介质热交换以对流换热为主。
低温炉多用于干燥、有色金属及其合金的加热,钢铁及有色金属的回火处理等。
(四)按热工操作分工业窑炉按热工操作可分为连续式炉和间歇式炉两种。
连续式炉的热工特点是炉子连续生产,一般炉内沿炉长方向炉温连续变化,正常生产条件下,炉子各点温度不随时间变化。
料坯在炉内运动,从装料门进入炉内,通过炉子不同温度区域完成加热过程,最后从出料门出炉.如推钢式连续加热炉、步进炉、环形炉、链式炉等。
也有沿炉长方向炉温基本不变的,为直通式炉。
间歇式炉(又称周期炉)的工艺特点是炉膛内不划分温度区段,炉子间歇生产;炉子成批装料进行加热或熔炼,在炉内完成加热或熔炼工艺后,成批出料。
炉料在炉内不运动,炉温随时间变化,如均热炉、台车炉、罩式炉、井式炉等。
(五)按工作制度分工业炉窑按工作制度可分为辐射式工作制度炉窑、对流式工作制度炉窑和层式工作制度炉窑三种。
辐射式工作制度炉窑中辐射传热起主要作用,钢铁企业绝大部分高温火焰炉都属于辐射式制度炉窑,该炉窑的火焰黑度和炉墙在热交换中起重要作用。
对流式工作制度炉窑中对流传‘热起主要作用。
650℃以下的低温炉,炉内传热方式以对流为主。
此类炉子特点为燃烧室:和炉膛分开,因此,组织好炉内气体再循环,是提高此类炉窑效率的重要途径。
层式工作制度炉窑加热块状散料时,炉料充满整个炉膛空间,热气体在物料间通过,散料加热表面大小是变化的,气体辐射层很薄,在温度变化较大范围内很难严格区分辐射和对流传热各占多少。
实际工作中,把这种热气体通过散料的炉子工作制度叫做层式工作制度,相应炉窑称层式工作制度炉窑,其中包括竖炉和流化态炉,后者又可分为沸腾料层炉和悬浮料层炉两种;炼铁高炉属层式工作制度中的竖炉。
(六)按:沪型特点分这一分类方法包括室式炉、双室式炉、贯通炉、推杆炉、台车式炉、转底炉、环形炉、步进炉、链式炉、振底式炉、马弗炉、坩埚炉、井式炉、辊筒式炉、平炉、电弧炉、冲天炉和热风炉等。
由以上分类可看出,各种窑炉都是按其某方面特点进行分类的,对某一特定窑炉来说,不只具有一个特点。
因此,对同一窑炉由于分类着眼点不同,它可隶属于几种类型,如连续加热炉可既属加热炉,又属火焰炉、高温炉、连续式炉等。
通常根据哪种分类法来称呼一个炉窑也不完全相同,实际工作中,一般采用习惯叫法。
根据炉子结构特点称呼一个炉子较多,如高炉、环形炉、辊底炉、车底炉、链式炉,也有根据炉子用途来称呼,如退火炉、渗碳炉、干燥炉等。
三、工业窑炉的节能技术途径工业窑炉的类型繁多、用途多样。
因此,工业窑炉的节能技术改造途径很多。
在实际应用中,对于不同类型的窑炉需要根据具体情况采取合理的节能技术改造方案。
(一)工业窑炉的节能改造目前,对现有工业窑炉进行节能改造是工业窑炉节能最主要和最有效的措施之一。
其节能改造的内容很多,主要有热源改造、燃烧系统改造、窑炉结构改造、窑炉保温改造、控制系统节能改造以及烟气余热回收利用改造等。
1.热源改造通过改造工业窑炉的热源可以有效减少其能源消耗,其改造内容可因窑炉种类的不同而异。
例如,将窑炉的燃料由燃油改为燃用工艺过程回收的燃气,有的将燃泔、燃气改造为电加热等。
2.燃烧系统改造对于燃油和燃气窑炉,燃烧系统改造主要是采用新型燃烧器取代老式燃烧器。
例如,采用平焰、双火焰、高速、可调焰等新型烧嘴,可节能5%~10%;有条件时可利用回收烟气的余热来预热助燃空气,采用机械化加煤或煤粉燃烧对燃煤窑炉进行改造等。
3.窑炉结构改造工业窑炉的种类繁多,其结构也因行业、工艺的不同而异。
随着科技的进步和能源环保政策的实施与市场要求,工业窑炉的结构也在不断改进与更新。
通过工业窑炉的结构改造,可以有效改善燃烧状况、缩小散热面积、增大窑炉的有效容积,从而达到减少能源消耗和提高产品质量和产能的目的。
4.窑炉保温改造工业窑炉的保温状况与其能源消耗直接相关,特别是对于运行温度在数百甚至上千摄氏度以上的窑炉尤为重要。
因此,采用新型保温材料或改善窑炉的保温状况是一项非常重要的节能措施,达到既减少燃料消耗,又改善操作环境的目的。
例如,可将炉暗改造为由耐火砖或轻质耐火砖加耐火纤维和保温材料构成的复合结构;采用复合浇注料吊挂炉顶,减少炉顶散热等。
以玻璃熔窑为例,由于玻璃熔窑的散热面积大、外表面温度高,其散热量约为总热量的20%~30%,尤其在用重油作燃料和使用电熔耐火材料后,散热损失更大。
采用窑体保温后,燃料可节省15%~20%,火焰温度可提高20~30℃。
5.窑炉烟气余热利用改造窑炉烟气余热的回收利用改造的途径很多,如采用合适的烟道换热器和余热锅炉等回收烟气的余热,根据烟气余热的不同温度水平,可利用烟气预热助燃空气或利用余热发电等,既可有效降低排烟温度,也可收到良好的节能效果。
6.窑炉密封改造窑炉密封改造的目的是提高其密封性以减少冷空气的渗入和热空气的泄漏所造成的热损失。
例如可以尽可能减少开孔与炉门数量,采用浇注料炉衬结构外加炉墙钢板等。
7.控制系统改造控制系统改造主要是将采用手动控制或半自动控制系统改造成自动控制系统或对已有自动控制系统进行升级改造和优化,按产品工艺要求,对窑炉的运行过程进行自动控制,使窑炉在良好的工况下运行,可以取得良好的节能效果。
(二)工业窑炉的主要节能技术工业窑炉类型繁多、应用领域很广。
因此,其节能技术涉及众多的技术领域。
在实际应用中,只有根据各种炉型的特点和具体工艺要求,采用合理的节能技术方案,才能取得预期的节能效果。
为了提高我国的能效水平,我国在“十一五”期间已将工业窑炉节能新技术开发列为节能工作的重点工程。